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Objective(s): Combination chemotherapy is a rational strategy to increase patient response and tolerability 
and to decrease adverse effects and drug resistance. Recently, the use of non-steroidal anti-inflammatory 
drugs (NSAIDs) has been reported to be associated with reduction in occurrence of a variety of cancers 
including lung cancer. On the other hand, growing evidences suggest that deuterium-enriched water (DEW, 
D2O) and deuterium-depleted water (DDW) play a role both in treatment and prevention of cancers. In the 
present study, we examined the effects of DEW and DDW in combination with two NSAIDs, celecoxib and 
indomethacin, on A549 human non-small lung cancer cell to identify novel treatment options. Materials and 
Materials and Methods: The cytotoxicity of celecoxib or indomethacin, alone and in combination with DDW 
and DEW was determined. The COX-2, MAPK pathway proteins, the anti-apoptotic Bcl2 and pro-apoptotic 
Bax proteins and caspase-3 activity were studied for cytotoxic combinations.
Results: Co-administration of selective and non-selective COX-2 inhibitors with DEW led to a remarkable 
increase in cytotoxicity and apoptosis of A549 cells. These events were associated with activation of p38 and 
JNK MAPKs and decreasing pro-survival proteins Bcl-2, COX-2 and ERK1/2. Furthermore, the combination 
therapy activated caspase-3, and the apoptosis mediator, and disabled poly ADP-ribose polymerase (PARP), 
the key DNA repair enzyme, by cleaving it.  
Conclusion: The combination of DEW with NSAIDs might be effective against lung cancer cells by influence 
on principal cell signalling pathways, and this has a potential to become a candidate for chemotherapy.
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Introduction
Lung cancer represents one of the most deadly 

diseases in the world (1). Therefore, intense efforts are 
being mounted to find new agents and combination 
therapies for treatment and prevention of human lung 
cancer (2, 3). 

Recently, the use of non-steroidal anti-inflammatory 
drugs (NSAIDs) has been reported to be associated 
with reduction in the occurrence of a variety of cancers 
including lung cancer (4-11). NSAIDs act as inhibitors 
of the COX enzymes that catalyze the conversion of 
arachidonic acid into prostanoids including prostaglandin 
E2, which is often associated with oncogenesis of lung 
tumors (12, 13). PGE2, the predominant prostaglandin, 
exerts its biological effects via some pathways including 
apoptosis and MAPKs (10, 14). Since anti-neoplastic 
effects of NSAIDs manifest only in high concentrations, 
so serious adverse effects and drug resistance do not let 
utilization of NSAIDs solely as a chemotherapeutic agent. 
Accordingly, several co-administrations of NSAIDs with 
different chemopreventive agents have previously been 
investigated in the lung cancers (15-18). However to the 

best of our knowledge, no study has been conducted to 
assess the combination effects of deuterium-enriched 
water (DEW) and or deuterium-depleted water (DDW) 
with NSAIDs on the cancer cells. Application of DEW 
and DDW is recently known as an opportunity in cancer 
therapy (19-30). Although growing in vitro and in vivo 
studies suggest that DEW and DDW might play a role 
both in treatment and prevention of cancers through 
inhibition of cancer cells proliferation (31), there is no 
study focusing on both combination therapy and the 
cellular events leading to these effects (32).

In the present study, we examined the cytotoxic effects 
of DEW and DDW, individually and in combination with 
celecoxib and indomethacin, on A549 cell line. Moreover, 
changes in the apoptosis and MAPKs pathways were 
examined to identify the possible molecular pathways.

Materials and Methods
Materials and reagents 

Dulbecco’s modified eagle medium (DMEM) (high 
glucose), fetal bovine serum (FBS), and penicillin/
streptomycin were purchased from PAA (Australia). 
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Culture flask (25, 75 cm2) was purchased from SPL 
company (Korea). Western blot detection kit and 
polyvinylidenedifluoride (PVDF) membrane were from 
Roche Applied Science (Germany). Anti-extracellular 
receptor kinase 1/2 (ERK1/2), phospho-ERK1/2, 
p38, phospho-p38, c-Jun N-terminal kinase (JNK), 
phospho-SAPK/JNK, Bax, Bcl-2, COX-2, Caspase-3 and 
β-actin antibodies were purchased from Cell Signaling 
Technology (USA). Poly ADP-ribose polymerase (PARP) 
and secondary antibodies were achieved from Roche 
(Germany).  Bromophenol blue, Coomassie blue R-250 
and G-250, MTT, and caspase-3 colorimetric assay kit 
were purchased from Sigma Chemical Company (UK). 
Indomethacin and celecoxib were kindly provided by 
a collaborative lab (as 98.8% purity) and dissolved 
in minimal amounts of dimethyl sulfoxide (DMSO), 
so that the final DMSO in tests did not exceed 1%. 
Centrifuge tube (15, 50 ml), micro centrifuge tube (1.5 
ml), multiwall plates (6-well, 24-well, and 96-well) 
(microtitration) plates obtained from Nest company 
(China). Dithiothreitol (DTT) and all other chemicals 
were bought from Merck (Germany).

Preparation of media
Cell culture media with different concentrations of 

deuterium were prepared by dissolving DMEM powder, 
FBS powder and penestrep in water with different 
concentrations of deuterium.  

Cell culture and growth inhibition assay
A549 human Non-Small Cell Lung cancer cell line 

was purchased from Cell Lines Service (Canada) and 
grown in monolayer cultures in DMEM containing 
phenol red supplemented with 10% FBS, 100 units/
ml of penestrep and 5% CO2 at 37 ˚C. For reduction 
of cell responses to stimulators and inhibitors, all 
the experiments were performed on the cells in the 
logarithmic phase (33). For cytotoxicity assay, 50 µl of 
the cell suspension containing 8×103 cells were seeded 
into each well of a flat-bottomed 96-well plate. Adhering 
to the surface of plates, A549 cells were treated with 
DEW (50000, 100000, 200000 and 300000 ppm of 
deuterium) and DDW (31, 69, 91, 109 and 127 ppm of 
deuterium), in addition to indomethacin (2- 800 µm) 
and celecoxibe (2- 400 µm) for 24, 48 and 72 hr. The 
cytotoxicity was determined using MTT assay by adding 
25 µl of 3- (4,5- dimethylthiazol-2-yl)- 2, 5-diphenyl 
tetrazolium bromide solution (MTT) to the wells and 
then incubation for 4 hr at 37 ∘C in 5% CO2 atmosphere. 
Absorbance of the formazan was measured at 570 
nm using a microplate reader, and the viability was 
calculated from the equation, %viability = (1 - At/Ac) x 
100), where At and Ac represent absorbencies of treated 
and control cultures, respectively. Solvent control 
trials were performed appropriately and exhibited no 
cytotoxic effects.

Combination therapy
After determination of IC50 (concentration causing 

50% growth inhibition) for each of celecoxib and 
indomethacin solutions, four close concentrations to 
the calculated IC50 (for celecoxib: 10, 25, 75 and 100 
µM and for indomethacin: 50, 100, 175 and 250 µM) 
were combined with minimum and maximum limit of 

DEW (50000, 300000 ppm) and DDW (31, 127 ppm) 
for combination therapy. In the control group, the cells 
were treated only with medium or DMSO. The viability 
of the cells was determined after 24, 48 and 72 hr of 
treatment.

Western blot analysis of protein expression using 
sodium dodecyl sulfate polyacrylamide

After treatment of the cells for 48 hr with drugs, the 
cells were harvested, washed with ice-cold PBS, and lysed 
in 100 µl lysis buffer (50 mM HEPES, pH 7.4, 5 mM CHAPS, 
5 mM DTT) at 4 ∘C for 15 min. Insoluble components were 
removed from lysates by centrifugation at 14,000×g for 
5 min, and the supernatants were transferred to the 
fresh tubes. Protein concentrations were determined by 
the Bradford method. Thirty µg of protein was added to 
an equal volume of 2X SDS-sample buffer and then the 
mixture was electrophoretically separated through 10% 
SDS-polyacrylamide gel. Proteins were transferred to 
PVDF membranes (Roche), stained with 0.1% Ponceau 
S to ensure equal protein loading, and blocked with 25 
µl  blocking reagent 0.5% in TBS (50 mM Tris, 150 mM 
NaCl) for 1 hr at room temperature. After blocking, the 
membranes were probed with anti-human antibodies 
at appropriate dilutions against COX-2 (1 : 1500), 
caspase-3 (1 : 1500), Bcl-2 (1 : 1500), Bax (1 : 2500), 
P38 (1 : 1000), phospho-p38 (1 : 1000), ERK1/2 (1 : 
2500), phospho-ERK (1 : 2500), SNAPK/JNK (1 : 1000), 
phospho-SNAPK/JNK (1 : 1500), β-actin (1 : 1500), and 
PARP (1 : 2000). Following washing the membranes 
for four times, 15 min each, by agitating with 200 ml 
TBS-T, the blots were incubated with a goat anti-mouse/
rabbit-antibody-HRP conjugate (Roche) for 1 hr at room 
temperature. Then immunoreactive bands became 
visualized by adding luminal substrate to the blots and 
their exposure to the BioMax film (Kodak).

Statistical analysis
Statistical analysis was performed using SPSS 

software. Data were expressed as Mean±SD. One-
way analysis of variance (ANOVA) was used to assess 
significant differences between treatment groups. The 
differences were considered as significant when P<0.05. 
The IC50 was calculated using master plex software 
(MiraiBio Group of Hitachi Solutions America, version: 
2.0.0.73).

Results
Cytotoxicity effects of celecoxib and indomethacin on 
A549 cell line 

The cytotoxicity of celecoxib and indomethacin at 
different times has been shown in Figure 1. The calculated 
IC50s for celecoxib after 24, 48 and 72 hr treatment were 
102.47, 58.96 and 27.62 µM, respectively. These values 
for indomethacin were 236.7, 149.98 and 140.11 µM. 
Subsequently, four concentrations of celecoxib and 
indomethacin close to their IC50s combined with DEW 
and DDW. As it is depicted in Figure 2, combination of 
celecoxib and indomethacin with DEW, but not DDW, 
could significantly (P<0.05) increase the cytotoxicity of 
different concentrations of celecoxib and indomethacin 
in a dose dependent manner. Since the 24, 48 and 72 
hr treatments had significant cytotoxicity, the assays 
were performed 48 hr after treatment. Furthermore, 
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we selected concentrations of less than IC50 (45 µM for 
celecoxib and 110 µM for indomethacin) for combination 
therapy.

Expression of COX-2 protein in the cells treated with 
DDW and DEW

Considering the role of COX-2 inhibition in lung 
cancer, we initially conducted preliminary experiments 
to determine the role of DDW and DEW in expression 
of COX -2 protein. As shown in Figure 3, both DDW 
and DEW could decrease the COX-2 protein expression 
in contrast to the control medium containing normal 
concentrations of deuterium (Figure 3).

Expression of COX-2 protein in the cells treated with 
celecoxib, celecoxib/DDW and celecoxib/DEW 

After 48 hr treatment with 45 µM celecoxib alone, the 
expression of COX-2 protein increased. The combination 
of celecoxib-DEW decreased the expression of COX-2 

protein more than each drug treatment alone (Figure 3).

Expression of Cox-2 protein in the cells treated with 
indomethacin, indomethacin/DDW and indomethacin/
DEW

The treatment with 110 µM indomethacin decreased 
the expression of COX-2 protein. Neither DDW nor DEW 
in combination with indomethacin could increase the 
effect of indomethacin itself, albeit the effect was clear 
as referred to the control (Figure 3).

Expression of Bcl2 and Bax proteins in the cells 
treated with DEW and DDW

The pro- and anti-apoptotic proteins of Bcl-2 family 
constitute a critical control point for apoptosis. To 
address the role of proteins involved in the apoptosis, 
the expression of anti-apoptotic Bcl2 and pro-apoptotic 
Bax proteins was determined. The level of the pro-
apoptotic molecule Bax was significantly increased 

  
  Figure 1. The logarithmic cytotoxic effect of celecoxib (a) and indomethacin (b) on the A549 cell line after 24, 48 and 72 hour treatment. Cell 

growth, assessed by MTT method, is expressed as the percent of control (DMSO-treated) cells against logarithm of drug concentration. Each data 
set is the mean±SD value from eight identical wells

  

  

  

 

  

Figure 2. The cytotoxic effect of celecoxib or indomethacinin in combination with deuterium-depleted water (DDW: 31 and 127 ppm of deuterium) 
and deuterium-enriched water (DEW: 50000 and 300000 ppm) after 24 (a), 48 (b) and 72 (c) hours on A549 cell line. Data are shown as Mean± 
SD of triplicate wells of two independent experiments. The statistical significance of the differences was determined by one way ANOVA. * P<0.05, 
** P<0.01. The cells treated with only celecoxib or indomethacin were considered as reference
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in response to DEW, but it appeared that DDW had no 
impact on the Bax expression. Moreover, none of DEW 
and DDW affected the anti-apoptotic Bcl2 protein 
expression (Figure 3).

Expression of Bcl2 and Bax proteins in the cells 
treated with celecoxib, celecoxib/DDW and celecoxib/
DEW

Celecoxib solely decreased the expression of the Bax, 
but did not affect the level of Bcl2 protein expression. 
As a combination, both celecoxib/DDW and celecoxib/
DEW co-treated cells obviously enhanced the Bax 
expression. The Bcl2 protein was not influenced by the 
celecoxib/DDW or celecoxib/DEW treatment (Figure 3).

Expression of Bcl2 and Bax proteins in the cells 
treated with indomethacin, indomethacin/DDW and 
indomethacin/DEW

As a single agent, indomethacin had no significant 
effect on Bcl2 and Bax proteins levels. In combination 
with DEW, indomethacin resulted in a marked increase 
in the level of Bax protein and a decrease in Bcl2 

expression. Indomethacin/DDW did not alter the Bax 
and Bcl2 protein levels (Figure 3).

Expression of ERK, JNK and p38 MAPKs proteins in 
the cells treated with DEW and DDW

To determine the role of MAPK pathway, we examined 
the expression of ERK, JNK and p38 proteins. Since the 
changes in the expression of total ERK, JNK and p38 
proteins were not remarkable, we also investigated the 
phosphorylation level of these proteins. As depicted 
in the Figure 4, none of the proteins involved in MAPK 
pathway (ERK, JNK and p38) were affected by DDW; 
however, DEW, dose dependently, decreased the ERK 
phosphorylation and increased the JNK phosphorylation 
(Figure 4).

Expression of ERK, JNK and p38/MAPK proteins in 
the cells treated with celecoxib, celecoxib/DDW and 
celecoxib/DEW

Treatment with 45 µM celecoxib and celecoxib/DDW 
combination for 48 hr had no distinctive effect on total 
ERK, JNK and p38 and their phosphorylation. Celecoxib, 

 

  
Figure 3. Western blot analysis of COX-2, Bax and Bcl-2 proteins in the A549 cells treated with celecoxib and indomethacin alone or in combination 
with deuterium-depleted water (DDW) and deuterium-enriched water (DEW)

 

  Figure 4. Western blot analysis of ERK1/2 and p- ERK1/2 proteins, JNK and p- JNK proteins, and p38 and p- p38 MAPK proteins in the A549 cells 
treated with celecoxib and indomethacin, alone or in combination with deuterium-depleted water (DDW) and deuterium-enriched water (DEW)
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only in combination with DEW, could substantially 
reduce the ERK phosphorylation and enhance JNK and 
p38 phosphorylation (Figure 4).

 Expression of ERK, JNK and p38/MAPK proteins in 
the cells treated with indomethacin, indomethacin/
DDW and indomethacin/DEW

Compared with the cells in control medium, only 
indomethacin/DEW could decrease the total ERK level 
and its phosphorylation. Indomethacin solely or in 
combination with DDW exhibited no obvious impact on 
the proteins involved in MAPK pathway (Figure 4).

Activation of caspase-3 and degradation of PARP 
proteins in the cells treated with DEW and DDW

To find out whether apoptosis has occurred during 
treatment of lung cancer cells with DEW and DDW, 
the activation of caspase-3 and PARP degradation 
was investigated. As shown in Figure 5, there was an 
increment in the activation of caspase-3 in DEW-treated 
cells, which is confirmed by an increase in PARP cleavage 
and degradation (Figure 5).

Activation of caspase-3 and degradation of PARP 
proteins in the cells treated with celecoxib, celecoxib/
DDW and celecoxib/DEW

Although both celecoxib and celecoxib/DDW slightly 
enhanced the caspase-3 activity, celecoxib/DEW 
predominantly increased caspase-3 activation, PARP 
cleavage and degradation as well (Figure 5).

Activation of caspase-3 and degradation of PARP 
proteins in the cells treated with indomethacin, 
indomethacin/DDW and indomethacin/DEW

Indomethacin, indomethacin/DDW and indomethacin 
/DEW could notably agitate the activity of caspase-3. In 
addition, combination of indomethacin/DEW increased 
the PARP cleavage and degradation (Figure 5).

Discussion
Combination chemotherapy is a rationale strategy 

to increase response and tolerability and to decrease 
adverse effects and drug resistance. In vitro studies 
have shown increased cytotoxicity of combination 
therapy in comparison with monotherapy in different 
cell lines (34-37). As a single agent, both COX inhibitors 
and deuterated-depleted/enriched water (DEW and 

DDW) have shown cytotoxicity and apoptosis induction; 
however, they have limited efficacy when used as a single 
therapeutic agent (12, 16, 32, 38-40). Many studies have 
demonstrated the inhibitory effects of COX-2 selective 
NSAIDs in tumor development and progression (41-43), 
whereas few others have pointed out the role of non-
selective NSAIDs (15, 44, 45). Here, we first showed 
and compared the cytotoxicity of two selective and non-
selective COX-2 inhibitors, celecoxib and indomethacin, 
on A549 lung cancer cell line. The results showed that 
celecoxib could produce more potent cytotoxicity 
compared to indomethacin (IC50s of 58.96 and 149.98 
µM, respectively, after 48 hr treatment). As expected, 
both celecoxib and indomethacin intensely inhibited 
the expression of COX-2 protein. The prognostic 
and predictive role of COX-2 expression in NSCLC in 
preclinical and clinical studies has been suggested 
(46-49). The increased expression of COX-2 leads 
to an increase in the production of PGE2, which has 
been demonstrated in colorectal, pancreatic, and lung 
cancers (47, 50, 51). PGE2 stimulates angiogenesis, 
cell invasion, and the formation of metastasis and 
cell survival (50, 52). Therefore, the use of NSAIDs 
would be regarded as an effective approach for cancer 
chemoprevention, as demonstrated by a bulk of clinical 
and experimental evidence. However, the clinical use 
of these drugs as chemopreventive agents encounters 
with issues regarding to optimal drug dose, adverse 
effects and the knowledge about the mechanism(s) 
upon which these drugs act (8). Considering that 
NSAIDs mediate their activity via both COX-dependent 
and -independent pathways, many attentions have been 
paid to COX-independent mechanism. Therefore, we 
also evaluated some important involved mechanisms 
in apoptosis and survival. Our finding revealed that 
both celecoxib and indomethacin could mediate their 
effects through caspase-3 over-activation. Moreover, 
celecoxib activated the p38 by its phosphorylation. 
Similar to these results, Yoshinaka et al. reported that 
the COX-2 inhibitor celecoxib suppresses tumor growth 
and lung metastasis of a murine mammary cancer with 
significantly elevated activities of caspase-3 (53). In 
addition, potentiating the anti-tumor effects of both 
selective cyclooxygenase-1 and cyclooxygenase-2 
inhibitors in human hepatic cancer cells is attributed 
to activation of caspase3, concurrent cleavage of PARP, 
a known caspase3 substrate and a biochemical marker 

 

Figure 5. Western blot analysis of poly ADP-ribose polymerase (PARP) and Caspase-3 proteins in the A549 cells treated with celecoxib, 
indomethacin alone or in combination with different concentration of deuterium
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of apoptosis, and decreased Bcl2 protein expression 
(54). Besides, consistent to our findings, it is denoted 
that NSAIDs might mediate their effects through 
alterations of the ERK, and p38 MAPK activities (55). An 
attempt to define the relationship between the ERK1/2 
MAPK cascade and NSAIDmediated anti-tumor effects 
encounters complication by conflicting reports pointing 
that exposure to non-selective NSAIDs or selective COX2 
inhibitors can induce either an increase or a decrease in 
ERK1/2 activity, depending on the cell type (56-60). Our 
findings additionally revealed that NSAIDs did not affect 
the expression of ERK1/2 MAPK in NSCLC A549 cells.

Moreover, in the present study, we showed the ability 
of DEW as a single agent to induce apoptosis mediated 
through COX inhibition, ERK deactivation, and induction 
of JNK, Bax and caspase. Besides, DDW exerted its 
effects through COX inhibition, caspase activation and 
subsequent PARP degradation. Our findings were in 
accordance with previous studies which demonstrated 
the anti-proliferative and anti-neoplastic effects of DEW 
and DDW. Bahk and his coworkers affirmed that DEW 
has anti-proliferative, anti-adhesive and anti-invasive 
effects and therefore it can be considered as a potential 
chemotherapeutic agent with low systemic toxicity for 
a postoperative intravesical instillation in a superficial 
bladder cancer (40). Hartmann et al. showed that DEW 
is a useful agent against human pancreatic carcinoma 
cells, a fact that makes it a potential candidate for the 
treatment of pancreatic tumors (39). Bader showed 
that DEW in combination with gemcitabin yields highly 
synergistic effects in human pancreatic adenocarcinoma 
cells in vitro (32). Uemura et al. demonstrated that DEW 
exerts its cytotoxicity in RSVM cells by induction of 
apoptosis via the caspase activation (61).  Furthermore, 
in agreement with our results, Cong proved that DDW 
inhibits human lung carcinoma cell growth by apoptosis 
(31). It has been reported that DDW mediates its 
cytotoxic effect by induction of apoptosis via expression 
of Kras and Bcl2 in mouse lung (38). 

Lastly, because of limited efficacy of both NSAIDs and 
water with various D contents, when used as a single 
therapeutic agent, in addition to to obtain more efficacy, 
limited doses, and less adverse effects, we attempted 
to develop an effective combination regimen with COX 
inhibitors and DEW or DDW. Clinical protocols for 
cancer chemotherapy usually combine two or more 
agents to achieve therapeutic effects greater than those 
provided by a single drug. As a result, combination of 
celecoxib and indomethacin with DEW, but not DDW, 
could significantly increase the cytotoxicity of different 
concentrations of celecoxib and indomethacin in a 
concentration dependent mode. Based on western 
blot data, either celecoxib or indomethacin when co-
administrated with DEW, led to a remarkable activation 
in apoptosis pathways of A549 human non-small cell 
lung cancer cell in comparison with their co-treatment 
with DDW. These events were associated with activation 
of p38, JNK and Bax as pro-apoptotic proteins and 
decreasing in pro-survival proteins COX-2 and ERK1/2. 

Furthermore, these combinations activated caspase- 
3, the apoptosis mediator, and disabled PARP, the key 
DNA repair enzyme, by cleaving it. Considering the 
anti-apoptotic effects of COX enzymes, the inhibition 
of COX and in particular COX-2 can be accounted for 

the cytotoxicity of DEW, DDW separately and their 
combination with celecoxib or indomethacin. The most 
potent COX inhibition was achieved by combination of 
celecoxib/DEW. These results were in line with the MTT 
cytotoxicity findings. Since the cytotoxic and apoptotic 
effects of NSAIDs may not be exclusively mediated by 
a COX-2– dependent pathway (18, 62), the changes 
in some other apoptosis-related proteins including 
MAPKs, Bcl2 and caspase activity were also investigated. 
In this regard, DEW increased the cytotoxicity of 
celecoxib and indomethacin greater than DDW, which 
was in consistent with slight increasing of JNK and 
p38 proteins and inactivation of ERK/MAPK signaling 
pathway. MAPKs including ERK1/2, p38, and JNK are 
crucial enzymes, which have many important regulatory 
roles in the proliferation and apoptosis of the cells (63, 
64). In general, although JNK and p38 pathways are 
activated by stress stimuli and are involved in apoptosis, 
ERK phosphorylation and subsequent activation is 
in response to growth factors (65) and has generally 
been associated with anti-apoptotic effects; therefore, 
inactivation of ERK has been shown to be necessary for 
the cytotoxic-induced apoptosis (66). 

Besides, the apoptotic pathway was activated by 
combination of DEW as well as DDW with both celecoxib 
and indomethacin. Combination of DEW with celecoxib 
and indomethacin increased pro-apoptotic Bax protein 
expression. This effect was also observed in combination 
of DDW with indomethacin. Additionally, DEW/
indomethacin could decrease expression of the anti-
apoptotic protein Bcl2 greater than DEW/celecoxib. The 
impact of bcl-2 and bax expression on the response to 
chemotherapy has been supported by the laboratory and 
the clinical data (15, 16). As reported, NSAIDs may exert 
their anti-carcinogenic effects in various cancer cell lines 
through the induction of apoptosis. PGE2 can inhibit 
apoptosis by inducing the expression of anti-apoptotic 
proteins such as Bcl-2 and inhibition of pro-apoptotic 
proteins like Bax (67). Bcl-2, as a representative of anti-
apoptotic proteins, and Bax that is widely described as 
a pro-apoptotic factor, are involved in the late signaling 
phase of programmed cell death presenting opposite 
functions. A high level of Bcl-2 expression prevents cells 
from apoptosis caused by cytotoxic factors or cellular 
stress.  Bax-associated proteins appear to be dominant 
inhibitors of Bcl-2 action; they promote apoptosis via 
mitochondrial membrane damage facilitating the release 
of other apoptotic mediators, especially cytochrome C, 
resulting in caspase cascade activation followed by cell 
death (68). It has been denoted that expression of the 
pro-apoptotic protein Bax increases caspases activity 
(69); therefore, the cytotoxicity of DEW and DDW and 
their combination with celecoxib and indomethacin was 
also related to apoptotic pathways since caspase-3 was 
activated in these treated cells (15). 

Conclusion
Our study underscores that both COX inhibitors 

and water with various D content (DEW and DDW) as 
monotherapy could activate some mechanisms involved 
in apoptosis. Moreover, combination of DEW with 
celecoxib and indomethacin can be effective against 
NSCLC by influence on some cell signaling pathways and 
may become candidates for chemotherapy.
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