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Abstract

Quantifying temporal patterns of ephemeral plant structures such as leaves,

flowers, and fruits gives insight into both plant and animal ecology. Different

scales of temporal changes in fruits, for example within- versus across-year vari-

ability, are driven by different processes, but are not always easy to disentangle.

We apply generalized additive mixed models (GAMMs) to study a long-term

fruit presence–absence data set of individual trees collected from a high-altitude

Afromontane tropical rain forest site within Bwindi Impenetrable National Park

(BINP), Uganda. Our primary aim was to highlight and evaluate GAMM meth-

odology, and quantify both intra- and interannual changes in fruit production.

First, we conduct several simulation experiments to study the practical utility

of model selection and smooth term estimation relevant for disentangling

intra- and interannual variability. These simulations indicate that estimation of

nonlinearity and seasonality is generally accurately identified using asymptotic

theory. Applied to the empirical data set, we found that the forest-level fruiting

variability arises from both regular seasonality and significant interannual

variability, with the years 2009–2010 in particular showing a significant increase

in the presence of fruits-driven by increased productivity of most species, and a

regular annual peak associated occurring at the end of one of the two dry

seasons. Our analyses illustrate a statistical framework for disentangling short-

term increases/decreases in fruiting effort while pinpointing specific times in

which fruiting is atypical, providing a first step for assessing the impacts of reg-

ular and irregular (e.g., climate change) abiotic covariates on fruiting phenol-

ogy. Some consequences of the rich diversity of fruiting patterns observed here

for the population biology of frugivores in BINP are also discussed.

Introduction

How ephemeral plant structures such as leaf, flower, and

fruit presence vary through time and space are important

for many branches of ecology and sociobiology. These pat-

terns provide clues to determinants and strategies of plant

reproductive ecology (Rathcke and Lacey 1985) as well as

motivate theoretical studies about consumer population

trajectories and genotype evolution in variable environ-

ments (Levins 1969; Boyce and Daley 1980; Holt 2008).

Eruptions in fruit abundance such as those associated with,

but not limited to, masting can have cascading impacts on

populations and behavior across trophic levels (Schmidt

and Ostfeld 2008) and they can act as ecological constraints

that may shape the evolution of social structure and coop-

erative living (Hatchell and Komdeur 2000). Thus, scien-

tists are often led to ask the following question: How is

fruit production changing on different temporal scales?

This study examines approaches to quantitatively detect

and disentangle long-term and interannual differences from

regular seasonal variation in ephemeral plant structures.

The mechanisms leading to patterns of fruit production

at the species and forest community level are diverse.

These include intraannual seasonal periodicity in abiotic

climatic variables, such as light, rainfall, and temperature

(Rathcke and Lacey 1985; Wright and van Schaik 1994;
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Reich 1995; Lewis et al. 2004); relatively low-frequency

environmental perturbations related to, for example, El

Ni~no events (Wright and Calder�on 2006); internal

resource allocation strategies (Isagi et al. 1997; Satake and

Iwasa 2002); and biotic economies of scale such as polli-

nation efficiency or predator satiation (Silvertown 1980;

Ims 1990; Kelly and Sork 2002).

Methods to quantify fruit production are diverse and

have utilized a wide range of strategies. Historically, meth-

ods have included the use of information theory (Colwell

1974); classical summary statistics such as the coefficient

of variation (Kelly and Sork 2002); time-series tools using

both regression on trigonometric functions (i.e., Fourier

type analysis—see Chapman et al. 1999 and Norden et al.

2007) and lagged values of the observations themselves

(i.e., examination of autocorrelation functions—see Ko-

enig and Knops 2002); and graphical observations (Chap-

man et al. 2005). These methods have relative strengths

that depend on the context of the system and question

(Crone et al. 2011), but explicitly describing both seasonal

and trend components, and conducting inferential

hypothesis testing to identify parsimonious models is diffi-

cult, if possible at all, in many of these approaches. For

example, classical summary statistics do not address the

temporal dependencies at all, whereas Fourier analysis

which does provide a natural approach to modeling peri-

odic phenomena (Shumway and Stoffer 2000) does not

allow the potential for a random-effects model structure

(e.g., needed when seed traps or individual specimens are

repeatedly surveyed) or an easy evaluation of the signifi-

cance of covariates sensu classic regression analyses.

Given the diverse patterns of fruit cycles and abun-

dance observed in empirical data (e.g., Sakai 2001; Chap-

man et al. 2005; Polansky and Boesch 2013), models

explaining them in single- and multiple-species analyses

should have some flexibility (Hudson 2010; Polansky and

Boesch 2013). A recent text edited by Hudson and Keat-

ley (2010) synthesizes many of the modern statistical

approaches relevant for phenology studies. Of these

approaches, nonparametric smoothing has been proposed

as a way to link predictor variables with phenology data

to identify nonlinearity in phenological responses without

a priori specification of the exact structure (Hudson 2010;

Hudson et al. 2010, 2011; Roberts 2010); nonparametric

smoothing has also been identified as particularly useful

technique for controlling for seasonal fluctuations in

tropical phenology data sets in an attempt to isolate long-

term linear trends (Polansky and Boesch 2013). Here, we

focus on the utility and applications of both generalized

additive models (GAMs) and generalized additive mixed

models (GAMMs) for phenological data analysis. These

frameworks are flexible and easy to implement, but have

received relatively little attention in phenological studies

(but see Gaira et al. 2011 for a study of flowering times

using GAMs). In particular, it is particularly easy to

implement models capturing the periodic properties of

phenology using GAMs (via the use of a cyclic basis)

which is not always the case with other nonparametric

techniques.

With an eye toward practical application, we first con-

sider two shortcomings particularly relevant to phenologi-

cal data that might strain the approximations used in

statistical inference in smoothing approaches. First, sam-

pling interval designs for long-term studies is often too

coarse to identify smooth changes. For example, while

monthly sampling schemes are often the realistic limit of

sampling effort over multiyear timescales, it cannot be

expected to provide perfect information about events that

happen over the course of days or several weeks such as

rapid and complete emergence of flowers or fruits. This

means that the target function for which the GAM

approach is asked to estimate is not smooth on the scale

of the data in hand. Second, overall sample sizes may be

relatively small even for long multiyear studies, in con-

trast with sample sizes in simulation studies typically used

to test how equations derived using large sample theory

perform in practice.

We then apply GAMMs to study nearly 8 years of

monthly collected fruiting presence–absence data from

polycarpic plants of a high-altitude Afromontane rainfor-

est located in Bwindi Impenetrable National Park (BINP),

Uganda. A random-effects (mixed) model structure is

important here because individual plants are repeatedly

surveyed. Data points are dependent not only on time

but also on the individual surveyed because tree-level fac-

tors such as local soil, shade, disturbance, or age can

potentially impact individual reproductive effort. Here,

our primary goals are to quantitatively identify years with

significantly higher fruit production, test for the signifi-

cance of seasonality given regular seasonal variation in

rainfall, and to test for evidence of long-term increases in

the proportion of individuals with fruits as found in a

nearby lowland tropical forest within Kibale National

Park by Chapman et al. (2005).

Material and Methods

Nonparametric models

We first provide a brief review of the theory underlying

the techniques used here, which may be skipped. Readers

interested in the theory of GAMs are recommended to

the text by Wood (2006) and citations therein. A GAM

(Hastie and Tibshirani 1986) extends the generalized lin-

ear model (GLM) by allowing the predictor function to

also include a priori unspecified nonlinear functions of
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some or all the covariates. Given n observations of a ran-

dom variable yi, i = 1, …, n, from a member of the expo-

nential family of distributions and a link function g, the

basic deterministic structure of a GAM is

gðE½yi�Þ ¼ Xibþ
X

sjðzi;jÞ; (1)

where Xib is the linear parametric component of the

model with Xi, the ith row of the design matrix X associ-

ated with covariates that are modeled linearly to yi as in a

GLM, and sj(zi,j) are smooth and nonlinear functions of

predictor variables zj. If no linear component is included,

then the model is referred to as nonparametric, whereas a

model whose predictions consist of both linear and

unspecified nonlinear functions of predictor variables is

often referred to as a semiparametric model.

One decomposition of the right-hand side of equation 1

relevant to phenological data is into two disparate compo-

nents, one to capture long-term cumulative changes such

as might be associated with large-scale climate anomalies,

and a second related to shorter term drivers such as those

patterns associated with regular seasonal variation in rain-

fall, temperature, or irradiance. Incorporating these

notions into equation 1 produces the model

gðE½yi;k�Þ ¼ b0 þ s1ðtÞ þ s2ðtÞ (2)

where b0 is the intercept, s1(t) is a smooth function of

the time t since the start of the study, s2(t) is a cyclic

function. More parsimonious models contained within

equation (2) that are studied here are summarized in

Table 1, which are produced by singularly removing the

model terms. We also include a semiparametric model

(Table 1, Model 2) which constrains the interannual

smooth s1(t) to be linear, such as might describe long-

term persistent and directional changes in the expected

response E[yi,k].

There are several options for selecting a basis, a collec-

tion of functions which can be added together to estimate

sj, for each of the sj (see Ch. 3–4 and p. 212–217 in par-

ticular in Wood 2006 for a summary). Experience and

the need to require s2 to be cyclic suggest using cubic

splines as basis functions for each sj, although each of the

sj is not required to be represented by the same basis.

For fitting purposes, the models in Table 1 can be

expressed as GLMs. This amounts to minimizing the

penalized deviance function

2ðls � lðbÞÞ/þ hðkÞ (3)

where ls is the likelihood of the saturated model, l(b) is

the likelihood of the model equation 1 with b also con-

taining parameters related to the nonparametric smooths,

/ is a scale parameter, and h(k) is a penalizing function

of the smoothing parameter vector k quantifying the

“wiggliness” of the smooths. The best way to minimize

equation (3) is an active area of research for which recent

developments (Wood 2008, 2011), combined with ongo-

ing improvements in generalized linear mixed models

software (Bates et al. 2012), facilitate their practical use in

analyzing phenological data. Older approaches to fitting

mixed GAMs, which are often needed for empirical data

analyses, rely on penalized quasi likelihood (PQL) fitting

techniques (Breslow and Clayton 1993). PQL does not

enable calculation of model maximum likelihoods, useful

for multimodel inference, and are additionally known

to perform poorly for Bernoulli or count data with near

zero means (Wood 2008), not uncommon features of

phenological data.

Although fitting nonparametric models is increasingly

robust and straightforward, significance testing of terms

is comparatively less because of the need to invoke large

sample asymptotic approximations in deriving the

needed formulae. As with standard linear or GLMs, the

equations used for computing model smooth term P-values

are beyond the scope of the review here, and we refer

readers to sections 4.8 and 6.6 in Wood (2006) for a

tractable development of the ideas and theory at an

introductory level. One particular result we will study

here is the following. Let Vj be the variance–covariance
matrix for a subset of the fitted parameter estimates b̂j
pertaining to a particular smooth Vr

j is its pseudoinverse,

where r is the estimated degrees of freedom of the

smooth (see p. 189 and sections 4.8.5 and 6.6 in Wood

2006), then large sample-based theory leads to the distri-

butional result

b̂Tj Vr
b̂j
b̂j � v2r (4)

for obtaining P-values on the test that b̂j ¼ 0; that is,

equation 4 provides a means for carrying out a classical

significance test for estimating the significance of smooth

terms in the model.

Table 1. Summary of the core model structures.

Models Equation Description

Model 1 (M1) g(E[yi,k]) ~ b0 + s1(t) + s2(t) Nonlinear trend and

seasonal production

Model 2 (M2) g(E[yi,k]) ~ b0 + b1t + s2(t) Linear trend and

seasonal production

Model 3 (M3) g(E[yi,k]) ~ b0 + s1(t) Nonlinear trend only

Model 4 (M4) g(E[yi,k]) ~ b0 + s2(t) Seasonal production

(no significant trend)

Model 5 (M5) g(E[yi,k]) ~ b0 Null random-effects

model

The empirical data models also included temporal autocorrelation and

random-effects terms.

ª 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 3143

L. Polansky & M. M. Robbins Nonparametric Models for Phenological Data



A paradigmatic difference emerges in theory leading to

the construction of confidence intervals around nonpara-

metric smooths, necessary when characterizing the actual

shape of smooth terms sj. Starting with the recognition

that the penalization in equation (3) imposes a prior

belief constraining the potential “wiggliness” of model

equation (1) leads to a Bayesian characterization of

description of certainty about the b̂j, and hence on infer-

ence of smooth function of the covariate (see sections

4.8.1–4.8.4 and 6.6 in Wood 2006 and Silverman 1985 for

equations and derivations). Let C(a,t) be the (1�a)100%
Bayesian credible interval of a smooth term s(t) obtained

from asymptotic large sample theory. Then in many situ-

ations both theory and simulations (Wahba 1983; Nychka

1988; Wood 2006) indicate that the average coverage

probability across the observed data points

1

n

Xn

i¼1

PrfsðtiÞ 2 Cða; tiÞg (5)

is often very close to the (frequentist) nominal 1 � a
level.

Simulation Experiments

Simulation design

We simulated data from which the true underlying

functions are known to evaluate how well model term

selection procedures based on P-values obtained from

equation 4, and estimation of smooth functions themselves

or exclusion of the zero function using equation 5, might

work in practice. Guided by the case study data presented

below, we assumed that the presence or absence of a plant

structure on individual plants was recorded. The sampling

setup assumed 10 years of data collected at regular monthly

intervals for 20 individuals without individual heterogene-

ity. We opted to exclude this heterogeneity to focus on

issues related to inference of smooth terms, a universal goal

common to applications of nonparametric models, where

individual heterogeneity appears to vary considerably from

one system/species to another (see the case study results for

examples).

Figure 1a shows the functions on a linear scale used to

construct data-generating models and include a nonlinear

function describing two good years and a bad year relative

to a constant probability of fruiting, a periodic function

with the same baseline probability of the presence of an

ephemeral plant structure, but with regularly occurring and

identical peaks intended to mimic seasonal-type emergence

of new structures and their additive sum; see the online

supplementary material (OSM) in the archives for exact

values of these functions. The logistic function was used to

obtain expected probabilities from which to generate

random data from the additive function or each function

separately for each of the 20 plants over the 120 months of

observation, and the conical logit link function for g was

used in model fitting. We also simulated data with constant

probability 0.5 (model structure M5) for each plant to

show fruit. The model structures used to simulate data are

M1 and M3–M5 from which 1000 synthetic data sets were

generated each. The simulation study was done in the R

programming environment version 2.15.1 (R Development

Core Team 2012) and models were fit using the mgcv pack-

age (Wood 2006, 2011). Computer code to reproduce this

study is available in the OSM.

Simulation results

Figure 1B shows that model term selection results using P-

values computed from equation 4 generally provide accu-

rate guidance on the presence of terms in generating data.

The primary exception is a tendency to accept intraannual

smooth terms more frequently than the nominal expecta-

tion of 0.05 when it was not used in the data-generation

process (actual proportion of acceptance = 0.18 for model

structure M1 fit to model data synthesized from data struc-

ture M3); these findings are in line with known deficiencies

related to model selection uncertainty (see Discussion on p.

195 in Wood 2006). Thus, although initial model term P-

values will provide in general accurate inference about

which terms to retain, some consideration of each smooth

terms confidence intervals is also warranted.

The results on the agreement between asymptotic-based

95% Bayesian credible intervals and actual frequentist-type

coverage are shown in Figure 1C–D. Figure 1C shows that

the true interannual smooth function s1(t) is not very well

estimated, being typically outside of the 95% credible inter-

val of the estimated smooth for more than 50% of the data

points. For the cyclic smooth function s2(t), there is a much

closer agreement between the actual and nominal coverage

values, although at between 80% and 90% this is also typi-

cally lower than the theoretical 95%. These results are in

line with results and discussion presented by Nychka

(1988) who illustrated how increased function estimation

bias around “kinks” in the true smoothing function leads

to coverage lower than the nominal 1-a rate. The kinks in

our periodic function s2 appear not to cause such severe

mismatches in coverage rates, presumably in part because

there is more information about the function through the

repeated observations on single locations of the function s2.

We suggest that the situation of a cyclic underlying true

function with repeated samples at a constant interval most

closely matches the study of Wahba (1983) for which the

frequency interpretations of Bayesian credible intervals

hold quite well.
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Figure 1D shows the proportion of points for which

the credible intervals contain the zero function, and illus-

trates that when there is a mismatch between the terms in

the fitted and generating models, the fitted smooths con-

tain the zero function on average for more than 95% of

data points within their 95% credible interval. Given a

match between a nonzero smooth function in the gener-

ating model and the fitted model, we can expect the zero

function to be contained within the 95% credible interval

for about 40% of the data for the interannual smooth

s1(t), and for about 15% of the data for the intraannual

cyclic smooth s2(t).

To summarize, the simulation results suggest that

P-values are very reliable for detecting smooth functions,

but that estimating these functions can be problematic,

especially for any potential nonlinear interannual smooths.

However, if the smooth term does not exist in the data-

generating model, but does in the data-fitting model, the

data-fitting model’s smooth estimate will contain the zero

function in its 95% credible interval for approximately the

nominal proportion of observations, so further investiga-

tion of smooth functions in relation to the zero function

can help detect false acceptance of smooth terms.

Empirical Studies from an
Afromontane Tropical Rainforest

Data and models

Here, we illustrate the use of nonparametric methods,

and GAMMs in particular, to disentangle time-localized

perturbations, long-term trends, and seasonality from

empirical fruit presence–absence data. Phenology data
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Figure 1. Results from the simulation study. (A) True piecewise

smooth functions on the linear scale used in the data simulation with

the intraannual cyclic function s2(t) shifted down slightly from its

minimum value of �0.5 for clarity. (B) An example time series of the

proportion of individuals with fruit in a simulated population (Ns = 20)

using the generating model M1. (C) Box plots of P-values when

testing the significance of smooth terms in a full model M1 fit to

synthetic data from the four different data-generating scenarios, listed

above each of the corresponding box plots and corresponding to true

model structures M1, M3, M4, and M5. Numeric values below the

data-generating labels denote the proportion of fitted P-values less

than 0.05. Box plots are drawn so that the box surrounding the

horizontal line, drawn at the median P-value estimate, extends across

the interquartile range, whiskers extend to the 2.7 and 97.5

percentiles, and points indicate outliers. The horizontal dashed line is

drawn at 0.05. (D–E) Points show the average over 1000 simulations

of the mean proportion of data points for which the true smooth

(panel C) or zero function (panel D) lies within each estimated

smooth’s 95% credible region at the corresponding data points,

across a range of different scenarios of fitted and data-generating

models. Vertical lines extend between the 0.0275 and 0.975 quantiles

of the 1000 proportions. Note that the different model fitting

structures have different possible smooths that are estimated. See

Table 1 for model definitions.
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comes from the fruiting status of individual trees col-

lected monthly within BINP. The study site is located at

approximately 01°02′ 46′′S and 29°46′ 20′′E near the Insti-

tute of Tropical Forest Conservation at an elevation

between 2100 and 2500 meters and is the continuation of

a monitoring study initiated in 2005 (Ganas et al. 2009)

in which repeated monthly observations of fruit pres-

ence–absence status of marked individuals were made

along ~13 km of forest access trails during the 95 months

spanning September 2004 to June 2012. For the forest

community-level analysis, we used 249 plants that sur-

vived throughout the entire study period from 33 species,

irrespective of species-level sample size Ns. To estimate

species population-level statistics, we focused on a subset

of focal species for which Ns was at least five which

resulted in 229 individuals from 25 species. Table S1 in

the OSM summarizes species names and sample sizes.

Rainfall and temperature data were collected over a time

period prior to the phenenology data collection at the

Institute of Tropical Forest Conservation.

Figure 2 summarizes the proportion of individual

plants with fruits present from tree species of BINP

(described in more detail below). There appears to be an

upward trend in the percentage of individuals with fruit

over time that may or may not be linear (Fig. 2A). A

somewhat weak intraannual seasonal pattern is also appar-

ent (Fig. 2B), with peak fruiting occurring just prior to

one of the two rainy season (Fig. 2C). Two questions we
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Figure 2. Forest community data. (A) Time-

series plot of the proportion of individuals

showing fruit for the forest community. (B) Bar

plots of the monthly mean proportion of

individuals with fruit, with lines extending

�1 SD. (C) Mean monthly rainfall (bars),

temperature (dashed lines), and degrees from

the zenith of the sun at noon (solid line).

Precipitation use data collected from January

1987 through July 2006. Temperature plots

use data collected from March 1987 through

April 2006.
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might ask are whether the seasonality is significant, and, if

so, whether the large spikes shown around 2009 and 2010

are associated with the seasonality or are distinct?

Six percent of all possible entries were missing, with a

median of four missing data points per plant. We first

interpolated these missing data with the smoothed

estimates of hidden Markov models (Rabiner 1989) fit

to each individual plant separately. We implemented the

hidden Markov models and obtained interpolations using

the mhsmm package (O’Connell and Højsgaard 2011)

for the R version 2.15.1 programming environment (R

Development Core Team 2012) using binomial latent

and observation state models. This step facilitates use of

the entire dataset when incorporating a time-lag depen-

dency in the probability model for individuals showing

fruit.

For the empirical data analyses, the models of Table 1

were expanded to accommodate the repeated measure-

ments and include a lag term for temporal autocorrela-

tion. Thus the full model is M1 of Table 1 is expressed as

gðE½yi;k�Þ ¼ b0 þ b1yi�1;k þ s1ðtÞ þ s2ðtÞ þ bk (6)

where the temporal autocorrelation is captured by the

b1yi�1,k term and the unobserved individual random

effects bk for plant k are normally distributed with mean

zero and standard deviation r with similar modifications

to the remaining models. The other models of Table 1

were expanded identically. We viewed temporal lag and

random-effects components as control variables and

retain our interest in inference about the inter- and intra-

annual smooths.

Two steps were used to arrive at a final model for the

forest aggregated data and each of the species-level analy-

ses. First, a likelihood ratio test (LRT) was used to test

the full model (M1) against a null model (M5). Given the

acceptance of the full model M1, this model was checked

against the remaining models M2–M4 to identify a first

model. Second, we further evaluated the significance of

smooth terms of the initially selected model based on the

extent to which their 95% confidence intervals contained

the zero function. Guided by the simulation experiment

we might expect that if approximately 10–12 or 2–3
months of the s1(t) and s2(t) functions exclude the zero

function, respectively, then these functions are likely to be

correctly capturing nonlinear or periodic changes in fruit-

ing patterns.

Models were fit using the gamm4 function from the

gamm4 version 0.1-6 (Wood 2012) package for the R

version 2.15.1 programming environment (R Development

Core Team 2012). Maximum likelihood smooth parame-

ter estimation and a maximum basis dimension of 10 and

8 for the s1(t) and s2(t) smooths, respectively, were chosen

as further required choices in model implementation;

unreported analyses exploring the larger and smaller

choices in these maximal basis dimensions settings

revealed no substantive differences, as they should not.

The gamm4 function makes direct use of the lmer or

glmer functions in the lme4 version 0.999999-0 package

(Bates et al. 2012). R code is available from the lead

author upon request.

Empirical results

The model inference procedure applied to the forest-level

data shown in Figure 2A clearly selected the most complex

model, unambiguously rejecting both the null model

(v2 = 286.67, df = 3, P < 0.01) and the linear trend model

(v2 = 86.12, df = 1, P < 0.01). Examination of the P-val-

ues of the individual smooth terms (s1(t) smooth v2 =
235.28, df = 7.92, P < 0.01; s2(t) smooth v2 = 90.88,

df = 4.56, P < 0.01) and their confidence intervals (Fig. 3)

provided further support for both a nonlinear interannual

trend and seasonality. The interannual smooth s1 showed

a positive increase in the probability of fruiting presence

across the data set with the most noticeable increase

between mid-2008 until 2010 (Fig. 3A), whereas the intra-

annual smooth s2 indicated significant seasonality with

fruit presence probabilities peaking around January and

February and being minimal during July (Fig. 3B), both

matching the patterns observed in Figure 2 well by eye.
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Figure 3. Smooth functions (solid lines) with 95% credible region

delineated by the dashed lines estimated from the forest aggregated

data for the (A) interannual smooth s1(t) and the (B) intraannual

smooth function s2(t), both plotted on the linear scale.
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Parallel analyses applied to each of the focal species

individually showed a fairly balanced distribution of best

model types (Table 2 and Fig. S1 in the OSM). Based on

the final model selected, we extracted the time-localized

interannual trend information as follows: For species with

a significant interannual nonlinear trend (model types M1

and M3), trending was indicated as positive at time t if

the lower confidence interval of the interannual smooth

was greater than zero at time t, negative if the upper con-

fidence interval at time t was less than zero at time t, and

not trending otherwise; for species with a significant lin-

ear trend (model type M2), the trend was either positive

or negative for all t depending on the slope coefficient

being positive or negative, respectfully; for model types

without trending (M4 or M5), the trend at time t was

defined as not significant for all t. Figure 4 summarizes

these results (see also Fig. S1 in the OSM) and indicates a

cluster in time across species of upwardly trending proba-

bilities from early 2009 until early 2010.

Discussion

This study first provided a simulation experiment on the

utility of using nonparametric methods in a null hypothe-

sis testing framework to study phenological patterns typi-

cal of tropical systems, and second, applied GAMMs for

an analysis of empirical data. The nonparametric frame-

work proves to be useful because of species with both

linear and nonlinear long-term trends, diverse interannual

and intraannual seasonal patterns, and nonzero individual

random-effects variance.

For the empirical data presented here, the answer to

the question posed earlier, is the forest producing more

fruits over the course of the study, is yes, but with non-

trivial qualifiers. The nonlinearity and seasonality at the

forest level, and the many kinds of patterns at the species

level make this answer dependent on the plant species.

Overall, our study reveals an interannual upward trend in

the percentage of individuals with fruits, the qualitative

direction of which agrees with a recently detected trend

in a nearby lowland forest studied by Chapman et al.

(2005). However, the upward trend found here is better

understood here as nonlinear mean-level shift with

increasing amplitude in the intraannual oscillations, dis-

tinct from any regular seasonality. In particular, the years

2009 and 2010 (Fig. 4) fruit production appeared to have

been especially high for the most species considered here,

and stimulate inquiry into what atypical events relevant

for fruit production occurred shortly prior or during this

time.

As such, these analyses provide examples of first steps

to classifying the winning and losing plant species in

response to climate change or other shifting ecosystem

properties. At Bwindi, the dry season of 2009 (July–
August) was especially dry and hot (M. Robbins, pers.

obs.); whether this climatic extreme triggered a response

by the plants or pollinators that was beneficial for fruit

production remains to be studied. Furthermore, although

it is tempting to ascribe the late dry season peak fruiting

times associated with the regular seasonality to a lack of

light limitation (Wright and van Schaik 1994), it is not

automatically the case that the dry season corresponds to

increased light availability, and further measurements are

needed to resolve whether the seasonality shown here is

due to light or water constraints. However, given that the

rainy season period is approximately semiannual

(Fig. 2C) while regular fruiting fluctuations occur with

annual periodicity (Figs. 2B and 3B), it is unlikely that

fruiting presence is tied to rainfall in a simple way.

The fruiting pattern complexity observed here implies a

complexity relevant for classical topics in ecology and

evolution. For instance, while both theoretical (Boyce and

Daley 1980; Henson and Cushing 1997; Holt 2008) and

experimental (Jillson 1980; Friman and Laakso 2011)

studies about population dynamics in regularly pulsing

resource environments have provided invaluable insight

into underlying mechanisms of population regulation and

evolution, comparatively less work has been done for

more exotic situations such as those illustrated here. For

example, the dynamical consequences for populations

dependent on irregular and relatively extreme pulses in

resources laid over regular pulses remain generally under-

studied (but see Holt 2008 for some theoretical forays

along these lines).

The models in Table 1 can be expanded to easily

include covariate data. However, identifying the mecha-

nistic pathway for a particular covariate to guide model

formulation can be challenging. In tropical systems, rain-

fall and light availability are both leading candidates for

resource limitations impacting fruiting (van Schaik et al.

Table 2. Selected model counts after applying the GAMM inferential

procedure to each of the 25 species with Ns ≥ 5.

Models

Based on a likelihood

ratio test of model M1

against other models

Further inspection of

remaining smooth term

confidence intervals

M1 7 6

M2 5 4

M3 9 9*

M4 1 1

M5 3 5

Figure S1 of the OSM provides the detailed graphical and analytical

results. See Table 1 for description of models. *One selected model

type M3 had an interannual smooth term converging to a straight

line, suggesting a linear upward trend as the best model.
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1993; Wright and van Schaik 1994). Given these data,

which are rarely available in African tropical research

projects, but hopefully will be as automated weather

recording stations become increasingly practical (e.g., see

the Tropical Ecology Assessment and Monitoring Net-

work program at http://www.teamnetwork.org/), it would

be straightforward to incorporate such covariate informa-

tion into the dependencies of the smooth functions in

the models of Table 1. We note that from a modeling

perspective these two covariates may be smooth functions

of each other because seasonality in light and rainfall is

often related, which in the past has been problematic.

Given the increasingly robust numerical procedures for

fitting nonparametric regression models (Wood 2008,

2011), such problems of concurvity should be relatively

minimal. We also note that GAMM fitting technology

allows modeling interactions among fixed-effect predic-

tors in all the standard ways ecologists are familiar with

from GLM-type analyses, so that in principle the

complexity of allowed models under this framework is

limited only by the available data and the appropriateness

of a hypothesis.

Phenological analyses using GAMMs rely on the theo-

retical and computational advancements of inference for

both additive mixed (Wood 2006, 2011) and generalized

linear mixed (Bates et al. 2012) models which makes fit-

ting syntax intuitive and optimization rapid. In some

cases such as count data of individual fruits, data would

be better modeled by Poisson distributions. The software

used here also accommodates Poisson, quasi Poisson, and

negative binomial distributions, all useful for cases where

data are counts and potentially overdispersed. Zero-

inflated nonparametric models (Liu and Chan 2010) and

GAMs for location, scale, and shape (Rigby and Stasinop-

oulos 2005) offer options for modeling such data nonpar-

ametrically (e.g., Hudson et al. 2011), although examples

of such models with periodic smooths and random effects

have yet to be provided.
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Figure 4. Qualitative directions of the fruiting probability trend based on the interannual term of the final model for each species. For each

species and each month, white indicates no trend, black indicates a positive trend, and gray indicates a negative trend. Early 2009 until early

2010 show the greatest amount of positive trending across species, in line with the forest-wide aggregate time-series plot (Fig. 2A) and analysis

(Fig. 3A). Species are arranged from those with the most positive trends at the top to the most negative trends at the bottom.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. Shows species-level data plots and model M1

smooth terms. R code is provided to reproduce the simu-

lation study and empirical analyses at the species level.

Table S1. Lists species names and sample sizes for the

forest community data.
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