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Abstract

In regression modelling the non-linear relationships between explanatory variables and out-

come are often effectively modelled using restricted cubic splines (RCS). We focus on situa-

tions where the values of the outcome change periodically over time and we define an

extension of RCS that considers periodicity by introducing numerical constraints. Practical

examples include the estimation of seasonal variations, a common aim in virological

research, or the study of hormonal fluctuations within menstrual cycle. Using real and simu-

lated data with binary outcomes we show that periodic RCS can perform better than other

methods proposed for periodic data. They greatly reduce the variability of the estimates

obtained at the extremes of the period compared to cubic spline methods and require the

estimation of fewer parameters; cosinor models perform similarly to the best cubic spline

model and their estimates are generally less variable, but only if an appropriate number of

harmonics is used. Periodic RCS provide a useful extension of RCS for periodic data when

the assumption of equality of the outcome at the beginning and end of the period is scientifi-

cally sensible. The implementation of periodic RCS is freely available in peRiodiCS R pack-

age and the paper presents examples of their usage for the modelling of the seasonal

occurrence of the viruses.

Introduction

In biomedicine it is increasingly common to record several patients’ characteristics with the

aim to evaluate which of these explanatory variables might be associated with the outcome of

interest and, subsequently, to use regression models for the analysis [1].

In some studies it is scientifically meaningful that the values of the outcome variables

change periodically over time. For example, researchers studying the occurrence of viruses

and collecting data over multiple years are interested in estimating their seasonal variation [2–

5]; the period in this case is generally the calendar year and the explanatory variable is defined

as the day of the year (as a number), aggregating the measurements made over different years.

In this way all the years are treated equally and only the information about the day of the mea-

surement, the season within the year, is considered. A similar approach can be used for
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studying seasonal variation of antibiotic prescriptions or of elective admissions to hospitals.

Another example is in fertility research, where the researchers are interested in estimating the

hormonal fluctuations, the period being the woman’s menstrual cycle and the outcome vari-

able being the hormone levels for all the days within the period [6, 7]. In the modelling of the

circadian rhythm of hormones the period is the 24 hour cycle [8].

In this paper we will focus on modelling periodic numerical explanatory variables using

regression models, either when the focus is to model their association with the outcome or

merely to adjust the regression analysis for the periodic variable. Cubic splines (CS) or

restricted cubic splines (RCS) are a popular way to flexibly model non-linear relationships in

regression models [9]. Numerous other types of splines exist and those most widely used were

recently surveyed [10].

For example, Strle and colleagues [11] used RCS to estimate the shape of the association

between the day of the diagnosis of erythema migrans (EM) and its duration.

They found that the patients diagnosed at the beginning and at the end of the year had lon-

ger duration, but the estimates obtained at the extremes of the period differed substantially (55

days on January 1 and of 35 days on December 31, with wide confidence intervals at the

extremes). This inconsistency was a consequence of using RCS for modelling periodic data, a

method that does not make any use of the information about the periodicity of the explanatory

variable: it does not constrain the estimates to be equal or similar at the extremes, nor does it

constrain the curves to be smooth if the extremes are joined. It is also common to superimpose

smooth curves that do not take periodicity into account over histograms that display monthly

aggregated over many years [4].

In this paper we will show how to adapt RCS to model periodic explanatory variables. We

will derive the spline function imposing additional constraints that take the periodicity into

account, requiring the equality and smoothness in the extremes. We will illustrate the use of

periodic RCS using examples from virology research [2] and illustrate the use of the peRi-
odiCS [12] R package [13] that we developed for this purpose. We will also present the use of

periodic CS, originally proposed by [6], and of the cosinor models, which use sine and cosine

transformations of the periodic explanatory variable and thus constrain the estimates to be

periodic. Additionally, we will include a selected set of simulation studies that are helpful for

illustrating the properties of the investigated methods.

Materials and methods

Periodic RCS

We present the derivation of a periodic RCS that can be used to model periodic explanatory

numerical variables. To illustrate our idea we briefly introduce CS and RCS, and explain the

additional constraints used to take the periodicity into account. The technical details and the

formulas are given in the S1 Appendix.

A brief non-mathematical introduction to CS and RCS. Splines are generally used in

regression models when the assumption of linearity between an explanatory variable and

(some transformation) of the outcome is not satisfied. To overcome the problem, splines trans-

form the explanatory variable by splitting the range of values in intervals and fitting a separate

curve in each interval. The spline is defined so that the overall resulting curve is smooth and

continuous. The points that delimit the intervals are called knots.

CS use cubic polynomials, joined so as to obtain a smooth function, imposing the equality

of the first and second derivatives in each knot. Using k knots the numerical values of the

explanatory variables are transformed into k + 3 new variables (a linear, a quadratic, a cubic

term and other truncated cubic polynomials, see the S1 Appendix for details), known as the
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basis functions; each basis function is linear in the regression coefficient and, therefore, the

coefficients can be estimated using standard methods for multivariable regression model

fitting.

RCS are defined as CS, but use linear functions beyond boundary knots (before the first

and after the last knot), improving the behaviour at the extremes [14]. The simpler functional

form at the extremes implies that only k − 1 regression parameters need to be estimated.

The obtained regression coefficients determine the shape of the estimated spline function

and usually are not interpreted. Standard statistical inference methods can be used to derive

the confidence intervals of the estimated curve or to assess if there is an overall association

between the explanatory variable and the outcome (testing if all the spline regression coeffi-

cients are equal to zero), or if the association is linear (comparing the nested models that con-

tain only the linear term or the complete spline). To overcome the difficulties in the

interpretation of the spline regression coefficients it is customary to present the results graphi-

cally, displaying the estimated shape of the spline function with its confidence intervals, or to

choose some values of the explanatory variable and evaluate the estimated outcome at these

values.

Usually, the position of the knots does not have a major impact on the results and the

choice of equally spaced quantiles is recommended [1]. In our analyses we used the default

knot positions from the rms R package [15]. The number of knots has an impact on the

results, for RCS it is suggested that 5 or less knots are appropriate in most applications and

that a data-based optimization of the number of knots can be based on the Akaike information

criteria (AIC) [1]. AIC is a measure based on the goodness of fit of the model that includes a

penalty for the number of estimated parameters: the goodness of fit improves using models

with more parameters (for example, splines with more knots) and AIC favours simpler models

when the goodness of fit is similar.

Periodic CS and RCS. In most circumstances it is sensible to assume that the outcome

values should be equal at the beginning and at the end of the period. For example, when data

from multiple years are aggregated, big discontinuities between December 31 and January 1

should not be sensible in most cases since the days in the calendar year are a convention. Simi-

larly, we should not expect big differences between midnight and a moment after it if the data

from multiple days are aggregated.

To take this property of periodic data into account we impose the additional constraint that

the value of the spline function is equal at the extremes of the period. Additionally, we require

that the splines remain smooth if we join the beginning and the end of the period (i.e., we

require that the derivatives at the extremes are equal). These additional constraint further

reduce the number of estimated regression parameters. Using k knots, k − 3 parameters are

estimated for periodic RCS (instead of k − 1), k for periodic CS (instead of k + 3). For example,

for periodic RCS with 5 knots the explanatory variable is transformed into 2 new variables.

The derivation of the basis functions for the periodic spline functions is given in the S1

Appendix. The interested reader can use the web application that we developed [16] to visual-

ize the shape of the basis functions of RCS, periodic RCS and periodic CS.

It is important to note that the empirical procedure for using periodic splines is the same as

for non-periodic splines, despite the additional constraints. In practice, the user specifies the

number and position of the knots, derives the basis functions values and can use them as a set

of explanatory variables in any regression model. Similarly as for the non-periodic splines, the

values of the estimated regression coefficients per se are not meaningful and can be used as

described for regular splines. A statistical testing procedure can be used to assess if there is an

overall association between the explanatory variable and the outcome, while a test for linearity
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cannot be readily obtained from a periodic RCS or CS, as an independent linear term is not

used.

Implementation of periodic RCS and CS in peRiodiCS R package. The peRiodiCS R

package [12] calculates the values of the basis functions, which can subsequently be used

within any regression formula in the R language. The values of the basis functions can also be

exported in text format and be used with a different software. The package includes also the

functions for the calculation of the periodic CS proposed by [6], a virology dataset [2] and

usage examples. Some examples of how to use the peRiodiCS package are given in the S1

Appendix.

The cosinor model

We evaluated also the performance of the cosinor model, which maps the time explanatory

variable in the (0, 2π) interval and uses a sine and a cosine transformation of the transformed

time as explanatory variables; this approach was proposed by Halbert et al. [17] to model peri-

odic data. In practice, in our real data examples the week time variable was transformed in

w ¼ 2p
ðweek� 1Þ

52
and the sine and cosine of w were used as explanatory variables, requiring the

estimation of 2 parameters. This model fits one harmonic sinusoidal regression function that

can capture only one local minimum and/or maximum.

Extensions of the cosinor model can capture more general types of periodicity. We esti-

mated also a model that can capture bimodal periodicity, by including two additional explana-

tory variables (sin(2w) and cos(2w)); in the following the model will be referred to as the

cosinor(2h) model (cosinor model with two harmonics).

The cosinor models guarantee the equality of the estimates at the beginning and at the end

of the period, and have the desirable property of not depending on the choice of the starting

point of the period: the models fitted using different starting points obtain exactly the same

estimates.

Metrics used to evaluate the models

In our applications we focused on binary outcomes and used logistic regression models.

We used four metrics to evaluate the overall performance of the estimated models: Brier

score, the c concordance index, the calibration intercept and slope. A brief description of the

measures is given below, details can be found in [18].

Brier score measures the difference between observed and predicted outcomes, it is defined

as the mean squared difference between the actual binary outcomes and predicted probabilities

and it ranges between 0 (perfect model) and p × (1 − p)2 + (1 − p) × p2 (non-informative

model), where p is the outcome prevalence. Brier score can be decomposed in discrimination

and calibration aspects, which are measured by the other metrics.

The c concordance index is equivalent to the area under the ROC curve (AUC) for binary

outcomes and it is the proportion of all pairs of observations with opposite outcomes that are

correctly ranked by the model. It measures discrimination, i.e., how well a prediction model

can discriminate patients with the outcome from those not experiencing it; non-informative

models have c = 0.5, those with perfect discrimination attain c = 1.

Calibration measures the agreement between observed outcomes and predictions and can

be evaluated only on independent data. The model estimated on training data is used to obtain

the estimated linear predictor of new (test) data, which is used as the only predictor in a logistic

regression model for the new outcome; the calibration slope is the obtained regression coeffi-

cient of the linear predictor, while the calibration intercept is obtained as the intercept from

the model that fixes at unity the regression coefficient of the linear predictor (used as an offset).
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The perfectly calibrated model has a calibration intercept equal to 0 and calibration slope

equal to 1. Deviations from the value of 0 of the calibration intercept indicate deviations

between the observed outcome and predictions, i.e., that the model underestimates or overesti-

mates the number of events in the new data; calibration slope measures the average strength of

the predictors, values below 1 typically indicate overfitting or systematic differences between

the data used to develop the model and the new data.

Real data analysis

We illustrated the modelling of periodic variables by reanalyzing the data from patients with

severe acute respiratory infections (SARI), which were collected in the Eastern Mediterranean

Region from November 2007 till January 2014 [2]. The positivity to 7 viruses (respiratory syn-

cytial virus (RSV, sample size n = 24503), adenovirus (AdV, n = 9402), human metapneumo-

virus (hMPV, n = 9384), human parainfluenza virus types 1,2 and 3 (hPIV1–3, n = 9402) and

human influenza (INF, n = 28438)) was tested by real time reverse transcriptase polymerase

chain reaction (rtRT-PCR) or PCR. These viruses are known to follow seasonal patterns [2].

We used RCS, periodic RCS and periodic CS and the cosinor models to estimate the season-

ality of the viruses with logistic regression models; each virus positivity was an outcome and

the week in the year was the periodic explanatory variable. The number of knots for the splines

was selected to minimize the AIC (values between 3 (5 for periodic RCS) and 10 were used,

considering at least 3 knots and 2 estimated parameters). The results were presented graphi-

cally by plotting the estimated probability of a positive virus result and the pointwise 95% con-

fidence intervals (CI) of the curves. We used repeated 10-fold cross-validation (CV) to

estimate the four metrics: Brier score, the c concordance index, the calibration intercept and

slope.

To evaluate the methods on smaller sample sizes we used 100 subsamples of 500 units. For

the splines, at each iteration the number of knots minimizing the training data AIC was used

to fit the model, which was evaluated on the remaining units. The proportion of models for

which the overall score test had a p-value less than 0.05 was also recorded (referred as power in

the following). To evaluate the effect of this type of knots selection we reported also the results

obtained using a fixed number of knots. The simulation was repeated using a fixed number of

knots (equal to the median optimal number of knots obtained in the previous simulation), or

varying the number of knots (between 3 (5 for periodic RCS) and 10). hPIV1 and hPIV2 were

excluded from these analyses because of their low event rate.

In our analyses with periodic RCS and CS we used the first week of the year as the starting

point of the calendar year period, which is a common but arbitrary choice. We evaluated the

impact of the choice of the period’s starting point on the estimated probabilities: we re-ana-

lyzed the complete data set and its subsets and changed the starting point (setting it to the 1st

week, the 4th, 8th, 12th, . . ., 52nd week), estimating 14 different models in each setting. For

the complete data set we analyzed all the viruses, using 7 and 10 knots and graphically dis-

played the estimated probabilities obtained using the 14 different starting points. In the subset

analysis we used randomly selected subsamples of 500 observations, considered 5 to 10 knots

and analyzed the RSV, AdV, hMPV and Flu viruses; for each unit included in the subsample

we evaluated the standard deviation (SD) of the estimated probabilities obtained with the 14

different models and calculated the average SD. The analyses were repeated 500 times and the

results were averaged. In our applications the position of the knots was fixed at specific quan-

tiles, therefore changing the starting point had also the effect of changing the location of the

knots.
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Simulation studies

We performed two sets of simulations to evaluate the performance of periodic RCS and CS

and to compare them to those obtained with RCS and the cosinor models with one and two

harmonics. In the first sets (alternative cases) there was an association between the periodic

explanatory variable and the binary outcome, in the second (null case) there was no associa-

tion; data were analyzed with logistic regression.

The periodic explanatory variable x was simulated from a Uniform distribution defined in

the [0, 1] interval (U(0, 1)). For each subject we evaluated the probability of experiencing the

event from a known model (P(Y = 1|x) = (1 + sin(2πx)) � 0.25 + 0.25 in the first alternative

case, P(Y = 1|x) = (13 + 3 � sin(2πx) + cos(2πx) − 20 � sin(2πx) � cos(2πx))/25 in the second

alternative case, P(Y = 1|x) = (2.5 − sin(2πx) + 1.1 � cos(x) − sin(2πx) � cos(x))/7 + 0.2 in the

third alternative case; x and the outcome were independent in the null case, P(Y = 1|X) = 0.5).

We simulated the occurrence of the event if this probability was greater than a random

number generated from U(0, 1). The probabilities were simulated from a one-harmonic sinu-

soidal function in the first alternative case, in the second alternative case the probabilities had

a bimodal distribution, while the function was bimodal with a flat region in the third alterna-

tive case. The shape of the functions used to generate the probabilities are depicted as black

curves in Fig 2.

In the first alternative case we used a fixed number of knots (5) or parameters (3) for the

splines; in the other two cases we used a fixed number of parameters (3 or 5). For the alterna-

tive cases the data used to develop the model included 100 units, test data included 1000 units

and we evaluated the four previously described measures. Additionally, we presented the

results graphically, showing the average estimated curve and the average 95% pointwise CI, the

curves estimated in a subsample of the simulation iterations, and the coverage of the 95%

pointwise CI for the linear predictor, LP (the proportion of simulations where the CI included

the true simulated value, dividing the range of the explanatory variable in equally spaced inter-

vals of 0.025 width and evaluating the coverage in their mid-point). The average coverage and

the average length of the 95% CI for the LP was obtained averaging the values from the inter-

vals. For the alternative and the null cases we evaluated the probability that the p-value

obtained from the score or likelihood ratio test (LRT) for the overall association between the

explanatory variable and the outcome was less than 0.05. This probability estimates the power

in the alternative case and the size of the test (probability of false positives) in the null case,

using the level of significance α = 0.05. All simulations were repeated 5000 times for the alter-

native case, 20000 to evaluate the size of the tests in the null case. R version 3.3.1 was used and

the random seed was 1234 for all the simulations.

Results

Reanalysis of the data from Horton et al

The major differences between the estimated probabilities from the five models were observed

in the extremes (Fig 1). As expected, the estimated values at the beginning and at the end of

the calendar year did not match for RCS, while they did match and the function was smooth

with periodic RCS and CS and for the cosinor models; for example, with RCS the estimated

probability of RSV positivity was 0.29 on January 1 and 0.22 on December 31, while they were

0.26 with periodic RCS and the cosinor model with 2 harmonics, and 0.27 with periodic CS

and with the cosinor model. The 95% CI in the extremes were much wider when RCS were

used, the cosinor model had the narrowest CI, followed by periodic RCS (S1 Fig). The optimal
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number of knots (minimizing AICs) was smaller for the viruses with smaller sample sizes,

periodic RCS required the estimation of fewer parameters (but not necessarily fewer knots),

except for hPIV1. The seasonal modelling of hMPV achieved the best discrimination, AdV the

worse.

Fig 1. Estimated probability of virus positivity for 7 different viruses using RCS, periodic RCS and CS, and cosinor models with one and

two harmonics using data from Horton et al. The step functions are the observed weekly proportions of virus positive samples, the lines are the

estimated probabilities estimated using the 5 different models.

https://doi.org/10.1371/journal.pone.0241364.g001
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The differences in cross-validated Brier score and c index between the methods were mostly

negligible and the models were well calibrated (Table 1). The spline models captured the bimo-

dality for INF, hMPV and hPIV3, cosinor(2h) only for INF; for these viruses the simple cosi-

nor model performed worse in terms of calibration (Fig 1).

The results between methods differed more consistently using smaller sample sizes

(n = 500, Table 2); the estimated median optimal number of knots was smaller compared to

the results obtained on complete data. The power of three viruses was consistently close to 1

but periodic RCS had larger power for the viruses with moderate power (AdV and hPIV3).

None of the methods performed consistently better in terms of the other four metrics but the

estimates obtained using cosinor and periodic RCS were less variable (S2 Fig). Overall, the

Table 1. Analysis of the complete dataset of Horton et al. Estimates are obtained with repeated 10-fold cross-validation.

Virus Method Parameters Knots Brier score c index Cal. intercept Cal. slope

RSV (n = 24503, 16.1% Pos) RCS 9 10 0.127 0.680 -0.005 0.997

RCS Per 7 10 0.127 0.680 -0.002 0.999

CS Per 10 10 0.127 0.679 -0.007 0.996

cosinor 2 0.127 0.678 0.004 1.004

cosinor(2h) 4 0.127 0.677 0.004 1.002

AdV (n = 9402, 9.8% Pos) RCS 4 5 0.088 0.574 -0.068 0.970

RCS Per 2 5 0.088 0.563 -0.007 0.998

CS Per 8 8 0.088 0.574 -0.219 0.901

cosinor 2 0.089 0.574 -0.010 0.997

cosinor(2h) 4 0.089 0.572 -0.098 0.957

hMPV (n = 9384, 6.6% Pos) RCS 8 9 0.059 0.739 -0.009 0.999

RCS Per 6 9 0.059 0.738 0.013 1.009

CS Per 7 7 0.059 0.737 0.004 1.005

cosinor 2 0.059 0.726 0.056 1.028

cosinor(2h) 4 0.059 0.725 0.022 1.012

hPIV1 (n = 9402, 1.7% Pos) RCS 4 5 0.017 0.707 0.008 1.012

RCS Per 7 10 0.017 0.696 -0.194 0.957

CS Per 8 8 0.017 0.695 -0.257 0.940

cosinor 2 0.017 0.683 0.125 1.043

cosinor(2h) 4 0.017 0.668 -0.104 0.981

hPIV2 (n = 9402, 0.9% Pos) RCS 4 5 0.009 0.699 -0.105 0.986

RCS Per 2 5 0.009 0.709 0.089 1.030

CS Per 5 5 0.009 0.704 -0.207 0.963

cosinor 2 0.009 0.714 0.314 1.087

cosinor(2h) 4 0.009 0.712 0.069 1.031

hPIV3 (n = 9402, 3.9% Pos) RCS 7 8 0.037 0.675 -0.091 0.974

RCS Per 5 8 0.037 0.672 -0.058 0.985

CS Per 10 10 0.037 0.670 -0.175 0.946

cosinor 2 0.037 0.667 0.008 1.006

cosinor(2h) 4 0.037 0.670 -0.048 0.988

INF (n = 28438, 11.8% Pos) RCS 9 10 0.098 0.674 -0.014 0.993

RCS Per 7 10 0.099 0.672 -0.010 0.995

CS Per 10 10 0.098 0.676 -0.015 0.992

cosinor 2 0.099 0.663 0.007 1.004

cosinor(2h) 4 0.098 0.665 -0.002 1.000

https://doi.org/10.1371/journal.pone.0241364.t001
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models using fewer parameters tended to perform better on new data, having less overfitting

and achieving smaller errors and higher discrimination.

The models obtained without optimizing the number of knots (keeping their number equal

to the estimated median optimal number from the previous simulations) had considerably less

overfitting (S1 Table): the major differences were the smaller power on training data and better

calibration on new data, the performance on new data was somehow better also in terms of

Brier score and c index.

Generally, in terms of all the considered metrics, periodic RCS outperformed RCS and peri-

odic CS with the same number of fixed knots (S1 File). The only exception was observed for

the INF virus, which was modelled poorly with few knots (nk< 7) with periodic RCS, but not

with RCS and periodic CS. The comparison of the results obtained keeping fixed the number

of estimated parameters did not give the same clear cut results: periodic RCS had better power

for the two viruses with moderate power, while there was no clear winner in terms of the per-

formance of the other metrics. The simple cosinor models had by far the best calibration, even

when compared to models with the same number of parameters; the cosinor(2h) models had

considerably worse calibration and, marginally, the performance of the models was worse also

in terms of the other metrics. The only exception was the INF virus: the cosinor(2h) model

captured its bimodal distribution and performed better than the cosinor model.

Table 2. Repeated analysis of subsets of 500 units; the number of knots is based on AIC; estimates (Brier score, c index, calibration intercept and slope) are obtained

on the data not included in the model estimation, power is evaluated on training data.

Virus Method Parameters Knots Brier score c index Calibration intercept Calibration slope Power

RSV RCS 4 5 0.1291 0.667 -0.005 0.786 1.00

RCS Per 4 7 0.1284 0.667 -0.004 0.816 1.00

CS Per 3 3 0.1285 0.670 -0.007 0.857 1.00

cosinor 2 0.1277 0.674 0.007 0.993 1.00

cosinor(2h) 4 0.1282 0.668 -0.008 0.885 1.00

AdV RCS 2 3 0.0889 0.560 -0.001 0.477 0.38

RCS Per 2 5 0.0891 0.546 0.004 0.435 0.43

CS Per 3 3 0.0892 0.543 0.004 0.399 0.32

cosinor 2 0.0890 0.556 0.003 0.851 0.37

cosinor(2h) 4 0.0895 0.542 0.003 0.443 0.27

hMPV RCS 5 6 0.0600 0.715 -0.020 0.664 1.00

RCS Per 4 7 0.0597 0.721 0.009 0.734 1.00

CS Per 6 6 0.0600 0.714 -0.085 0.546 0.99

cosinor 2 0.0597 0.723 0.020 0.927 0.99

cosinor(2h) 2 0.0599 0.720 0.032 0.774 0.98

hPIV3 RCS 2 4 0.0374 0.652 -0.020 0.550 0.65

RCS Per 2 5 0.0374 0.661 -0.000 0.666 0.76

CS Per 4 4 0.0375 0.648 -0.055 0.465 0.64

cosinor 2 0.0370 0.649 0.043 0.880 0.63

cosinor(2h) 4 0.0372 0.638 0.043 0.692 0.51

INF RCS 3 4 0.0998 0.656 -0.007 0.771 0.97

RCS Per 5 8 0.1001 0.655 -0.005 0.699 0.94

CS Per 4 4 0.0995 0.654 -0.006 0.767 0.97

cosinor 2 0.1000 0.655 0.001 0.999 0.91

cosinor(2h) 4 0.0995 0.657 -0.001 0.859 0.96

https://doi.org/10.1371/journal.pone.0241364.t002
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As expected, the periodic spline models that used different starting points of the period esti-

mated different probabilities, but the observed differences in our examples were only moderate

when we reanalyzed the complete data set (Fig 1 and 2 in S2 File). Overall, the shape of the esti-

mated curves were very similar, regardless of the chosen starting point, and only some of the

estimated curves were outlying; the major differences in the estimated probabilities were

observed in the starting points of the periods and in their neighborhoods. As expected, the var-

iability among the curves was much bigger when we used a much smaller sample size (exam-

ples based on three subsets of 500 units are shown in Fig 3 to 5 in S2 File). The average SD of

the estimated probabilities was about 0.01 for AdV, hMPV and INF and about 0.02 for RSV

(exact numbers are reported in S2 File). On the complete data set the estimated probabilities

obtained with periodic CS had smaller variability compared to those obtained with periodic

RCS; the magnitude of the difference between the variability of the two methods depended on

the analyzed variable and on the number of used knots (Fig 1 and 2 in S2 File). However, this

result does not hold in general, as we observed many situations where periodic RCS had less

variability than periodic CS in the paired analyses of the subsamples of 500 units (Table in

S2 File).

Simulation results

The results from the simulations were in line with the findings from real data analysis with

small sample sizes. In the first alternative case, when the association between the periodic

explanatory variable and the event probability was generated from a one-harmonic sinusoidal

function, all three splines types fitted well the simulated data and estimated on average the cor-

rect curves, however the estimates obtained with periodic RCS were the least variable (Fig 2

and S3 Fig): their 95% CI were narrower, most notably in the extremes of the period; RCS had

the largest CI in the extremes, periodic CS were more variable in the whole range (S3 Fig).

Using a fixed number of 5 knots, periodic RCS performed best on the test data, obtaining

slightly smaller Brier score, larger c index and perfect calibration, while the estimated calibra-

tion slope of RCS and periodic CS indicated overfitting; periodic RCS had the best statistical

power, both using LRT and score test, indicating that the true association would be detected

more often if periodic RCS were used. When we compared the models using 3 parameters the

results were still in favour of periodic RCS, but the differences between models were smaller

(Table 3). In this set of simulations the cosinor model had the smallest variability and per-

formed as the best spline model in terms of the other measures (periodic RCS with 5 knots),

while the cosinor(2h) model performed considerably worse. This result was in line with the

expectations, as the data generating mechanism was consistent with the cosinor model. For all

the methods the coverage of the 95% CI was very close to the nominal value over the whole

range of the period, the average length of the 95% CI was the shortest for the cosinor model

and for periodic RCS with 5 knots (S4 Fig and Table 3).

In the second set of the alternative simulations, where the probabilities were generated

from a bimodal distribution, the cosinor(2h) model outperformed the cosinor model, which

had by far the worse performance among the evaluated models (Table 4). The spline models

performed better with 5 parameters, RCS having the best performance among the spline mod-

els, with similar results to the cosinor(2h) models. The coverage of the 95% CI was well below

the nominal value for all the models, but only slightly for periodic RCS with 5 parameters and

cosinor(2h) (S4 Fig and Table 4).

Also in the third set of the alternative simulations the spline models with 5 parameters out-

performed those with 3. On average RCS and cosinor did not estimate the correct association

shape, the other models performed similarly: on average the shape was best captured by
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periodic RCS, but periodic CS had the best power and cosinor(2h) had the best discrimination

and the smallest variability (Table 5). The coverage of the 95% CI was slighly below the nomi-

nal value for the spline models with 5 parameters and for the cosinor(2h) model, which had

the shortest CI length, followed by perdiodic RCS (S4 Fig and Table 5).

In the null case the score test performed better than the LRT, its estimated size being closer

to the nominal 0.05 value; LRT rejected the true null hypothesis slightly more often than

expected for all the considered methods (Tables 3 and 4).

Discussion

Restricted cubic splines are commonly used to model non-linear associations in regression

models. In principle they can be used also to model the association between numerical peri-

odic explanatory variables and outcomes; however, they do not make any use of the additional

information contained in the periodicity. The estimates obtained at the beginning and at the

end of the period are not constrained to be equal or similar, nor is the variability of the esti-

mates. In practice, even when the sample size is large, the estimates in the extremes can differ

substantially and the estimated function often is neither continuous nor smooth.

In this paper we showed how to use restricted cubic splines with numerical constraints to

account for the periodicity of the association between a numerical explanatory variable and an

outcome, deriving the basis functions for periodic RCS. Our results constrain the curves and

their variances to be periodic functions. The method was implemented in the peRiodiCS R

Fig 2. Simulation results for the alternative cases. Each row shows the results from one of the three alternative simulations settings, each column

refers to one of the models. The black curves show the probabilities from the model generating the data, the average estimates obtained using the five

models are shown with gray lines; dashed lines are average limits of the 95% confidence intervals. Spline models were fitted using 5 parameters. See

methods for details on the simulation settings.

https://doi.org/10.1371/journal.pone.0241364.g002
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package [12], which includes also the implementation of periodic cubic splines originally pro-

posed by Zhang and colleagues [6]. To the best of our knowledge, few methods are currently

available to users of statistical software for flexibly modelling periodic variables in regression

models [10]. Periodic CS are implemented in mgcv R package [19], using INLA the cyclicity

can be modelled with the RW2 model, which corresponds to a cubic smoothing spline [20],

periodic B-splines are implemented in the pbs R package [21].

The peRiodiCS package includes an example data set from virology research [2], which we

partly reanalyzed in this paper. One of the aims of the original paper was to describe the sea-

sonality of the pathogens; the authors aggregated the results monthly and displayed the pro-

portion of positives among samples tested for each virus using a barplot with juxtaposed bars,

and tested the presence of seasonality in virus positivity using chi-squared tests, analyzing the

Table 3. Simulation results from the alternative and null case; the probabilities in the alternative case are simulated from a sine function, shown in Fig 2.

RCS RCS Periodic CS Periodic RCS RCS Periodic CS Periodic cosinor cosinor(2h)

Knots 5 5 5 4 6 3

Parameters 4 2 5 3 3 3 2 4

Alternative case

RCS RCS Periodic CS Periodic RCS RCS Periodic CS Periodic cosinor cosinor(2h)

Power (LRT α = 0.05) 0.847 0.912 0.814 0.873 0.878 0.874 0.913 0.880

Power (Score α = 0.05) 0.836 0.909 0.791 0.867 0.872 0.865 0.910 0.880

Brier Train 0.208 0.213 0.206 0.210 0.210 0.210 0.212 0.204

Brier Test 0.231 0.226 0.233 0.228 0.227 0.228 0.226 0.235

AUC Train 0.721 0.709 0.728 0.716 0.717 0.713 0.710 0.734

AUC test 0.678 0.693 0.673 0.687 0.690 0.684 0.694 0.671

Calibration Intercept 0.001 -0.001 0.002 -0.006 -0.004 0.001 -0.001 0.027

Calibration Slope 0.822 0.998 0.754 0.909 0.920 0.901 0.998 0.734

Coverage of 95% CI 0.957 0.951 0.959 0.951 0.955 0.952 0.955 0.956

Length of 95% CI 0.956 0.749 1.082 0.839 0.872 0.864 0.749 0.996

Null case—size of the test

LRT, α = 0.05 0.059 0.053 0.062 0.056 0.057 0.061 0.055 0.056

Score Test, α = 0.05 0.049 0.051 0.048 0.049 0.051 0.049 0.052 0.049

https://doi.org/10.1371/journal.pone.0241364.t003

Table 4. Simulation results from the second alternative case, where the probabilities are simulated from a periodic function with two peaks, shown in Fig 2.

RCS RCS Periodic CS Periodic RCS RCS Periodic CS Periodic cosinor cosinor(2h)

Knots 4 6 3 6 8 5

Parameters 3 3 3 5 5 5 2 4

Power (LRT α = 0.05) 0.976 0.997 0.311 1.000 1.000 1.000 0.337 1.000

Power (Score α = 0.05) 0.972 0.997 0.301 1.000 1.000 0.999 0.329 1.000

Brier Train 0.187 0.167 0.231 0.154 0.152 0.157 0.234 0.152

Brier Test 0.203 0.183 0.250 0.179 0.175 0.181 0.248 0.175

AUC Train 0.783 0.826 0.642 0.849 0.854 0.843 0.620 0.855

AUC test 0.764 0.806 0.583 0.815 0.826 0.808 0.583 0.829

Calibration Intercept 0.007 0.007 0.048 0.015 0.017 0.012 0.024 0.005

Calibration Slope 0.943 0.958 0.563 0.855 0.862 0.857 0.814 0.879

Coverage of 95% CI 0.490 0.741 0.806 0.872 0.924 0.806 0.260 0.903

Length of 95% CI 0.954 1.128 1.319 1.409 1.523 1.319 0.709 1.241

https://doi.org/10.1371/journal.pone.0241364.t004
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monthly data. We used periodic RCS to give an alternative graphical representation, estimat-

ing the seasonality of the viruses using logistic regression models. The graphical presentation

using periodic RCS is more effective, as it uses smooth curves and the confidence intervals pro-

vide additional important information. An additional advantage is that the statistical inference

is statistically more powerful, as it uses fewer degrees of freedom and avoids the categorization

of the week of diagnosis into months.

We analyzed real data and performed some simulations to evaluate the extent of the practi-

cal impact of the additional constraints on the estimated models. We observed that periodic

RCS, besides obtaining continuous and smooth estimates in the extremes of the period, con-

siderably reduces the variability of the estimates for the values close to extremes. With RCS

these estimates are known to have the largest variability, therefore using the information about

periodicity has an important effect. The estimates obtained with periodic CS are more variable,

both at the extremes and, to a lesser extent, in the whole range of values.

To compare the models we additionally used four widely used measures that quantify the

overall discrimination and calibration of the models. These measures are less likely to differ

substantially between the three types of models, as we observed that the estimates obtained

away from the extremes are generally very similar, especially with large samples. However, we

observed some systematic differences. When the number of knots is fixed, in most cases peri-

odic RCS outperform RCS and periodic CS, obtaining smaller errors on new data, better dis-

crimination, considerably less overfitting and larger power. From the theoretical point of view

these findings can be explained by the use of a smaller number of parameters and by the

smaller variability of periodic RCS in the extremes. Comparing models that use the same num-

ber of parameters, generally periodic RCS perform better in terms of power, while none of the

models outperforms the others based on the other metrics. In the simulations presented in the

paper, periodic RCS perform slightly better than the other models also when the number of

parameters is fixed, however different simulation settings might favour the other models.

Based on our results with logistic regression, we recommend the use of the score test over

the likelihood ratio test to test the overall association between the spline-transformed variables

and the outcome, as the likelihood ratio test is slightly anti-conservative, possibly producing

more false positive associations than expected.

A critical issue in the use of splines is the choice of the number of knots, which can strongly

impact the modelling results. Some of our examples estimated the optimal number of knots

minimizing AIC, as suggested by Harrell [1]. Overall, for periodic RCS generally we estimated

Table 5. Simulation results from the third alternative, where the probabilities are simulated from a periodic function with complex pattern, shown in Fig 2.

RCS RCS Periodic CS Periodic RCS RCS Periodic CS Periodic cosinor cosinor(2h)

Knots 4 6 3 6 8 5

Parameters 3 3 3 5 5 5 2 4

Power (LRT α = 0.05) 0.787 0.677 0.588 0.749 0.752 0.805 0.595 0.773

Power (Score α = 0.05) 0.747 0.661 0.567 0.691 0.721 0.759 0.586 0.748

Brier Train 0.214 0.218 0.222 0.208 0.208 0.206 0.225 0.211

Brier Test 0.232 0.237 0.240 0.236 0.236 0.234 0.239 0.234

AUC Train 0.687 0.682 0.666 0.708 0.715 0.714 0.656 0.703

AUC test 0.643 0.640 0.624 0.640 0.649 0.649 0.630 0.651

Calibration Intercept 0.024 0.040 0.045 0.053 0.052 0.045 0.013 0.040

Calibration Slope 0.860 0.833 0.806 0.676 0.719 0.720 0.940 0.778

Coverage of 95% CI 0.895 0.801 0.765 0.924 0.924 0.951 0.711 0.913

Length of 95% CI 0.909 0.851 0.847 1.242 1.091 1.145 0.726 0.994

https://doi.org/10.1371/journal.pone.0241364.t005
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that the optimal number of parameters was equal or smaller compared to RCS or periodic CS,

with the exception of the INF virus, where we found that periodic RCS performed much worse

than the other models with few knots, and similarly afterwards. It is therefore possible that

while it is suggested that four or five knots are usually adequate when using RCS [9], periodic

RCS might require a few more knots in some specific cases.

While the AIC based estimation of the number of knots might be useful from the practical

point of view, the results have to be interpreted with care. Our examples show that the optimi-

zation of the number of knots introduces a substantial overfitting in the estimated models,

which should be accounted for. For example, cross-validation that includes the optimization of

the number of knots can be used to obtain nearly unbiased estimates of the performance of the

models.

A possible concern in using periodic RCS and CS is the need to choose the starting point of

the period, which in many applications can be arbitrary, and the choice of which influences

the estimates. This issue might seem even more concerning for periodic RCS that use linear

functions beyond boundary knots, where the starting point is located. Nevertheless, the real

data examples that we explored indicate a small variability of the estimated probabilities for

big samples, which increases for smaller samples and depends on the number of used knots

and on the overfitting of the models. The robustness of the choice of the starting point could

be assessed by trying different starting points, avoiding to use those that produce outlying

estimates.

The greatest variability is present in the neighbourhood of the starting point; therefore, one

should avoid starting points that are of specific interest, if the choice is arbitrary. Similarly, if

previous knowledge suggests that it is not sensible to assume linearity in a specific time range,

starting points included in such intervals should be avoided; this might be the case when

changes in the outcome are expected at specific time values. We suggest to place very few

observations beyond the boundary knots, as in RCS, thus modelling linearly only a very small

part of the data.

We compared the results obtained with the different types of splines with those from the

cosinor model, which uses a sine and cosine transformation of the time explanatory variable to

model periodic outcomes. The simple cosinor model with two parameters is very parsimoni-

ous: it guarantees the equality and smoothness of the estimates at the extremes of the period,

and it does not require specialized software; from the theoretical point of view, its most impor-

tant advantage over periodic RCS and CS is that the choice of the starting point does not have

any impact on the results. Extensions of the cosinor models that use more parameters must be

used to capture associations that have more than one local minimum and/or maximum. The

simple cosinor model outperforms the others in terms of calibration and generally performs

well also in terms of the other metrics and has less variability but, as expected, it does not cap-

ture well complex association patterns that on the other hand, can be modelled well with

splines with few parameters. At the same time, using more harmonics when not needed can

considerably worsen the performance of the model. Therefore, also with the cosinor model

some care is needed in the choice of the model complexity, raising issues which are similar to

those related to the choice of the number of knots for splines.

Our proposal has some limitations, mainly related to its general applicability for periodic

data. Periodic RCS, as periodic CS and cosinor models, should not be used if the assumption

of equality and smoothness of the outcome at the beginning and at the end of the period is not

sensible. For example, discontinuities at the end of the menstrual cycle are scientifically rea-

sonable for basal temperature, which drops considerably at the end of the cycle; none of the

periodic models considered in this paper can capture this behaviour, while RCS or CS could be

useful for this type of data. Another situation where the continuity and smooth assumption
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might fail is in the presence of a strong increasing or decreasing trend over time. For example,

the deaths attributed to pneumonia and influenza in Brasil decreased on average 2.1 percent

annually between 1979 and 2001 [5] and the authors detrended the time series to remove

year-to-year variations while preserving seasonal variations, before using Fourier decomposi-

tion to describe the amplitude and timing of annual and semiannual epidemic cycles. Simi-

larly, also when periodic RCS is used, it is advisable that existing non-negligible trends are

estimated and removed from the data. Examples of detrending methods and their usage can be

found in [22].

Conclusion

We believe that periodic RCS provide a useful expansion of RCS for periodic data, which can

enhance data visualization and be a useful tool for regression modelling of periodic variables.

Supporting information

S1 Fig. Estimated probability of RSV positivity using the complete dataset. The methods

reported in the Figure are RCS (black line), periodic RCS (blue), periodic CS (red), cosinor

(light green) and cosinor(2h) (dark green) with 95% pointwise confidence intervals (dashed

lines). Estimates are obtained using the complete dataset.

(PDF)

S2 Fig. Estimated probability of RSV positivity using subsets. The methods reported in the

Figure are RCS, periodic RCS and periodic CS, cosinor and cosinor(2h). Estimates are

obtained using randomly drawn subsets of 500 units from the complete dataset.

(PDF)

S3 Fig. Variability of the simulation results in the alternative setting. True (black) and esti-

mated (dashed) curves for a random subsample of the simulations in the three alternative set-

ting. Spline models were fitted using 5 parameters.

(PDF)

S4 Fig. Coverage of the 95% CI from the simulations in the alternative settings. Simulation

results using 5 parameters for the spline models. Coverage of the 95% CI in sub-intervals for

models using splines. Rows are the three alternative simulation settings, columns the five dif-

ferent models. Note the different scale in the first row.

(TIFF)

S1 Table. Results from the repeated analysis of 500 units using the optimal number of
knots. The number of knots is kept fixed at the median number of optimal knots estimated in

the analysis presented in Table 2. Estimates (Brier score, c index, calibration intercept and

slope) are obtained on the data not included in the model estimation process; power is evalu-

ated on traning data.

(PDF)

S1 File. Results from the repeated analysis of 500 units varying the number of knots or

parameters. Power is estimated on training data, the other metrics on new data. The results

are presented as a function of the number of knots used or the number of estimated parame-

ters.

(PDF)

S2 File. Effect of the choice of the starting point of the period for periodic RCS and CS.

Estimated probabilities obtained from analyses that use different starting points for the
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periods; the analyses are based on the complete data set of Horton et al. and on the repeated

analysis of 500 units.
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