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Diabetes mellitus (DM) eventually leads to chronic vascular complications, resulting in
cardiovascular diseases. DM-associated endothelial dysfunction (ED) plays an important
role in the development of chronic vascular complications. Low endothelial nitric oxide
synthase (eNOS) activity, inflammation, and oxidative stress all contribute to ED. The G
protein–coupled receptor Takeda G protein–coupled receptor 5 (TGR5) is a membrane
receptor for bile acids that plays an important role in the regulation of glucose metabolism.
Recent studies have shown that TGR5 is involved in the regulation of various mediators of
ED, which suggests that TGR5 may represent a target for the treatment of DM-associated
ED. In this review, we summarize the principal mechanisms of DM-associated ED, then
propose TGR5 as a novel therapeutic target on the basis of its mechanistic involvement,
and suggest potential directions for future research.
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INTRODUCTION

Diabetes mellitus (DM) is a global public health problem that is associated with a high financial
burden for healthcare systems. The progression of DM eventually involves the development of
chronic vascular complications, which result in cardiovascular diseases. These cardiovascular
complications are the main causes of death in diabetes patients around the world (Naveed et al.,
2020). Although clinicians and researchers around the world continue to refine the management of
DM, the increase in incidence of diabetic cardiovascular complications continues to outstrip
improvements in their prevention and treatment.

There are many potential complications of DM, which have differing mechanisms. DM is
considered to be a vascular disease in addition to a metabolic disease (Flyvbjerg, 2010; Arildsen et al.,
2019) because vascular complications account for a relatively large proportion of diabetic
complications and include diabetic cardiomyopathy, diabetic nephropathy, and diabetic
peripheral neuropathy. Endothelial dysfunction (ED) is the initial vascular defect that develops
in DM (Legeay et al., 2020; Lespagnol et al., 2020), and it is recognized to be an independent predictor
of poor prognosis in patients with microvascular or macrovascular complications of DM
(Wiggenhauser and Kroll, 2019; Villano et al., 2020). In this review, we focus on the ED that
develops in diabetes, because impairment in endothelial function usually develops before related
complications manifest clinically; by reducing ED, we can minimize target organ damage, and by
identifying ED, we may diagnose DM in asymptomatic individuals. However, it should be pointed
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out that DM-related pathology does not always require ED;
instead, epithelial cells may be directly affected, such as
podocytes and tubules in the diabetic kidney (Pagtalunan
et al., 1997).

In patients with DM, the risk of vascular disease has
increased by two-to-four times in recent decades (Fox et al.,
2004). Macrovascular and microvascular complications related
to DM, such as coronary heart disease, stroke, peripheral arterial
disease, diabetic retinopathy (DR), and kidney disease (Adler
et al., 2003; Yau et al., 2012; Einarson et al., 2018), represent the
main health burdens in patients with DM. To date, the
management of diabetes has largely focused on the control of
hyperglycemia (Triggle and Ding, 2014); however, because the
rising burden of DM is mainly related to its vascular
complications, it is also important to consider how to protect
vascular function in these patients. In fact, although some classic
hypoglycemic drugs have been shown to both ameliorate ED
and hyperglycemia (Zelniker et al., 2019), there are few specific
treatments for the ED associated with DM. Furthermore, in
most patients with DM, the goal of controlling cardiovascular
disease (CVD) risk factors is not achieved, because
hypoglycemic therapy alone does not seem to reduce the
incidence of large vessel-related outcomes (Gerstein et al.,
2008), and many of the drugs have side effects. For example,
metformin, which has been widely used as the first-line therapy
for type 2 DM in recent years, can cause gastrointestinal
irritation, and other hypoglycemic drugs can cause weight
gain and accelerate the loss of pancreatic beta-cells (Maedler
et al., 2005; Bennett et al., 2011; Stein et al., 2013; Meza et al.,
2019). Therefore, the new frontier in the treatment of DM-
associated ED is to identify a hypoglycemic agent that provides
endothelial protection and ameliorates ED and is as free of side
effects as possible.

Takeda G protein–coupled receptor 5 (TGR5) is a G
protein–coupled receptor that is expressed in many organs
and tissues, but is also widely expressed in almost all types of
endothelial cells (ECs). Recent studies have shown that TGR5
agonists are beneficial in DM and TGR5 has become a promising
target for its treatment (Pellicciari et al., 2009; Thomas et al., 2009;
Briere et al., 2015). Therefore, in this review, we focus on ED and
the role of TGR5 in DM, with the aim of collating evidence for
this type of potential targeted therapy for DM.

Diabetes and ED
The endothelium is a layer of squamous epithelial cells that lines
the inner surface of vascular systems. ECs form a barrier between
blood vessels and tissues, and control the flux of substances in and
out of tissues. They provide a metabolic interface between blood
and tissue and are therefore essential for the maintenance of
vascular homeostasis (Galley andWebster, 2004). The inability of
the endothelium to maintain vascular homeostasis is referred to
as ED, which is a systemic pathological state that is characterized
by alterations to the EC phenotype toward less vasodilatation, and
pro-inflammatory and pro-thrombotic states. ED is induced by a
number of factors, including turbulent blood flow, shear stress,
hypoxia, aging, hyperglycemia, hypercholesterolemia, and
hypertension (Gokce et al., 2002; Libby et al., 2002).

ED forms the basis of the chronic microvascular and
macrovascular complications of DM. Microvascular
complications include DR, nephropathy, and neuropathy, and
macrovascular complications affect coronary and peripheral
arteries, causing cardiovascular and cerebrovascular diseases
and stroke (Suganya et al., 2016). In recent years, great
progress has been made in the understanding of the
mechanism of EC dysfunction during DM and the difference
in its pathogenesis in patients with type 1 diabetes mellitus
(T1DM) and type 2 diabetes mellitus (T2DM). In T1DM,
uncontrolled hyperglycemia and low concentrations of
endogenous insulin are the key defects that are involved in the
pathogenesis of ED (Joshua et al., 2005), whereas in T2DM,
dyslipidemia and insulin resistance play prominent roles
(Hamilton et al., 2007). The metabolic milieu in diabetes,
which involves hyperglycemia, insulin resistance,
hyperinsulinemia, and obesity, induces a wide range of defects,
and the principal pathophysiological processes that mediate the
development of ED are oxidative stress, endoplasmic reticulum
stress, and inflammation (Addabbo et al., 2009; Basha et al.,
2012). Endothelial function is impaired in many tissues in
diabetes and contributes to the impaired metabolic effects of
insulin, as well as diabetic complications, and indicates that the
endothelium is a potential target for the therapy of DM.

MECHANISM OF DIABETIC DAMAGE TO
ENDOTHELIA

Furchgott and Zawadzki first described the importance of the
intact endothelium for acetylcholine-induced vasodilatation in
1980 (Furchgott and Zawadzki, 1980). The mediator of
acetylcholine-induced relaxation was originally designated as
endothelium-derived relaxing factor but was eventually
identified as NO generated from the amino acid L-arginine by
the enzyme eNOS (Palmer et al., 1987; Moncada et al., 1988).
eNOS is the main subtype of the enzyme that mediates the
physiological generation of NO in ECs. Studies have shown
that the reduction in NO production in diabetic patients is
involved in the pathogenesis of ED (Förstermann and Münzel,
2006). However, the ED that develops alongside hyperglycemia is
not only the result of the reduction in NO production by eNOS
but also insulin resistance, oxidative stress, and inflammation
(Figure 1). The mechanisms whereby each of these factors
promote endothelial injury will be described individually below.

eNOS and Endothelial Dysfunction
eNOS is the most important source of NO in ECs (Huang et al.,
1995), and the NO generated in this way is crucial for endothelial
function (Meza et al., 2019). Therefore, factors that can affect the
expression of eNOS also affect the production of NO and can
influence the development of ED. In a high-glucose environment,
eNOS and endothelial function uncouple, and specifically,
abnormal activation of eNOS produces O2

− instead of NO.
This superoxide quickly combines with NO to form nitrogen-
peroxynitrite (ONOO−), which is a highly active oxidant (Stuehr
et al., 2001), and reduces the bioavailability NO. It is worth noting
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that the reaction between NO and superoxide occurs three times
faster than the enzyme-catalyzed reduction by superoxide
dismutase (Faraci and Didion, 2004), which implies that the
cytoplasmic superoxide concentration is an important
determinant of ED. In addition, the oxidation of
tetrahydrobiopterin (BH4) to dihydrobiopterin (BH2) by
ONOO− and H2O2 limits the availability of eNOS substrates
and prevents the production of NO (Meza et al., 2019). BH2

cannot function as a cofactor for eNOS, but it competes with the
active cofactor BH4. This change in eNOS status is referred to as
“eNOS uncoupling” and plays an important role in the
development of diabetes-associated ED and CVD
(Förstermann and Münzel, 2006; Yang et al., 2009; Karbach
et al., 2014).

Insulin resistance also has a significant effect on eNOS
production. Under physiological conditions, the delivery of
insulin to tissues involves ECs, which regulate capillary
recruitment and glucose absorption (Kubota et al., 2011). A
large number of previous studies have shown that in insulin
resistance, adipose tissue and muscle glucose transporter 4
(GLUT-4) translocation are impaired, blood flow is reduced
after a meal, EC function is impaired, and NO production is
lower. Insulin signal transduction and glucose uptake are
impaired (Kim et al., 2005), which implies that NO
production is related to insulin signal transduction. Research
by Ardilouze et al. showed that insulin upregulates NOS-
dependent vascular activity, thereby increasing total muscle
blood flow and capillary recruitment (Ardilouze et al., 2012).

This is achieved by insulin binding to its receptor and activating
the phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(AKT)/eNOS pathway in the endothelium. The
phosphorylation of eNOS at Ser1177 by AKT increases the
production of NO (Dimmeler et al., 1999), which results in
vasodilation. Insulin resistance is a key defect in T2DM and is
therefore also one of the causes of diabetes-related ED. Therefore,
the amelioration of insulin resistance should also ameliorate ED.

Multiple lines of evidence have demonstrated an association
between greater production of eNOS and an amelioration of
diabetic ED. Claybaugh et al. (2014) showed that
supplementation of L-arginine (LA), an NO precursor,
increases the NO concentration by stimulating the production
of eNOS. They found that the glomerular filtration rate of diabetic
rats increased when they were administered LA and provided
evidence that this effect may be the result of increases in eNOS
expression and urinary cGMP, which leads to renal microvascular
dilation and the amelioration of ED. Liu (Liu et al., 2014) and
Krishnan (Krishnan et al., 2015) have also reached the same
conclusion. However, it is worth mentioning that although these
findings suggest that increasing the expression of eNOS can
ameliorate DM-induced ED, there are some limitations to this
approach. eNOS dysfunction is only one of the mechanisms that
mediate diabetic ED, and even if an increase in eNOS expression
improves endothelial function, hyperglycemia would remain and
continue to have adverse effects on endothelia. Therefore, it is still
necessary to rigorously prevent and treat DM in order to achieve
the maximum impact on ED.

FIGURE 1 |Mechanism of endothelial dysfunction associated with diabetes. In DM, cells exist in a high-glucose environment, but the etiology of ED associated with
DM can be divided into two components: first, oxidative stress and inflammation; and second the uncoupling of eNOS and a reduction in NO production. The main
mediators of oxidative stress and inflammation are ROS andNF-κB. Themechanism of eNOS decoupling involves (1) abnormal activation of eNOS, leading to a reduction
in NO production; (2) inhibition of the PI3K/AKT/eNOS pathway as a component of insulin resistance; and (3) ROS activation, leading to a reduction in normal eNOS
activation and an increase in the concentration of inhibitory BH2.
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Oxidative Stress and Inflammation
Both oxidative stress and inflammation interfere with insulin
signaling (Wen and Duffy, 2017), leading to insulin resistance,
DM, and related complications (Baig et al., 2020), and these
processes are considered to be important components of the
pathogenesis of DM. Persistent oxidative stress and the
destruction of normal cellular redox homeostasis typically
occur alongside chronic inflammation and the two are highly
interrelated; therefore, we will discuss their impact on ECs in
diabetes together (Mallard et al., 2020). Vascular ECs are a key
site of metabolic dysregulation in diabetes (Khan and
Chakrabarti, 2006). In particular, excessive oxidative stress
results in the degradation of NO, which causes an imbalance
in the effects of vasoconstrictors and vasodilators on the
endothelium (Harrison, 1997; Behrendt and Ganz, 2002).

The effects of oxidative stress in ECs are mediated through
NADPH oxidase, xanthine oxidase, aldehyde oxidase, and
glucose oxidase, which are all enzymes involved in the
generation of reactive oxygen species (ROS) (Suganya et al.,
2016). ROS are the principal activators of diabetes-related
vascular dysfunction (Brownlee, 2001; Brown and Griendling,
2015; Shah and Brownlee, 2016) and have their effects via a
number of intracellular signal transduction pathways (El-Daly
et al., 2018), through which they alter the phosphorylation and
sensitization of eNOS, and also via the oxidation of BH4 to BH2.
Thus, ROS can inhibit the production of NO by eNOS through
two pathways, which can also form a vicious circle: competition
between BH2 and BH4 leads to the dissociation of dimeric eNOS

into monomers, which further increases the production of ROS
(Wever et al., 1997; Stroes et al., 1998).

ROS also cause redox imbalance through several molecular
mechanisms, such as by activating pro-inflammatory signaling
pathways and increasing the secretion of pro-inflammatory
cytokines (Yaribeygi et al., 2019), which also have deleterious
effects on ECs. Previous studies have shown that in
streptozotocin-induced diabetic rats, oxidative stress and the
production of a series of inflammatory cytokines, including IL-
1β, TNF-α, IL-6, and IL-17A, are significantly increased (Zhu
et al., 2020), via nuclear factor kappa-B (NF-κB) (Park et al., 2006;
Elmarakby and Sullivan, 2012). Therefore, ROS production and
the NF-κB pathway represent targets for the treatment of ED.

TGR5 May Represent a Novel Target for the
Treatment of Diabetic Endothelial Injury
The pathogenesis of ED in DM involves oxidative stress, chronic
inflammation, and low NO production. TGR5 is a G
protein–coupled receptor that is present in many organs and
tissues and is widely expressed in almost all types of EC. Recent
studies have shown that TGR5 mediates beneficial effects in DM
and regulates various molecules that mediate DM-associated ED
(Pellicciari et al., 2009; Thomas et al., 2009; Briere et al., 2015).

TGR5 and Diabetes
TGR5 (Gpbar1) is a G protein–coupled bile acid receptor that has
been widely studied in recent years. It is expressed in various

FIGURE 2 |Mechanismwhereby TGR5 protects against high-glucose-induced endothelial damage. (1) Negative effect (red line): inhibition of the generation of ROS
and the activation of NF-κB, thereby reducing eNOS decoupling and NF-κB–mediated ED. (2) Positive effect (green line): increase in eNOS expression via the TGR5-
GLP-1-PI3K-eNOS pathway, which mimics GLP-1 action.
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tissues and cell types, such as the gall bladder, intestine, and
placenta (Kawamata et al., 2003; Keitel et al., 2009). The roles for
TGR5 in regulating metabolic homeostasis have been well
documented. Recent studies have shown that TGR5 agonists
are beneficial in T2DM and it has become a promising target
for the treatment of DM (Pellicciari et al., 2009; Thomas et al.,
2009; Briere et al., 2015). Sato et al. found that activation of TGR5
using oleanolic acid reduced the serum glucose and insulin
concentrations of high-fat-diet-fed mice (Sato et al., 2007). In
addition, Thomas et al. showed that the activation of TGR5 has
beneficial effects on metabolism that include resistance to weight
gain and improved glucose homeostasis and insulin sensitivity
(Thomas et al., 2009). Such improvements in glucose homeostasis
and insulin sensitivity implicate TGR5 agonists as potential novel
means of ameliorating DM-induced ED.

TGR5 and eNOS
The role of the NO produced by eNOS activity in the
maintenance of vascular health and function has been well
described (Förstermann and Münzel, 2006). The reinstatement
of eNOS activity to improve the bioavailability of NO represents a
promising therapeutic strategy, aimed at reducing the incidences
of the macrovascular and microvascular complications of DM.
Recent studies have shown that TGR5 activation increases eNOS
expression through two mechanisms.

First, TGR5 is expressed in ECs (Keitel et al., 2007; Kida et al.,
2013). Studies have shown that the activation of TGR5 protects
against diabetic nephropathy (Wang et al., 2018). TLCA, TCA,
and TCDCA, which are TGR5 agonists, have all been shown to
induce eNOS expression and Ser1177 phosphorylation of the
enzyme, leading to an increase in NO production (Keitel et al.,
2007; Fiorucci et al., 2009). And there are some researchers who
have found that increase in eNOS expression is mediated via the
“bile-salt-TGR5-cAMP pathway,” which involves binding to the
cAMP response element of the human eNOS promoter (Keitel
et al., 2007), and the increase of cAMP levels triggered by INT-
777 is dose-dependent (Thomas et al., 2009). So the activation of
TGR5 may protect against DM-associated ED by inducing an
increase in eNOS activation through this pathway. But there is
one thing we need to pay attention: Kida et al. (2013) found that
TGR5 increased eNOS expression in vascular ECs in a dose-
dependent manner in vitro, but care should be taken in
extrapolating these results to the endothelium of intact
animals, because culture methods cannot fully mimic the
complex environment of these cells in blood vessels, nor the
complexity of in vivo biochemical and biophysical regulatory
mechanisms.

Second, glucagon-like peptide 1 (GLP-1) is an intestinal
hormone that has been shown to improve endothelial function
(Pratley and Gilbert, 2008; Kolka and Bergman, 2013), and the
insulinotropic action of GLP-1 in pancreatic beta-cells has been
shown to mediate the glucose lowering effect (Nauck et al., 1997).
It has also been shown that GLP-1 is the target of TGR5 and that
its secretion is TGR5-dependent (Harach et al., 2012; Briere et al.,
2015). The GLP-1 receptor is expressed on ECs and is involved in
eNOS activation through a PI3K-dependent pathway (Chai et al.,
2012; Lim et al., 2017), which can ultimately be summarized as

TGR5-GLP-1-PI3K-eNOS pathway. Further work should aim to
clarify the function of this pathway, which may provide new
therapeutic targets. Another study also suggests that stimulating
effects of TGR5 agonists in the pancreas are mainly due to GLP-1
released from alpha-cells that acts in a paracrine manner on beta-
cells (Kumar et al., 2016), improve mass and function of beta-cells
in diabetic mouse models (Zheng et al., 2015), resulting in the
increase of insulin levels, and then reduce the blood sugar, and at
the same time, GLP-1 can protect endothelial function by “GLP-
1-PI3K-eNOS” pathway. It is worth noting that the GLP-1
receptor agonists currently on the market do not increase the
secretion of endogenous GLP-1, and therefore, they may not
prevent certain local effects of disease progression. TGR5 is
expressed in many organs and tissues but is principally
expressed in the intestine and is found in enteroendocrine L
cells, and stimulation of GLP-1 secretion mainly by intestinal L
cells is likely to have certain advantages (Knop, 2010; Holst and
McGill, 2012). Therefore, TGR5 activation may represent a
means of stimulating GLP-1 secretion, as an alternative means
of treating DM and ED caused by DM.

As discussed, activation of the bile-salt-TGR5-cAMP and
TGR5-GLP-1-PI3K-eNOS pathways induces eNOS expression,
which should protect against the ED induced by DM. However,
eNOS supplementation does not always protect the
endothelium. Krishnan et al. (2015) found that non-diabetic
mice which overexpress eNOS show more superoxide
production and poor vasorelaxation, and earlier studies by
Ohashi (Ohashi et al., 1998) and Yamashita (Yamashita
et al., 2000) showed that mice which overexpress eNOS resist
the action of vasodilators. However, under specific pathological
conditions, the overexpression of eNOS has been shown to be
beneficial in specific organs, and we speculate that different
disease states are associated with differing vascular phenotypes.
Further studies are required to determine which particular
disease states would benefit from therapeutic approaches
involving eNOS activation.

Effects of TGR5 Activation on Oxidative
Stress and Inflammation
As described above, oxidative stress and inflammation are
important mechanisms whereby DM leads to endothelial
damage. The inhibition of ROS production or inflammatory
signaling via the NF-κB pathway represents targets for the
treatment of such ED. Previous studies have shown that the
activation of TGR5 by INT-777 reduces oxidative stress in human
podocytes exposed to a high-glucose environment (Wang et al.,
2016). In addition, research by Deng et al. showed that the effect
of INT-777 to reduce oxidative stress is achieved via a reduction
in the production of ROS and apoptosis in cardiomyocytes
exposed to a high-glucose environment (Li et al., 2018; Deng
et al., 2019). These studies suggest that TGR5 may ameliorate the
DM induced ED by inhibiting the production of ROS.
Meanwhile, previous studies have shown that the activation of
TGR5 has anti-inflammatory effect on many kind of
inflammations through NF-κB signaling pathway. There is
evidence that TGR5-induced NO production inhibits the
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expression of adhesion molecules and the adherence of
monocytes, thereby inhibiting NF-κB activity in ECs (Kida
et al., 2013). Guo et al. (2015) also found that TGR5 became a
negative regulator of gastric inflammation by antagonizing the
NF-κB signaling pathway. And in macrophages, activation of
TGR5 inhibited NF-κB–mediated inflammatory cytokine
production (Pols et al., 2011). Moreover, the study of Wang
et al. (2011) found that liver necrosis and inflammation were
more severe in TGR5 knockout mice than in wild-type mice in an
LPS-induced inflammation model. Therefore, the anti-
inflammatory properties of TGR5 may be one of the
mechanisms to improve ED caused by DM.

THE IDENTIFICATION OF A NOVEL TGR5
ACTIVATOR FOR THE TREATMENT OF
DIABETES-ASSOCIATED ENDOTHELIAL
DYSFUNCTION

Low eNOS expression, inflammation, and oxidative stress are
the principal mechanisms of ED in DM, and the means
whereby conventional hypoglycemic drugs protect against
ED mainly involve antagonism of these mechanisms (Lu
et al., 2019). Many studies have shown that TGR5 plays an
important role in DM, inflammation, and oxidative stress, and
its agonists may represent novel potential drug substances for
the treatment of metabolic and inflammatory disorders (Pols
et al., 2011; Lo et al., 2017; Lyu et al., 2019). Therefore, it is
important to study the mechanisms whereby TGR5 agonists
ameliorate DM-associated ED, to further understand their
potential.

Although the use of TGR5 agonists for the treatment of ED
in DM holds great promise, a series of questions remain to be
resolved. First, TGR5 is expressed in many organs, which may
imply that an agonist would be prone to side effects in other
organs. For example, Poole et al. (2010) found that the
activation of TGR5 reduces gastric and intestinal motility,
which can cause nausea and constipation. In addition, the
activation of TGR5 delays bile emptying, which was shown to
increase the incidence of gallstones over that of TGR5
knockout mice (Keitel et al., 2009; Li et al., 2011).
Furthermore, the activation of TGR5 induces
hyperexcitability in dorsal root neurons, which results in
an itching sensation (Alemi et al., 2013). Finally, there is
some in vitro evidence to suggest that TGR5 agonists may
induce cancer cell proliferation (Hong et al., 2010; Casaburi
et al., 2012; Cao et al., 2013).

Second, even in the same organ, the effects of TGR5 may
differ, because of the existence of various distinct binding sites.
For example, TGR5 is expressed in the primary cilia of
cholangiocytes, where it is coupled to G-α and inhibits cell
proliferation, but it is also expressed on the apical plasma
membrane, where it is also coupled to G-α proteins but
initiates cell proliferation (Masyuk et al., 2013).

Third, TGR5 binds a wide range of ligands, including
endogenous and synthetic bile acids and neurosteroids, and

also synthetic agonists with a nonsteroidal core (Sato et al.,
2008; Martin et al., 2013). Although it is activated by all the
known bile acids, the potency of everyone differs from other and
depends on the hydrophobicity of its bilane scaffold, and this is
reflected in differing effects on the target organ (Sato et al., 2008;
Keitel et al., 2020).

Fourth, differing concentrations of TGR5 agonists may have
different outcomes. For example, compound 18, a new type of
TGR5 agonist, has a significant effect on biliary secretion at a dose
as low as 3 mg/kg, whereas doses of compound 18 above
30 mg/kg have a significant effect on GLP-1 secretion (Briere
et al., 2015).

Finally, even if an TGR5 agonist is used at the same dose, the
results obtained in animal models and humans differ, because of
the biological differences between species (Hodge et al., 2013).
Therefore, for these reasons, the appropriate choice of TGR5
agonist is critical for its usefulness for the treatment of ED in
diabetes.

Nevertheless, in recent years, substantial efforts have been
made to identify suitable TGR5 agonists, and there have been
some promising results. For example, Zheng et al. (2015)
studied the effects of the novel TGR5 agonist WB403 in
diabetic mice, and they found that WB403 is not associated
with side effects in the gallbladder. Also, in Shan-yao MA et al.’s
study, they designed a novel TGR5 agonist called OL3, which
combined linagliptin, a DPP-4 inhibitor, with MN6, a novel
TGR5 agonist, and they found that OL3 can also lower blood
glucose levels without causing gallbladder filling in mice too
(Ma et al., 2016); both of the two TGR5 agonists are at a low
systemic concentration, and furthermore, WB403’s most
significant effects occur in the intestine, which offers new
ideas for the design of the best TGR5 agonist for ED caused
by DM. And a recently published study also showed that the
activation of TGR5 slows the progression of DR in diabetic rats
(Zhu et al., 2020), which also confirms that the activation of
TGR5 can reduce the ED associated with DM. Thus, although
there are many obstacles to the development of TGR5 agonists
for the treatment of DM-associated ED, some progress has been
made. Nowadays, many researchers found different novel TGR5
agonists which have low side effects (Duan et al., 2015; Finn
et al., 2019), future studies should be directed toward the pick of
the best TGR5 agonist and evaluation of the safety of TGR5
agonists in both animal study and clinical study. In summary, in
order to identify the most appropriate TGR5 agonist, the
following issues should be addressed: (1) the biochemical
properties of ligands that dictate their distribution and
metabolism, such that ligands bind to TGR5 to achieve the
target; (2) the design of ligands to render their downstream
effects more specifically; and (3) tissue-specific targeting of
TGR5 for activation or inhibition.

DISCUSSION

The high prevalence of and numerous risk factors for CVD make
it the leading cause of death in the world (Mathers and Loncar,
2006). However, many CVD patients also have DM, which
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predisposes toward CVD because it is associated with ED (Sun
et al., 2019). Hyperglycemia in patients with DM is the principal
risk factor for ED-mediated vascular complications, but DM can
cause ED through a variety of mechanisms. Low eNOS
expression, oxidative stress, and inflammation all cause ED in
DM. Because blood from the intestines and the liver is dispersed
throughout the body, the vascular endothelium is continuously
exposed to bile acids. Therefore, bile acid signaling may affect the
physiological functions of ECs. TGR5 is a bile acid receptor that
has attracted a lot of attention in recent studies, and studies have
shown that its activation has a beneficial effect in DM. This effect
of TGR5 activation is mediated not only through a reduction in
blood glucose, but also by protecting EC function by increasing
eNOS expression, promoting GLP-1 secretion, reducing insulin
resistance, and reducing oxidative stress and inflammation
(Figure 2). All of these outcomes imply that the activation of
TGR5 may represent a therapeutic target for ED in DM. The
identification of the optimal TGR5 agonist represents the next
research goal.
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