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Abstract: We have recently solved the tumbling-snake model for concentrated polymer solutions and
entangled melts in the presence of both steady-state and transient shear and uniaxial elongational
flows, supplemented by a variable link tension coefficient. Here, we provide the transient and
stationary solutions of the tumbling-snake model under biaxial elongation both analytically, for small
and large elongation rates, and via Brownian dynamics simulations, for the case of planar elongational
flow over a wide range of rates, times, and the model parameters. We show that both the steady-state
and transient first planar viscosity predictions are similar to their uniaxial counterparts, in accord
with recent experimental data. The second planar viscosity seems to behave in all aspects similarly to
the shear viscosity, if shear rate is replaced by elongation rate.

Keywords: polymer melt; stochastic differential equation; link tension coefficient; entanglements;
biaxial flow

1. Introduction

Understanding the behavior of polymer liquids in shearfree (extensional) flows has attracted the
interest of academic researchers and industrial companies alike, due to the capacity of such flows
to align and stretch polymer chains at a preferred flow direction, such as in fiber spinning and film
forming processes [1]. The reliable measurement of uniaxial extensional viscosity has been resolved
more than two decades ago with the development of the filament stretching rheometer [2]. Today,
this rheometer has reached a level of maturity that allows to demonstrate that systems with the same
number of entanglements, and thus with identical linear rheology, have a drastically different nonlinear
uniaxial extensional behavior [3–5].

On the other hand, the measurement of the planar or biaxial extensional viscosities is rather scarce
and mainly unable to reach the steady-state (see e.g., [6,7]), while the such flow fields can be generated
and controlled conveniently via optical birefringence in a cross-slot channel [8–10]. Rheooptics is then
applied to interpret the data. The unavailability of reliable direct rheological data for planar elongation
may be the reason for only a few works [11–14] devoted to testing the ability of rheological constitutive
models to address this flow. Non-equilibrium molecular dynamics (NEMD) simulation of microscopic
polymer chain models has helped in the past to clarify the applicability of constitutive relationships
for simple flows, including uniaxial elongational and shear flows, while it is worthwhile recalling
that steady-state planar elongation is easier to implement than uniaxial elongation (UE) in such a
simulation setup [15–17].

Since the introduction of the tube/reptation concept by de Gennes and Doi & Edwards [18–20], this
mean-field theory turned out to serve as the far-most capable starting point in an attempt to describe
the dynamical nonequilibrium behavior of entangled (high molecular weight) polymer melts and
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concentrated polymer solutions. At equilibrium, the incorporation of additional mechanisms, such as
contour length fluctuations and constraint release (CR) [19,21,22], lead to an accurate description
of linear viscoelastic properties [21–24]; under flow, however, and despite numerous modifications
such as the consideration of chain stretch [25], finite extensibility [26,27], and convective constraint
release [27–30]), it still lacks consistency with available rheological data.

Another formalism that aims to address the rheological response of high molecular weight
polymeric melts and concentrated solutions is the model developed by Curtiss & Bird [31,32] based on
the phase-space formulation within the kinetic theory of undiluted polymers [33]. It invokes neither
a mean field tube nor slip-links. It is also known as the tumbling-snake model [34], as it allows for
both orientational and curvilinear diffusion of polymer segments. The model entails, as the original
tube/reptation model, the solution of a Fokker-Planck (FP) for the single-link distribution function,
f (σ, u, t), which describes the probability that at time t a chain segment at contour position σ ∈ [0, 1]
along the chain is oriented in direction u, with u and σ independent dynamical variables, and u · u = 1.
Segmental motion is not considered as a strict one-dimensional diffusion process (“reptation”) along
the polymer’s backbone but the chain is also allowed to explore the surrounding space by moving
perpendicular to its backbone (that may be identified as CR events) with the parameter ε′ controlling
its significance. The strictly one-dimensional diffusion process of Doi & Edwards is recovered as a
special case, when ε′ = 0. The extra stress tensor, see Equation (1) below, contains a term due to the
anisotropy of the friction tensor ζ = ζeq [δ− (1− ε)uu] involving a link tension coefficient ε ∈ [0, 1];
if ε = 0 there is no friction against motion in the direction u, whereas for ε = 1 the friction tensor is
isotropic as for an individual sphere. Despite the qualitatively different assumptions made by the
two formalisms, the original tube/reptation model is obtained as a special case of the more general
FP equation of the tumbling-snake model [31–33,35] when ε′ = ε = 0. Only the analytically tractable
model with ε′ = 0 had been solved rigorously [31–33,36,37].

We have shown recently that the tumbling-snake model for ε′ > 0 can be analyzed conveniently
via Brownian Dynamics simulations and applied this approach to both steady-state [34,35,38]
and time-dependent shear flow [34,38], as well as to steady-state and time-dependent uniaxial
elongation [39]. These works provided evidence that the tumbling-snake model is able to capture the
damping behavior of the transient viscosity in start-up shear experiments at high rates [40–42], while
preserving the absence of such undershoots in both normal stress coefficients, in line with experimental
data [34,38]. The appearance of the undershoot has been associated with the shear-induced rotational
motion of chains [38,42], further supported by non-equilibrium atomistic simulations [43–45]. As such,
similar undershoots are not seen in elongational flows [39].

The qualitatively relevant and only modification to the original tumbling-snake model was the
consideration of a variable link tension coefficient, that vanishes in the absence of flow, and is given
by ε = ε0S2

2 [34,38], where S2 denotes the 2nd rank uniaxial nematic order parameter of polymer
segments [46]. This adjustment of the Curtiss & Bird theory has eliminated certain disadvantages of
their original model (exhibiting a constant link tension coefficient). Due to the refinement, the transient
shear and elongational viscosities no longer approach constant values at small times, and spurious
time oscillations of the transient second normal stress in startup of shear flow are absent. It has been
demonstrated that the tumbling-snake model in its present form is able to qualitatively capture recent
experimental evidence according to which the extensional viscosity of polymer solutions is seen to
exhibit thinning below the inverse Rouse time and thickening above, whereas the extensional viscosity
of polymer melts is monotonically decreasing for all strain rates [3–5], by having the strength ε0 of the
link tension coefficient increasing as the polymer concentration decreases [39].

In this work, we discuss the solution of the tumbling-snake for the more general case of biaxial
elongational flows, with a focus on planar elongational flow. The structure of this manuscript is
as follows: In Section 2 we revisit the stress tensor of the tumbling-snake model, parameterize the
velocity gradient tensor and define the viscosities. Section 3 summarizes the Brownian dynamics
method to solve the model. In Section 4, we provide the series expansion of the two biaxial
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elongational viscosities in the case of steady-state general shearfree flow for small dimensionless
elongation rates for comparison with limiting results presented in Section 6. Similarly, in Section 5 we
derive analytic expressions for the linear viscoelastic viscosities in the case of start-up flow, again for
biaxial flows. In both sections, we discuss the cases of constant and variable link tension coefficient
separately. This includes special cases such as the rigid dumbbell. In Section 6 we actually solve
the model numerically using Brownian dynamics simulation for planar elongation, validate the
analytic expressions, and further compare the predictions of the first planar viscosity with the uniaxial
elongation viscosity. We conclude with Section 7 where we discuss the significance of this work.

2. Stress Tensor

In the case of a monodisperse polymer with “polymerization degree” N related to the number
of entanglements per chain, Z, introduced by Doi and Edwards, via N = 3Z, and polymer number
density n, the time-dependent (extra or polymeric) stress tensor τ of the tumbling-snake model
subjected to a homogeneous flow field characterized by the transposed velocity gradient tensor κ is
given by [33,35]

τ(t)
G

= −(1− ε′)

(
〈uu〉(1)(t)− 1

3
I
)
− 3ε′0

(
〈uu〉(2)(t)− 1

18
I
)
− ε B(t), (1)

with modulus G = nkBT(N − 1), temperature T, Boltzmann’s constant kB, unit tensor I, coefficients ε′

and ε′0 interrelated via ε′0 ≡ ε′(N− 1)2, and a link tension coefficient ε. The latter comes in two versions,
the original one proposed by Curtiss & Bird, where ε is a constant, and the variable one proposed
by us within the tumbling-snake model, ε = ε0S2

2 with constant ε0 and uniaxial order parameter S2

determined by 〈uu〉(1)(t). Note that we are adopting throughout the nomenclature of Bird et al. [33],
while the τ in (1) is a pressure tensor, and thus the negative stress tensor, in the majority of scientific
literature. This stress tensor (1) involves the following orientational averages calculated with the
solution of the corresponding FP equation [34] for the single-link orientational distribution function
f (σ, u, t)

〈uu〉(1)(t) =
∫ 1

0
dσ
∫

du f (σ, u, t)uu

〈uu〉(2)(t) =
∫ 1

0
σ(1− σ)dσ

∫
du f (σ, u, t)uu, (2)

B(t) = λκ :
∫ 1

0
σ(1− σ)dσ

∫
du f (σ, u, t)uuuu,

where
∫

du denotes an integral over the unit sphere, λ a time constant proportional to ζeq/kBT, squared
bond length a, and N3+β, where β is a chain constraint exponent, and κ : uu = (κ · u) · u stands
for a two-fold contraction. The reptation or disengagement time is τd ≡ λ/π2. In addition to the
highlighted dependency on time t the stress tensor as well as the averages depend also on the flow
field κ via f . For the case of a general shearfree elongational, homogeneous incompressible flow at
rate ε̇ the transposed velocity gradient tensor κ is traceless and diagonal and thus of the form

κ = ε̇

 − 1
2 (1 + b) 0 0

0 − 1
2 (1− b) 0

0 0 1

 , b ≥ 0 (3)

where it is sufficient to consider semipositive b for symmetry reasons. When b = 0, we retrieve
homogeneous simple uniaxial elongation for ε̇ > 0 and biaxial stretching for ε̇ < 0, while b = 1
corresponds to planar elongation [33], b = 3 to equibiaxial extension, and b = 2 to so-called
elliptical extension (Figure 1). Arbitrary b can be realized experimentally via a multiaxial elongational
rheometer [6]. While most results and methods to be presented below are valid for arbitrary b,
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we will focus on planar elongation (b = 1) in Section 6. The ratio of principle strain rates κ22/κ33,
denoted by m by Demarmels and Meissner [6], is related to b by m = (b− 1)/2, and the projection
of the motion of a material particle in the xz– or yz–plane is given by x = Cz1−m and y = Czm

with constants C, while y(t) = x(t)ebt in the xy–plane. Except for b = 0 (κxx = κyy) and b = 3
(κyy = κzz) there are two normal stress coefficients and corresponding viscosities that can be measured.
The first, η1(ε̇) = −(τzz − τxx)/ε̇, and the second, η2(ε̇) = −(τyy − τxx)/ε̇, rate-dependent stationary
elongational viscosity [33]. The corresponding transient viscosities we denote by η+

1 (ε̇, t) and η+
2 (ε̇, t).

The transient viscosities in the linear viscoelastic regime do not depend on rate, are thus denoted by
η+

1,2(t) = limε̇→0 η+
1,2(ε̇, t). Because the elongation rate enters the stress tensor in the combination λε̇,

we introduce the dimensionless Weissenberg number

Wi = ε̇λ. (4)

Figure 1. Prominent, qualitatively different examples for isochoric deformations r′ (red) of a unit cell
r (blue) in shearfree flows: (i) uniaxial extension (b = 0), (ii) planar extension (b = 1), (iii) elliptical
extension (b = 2), and (iv) equibiaxial extension (b = 3). For each scenario the situation is depicted both
in (a) 3D and (b) projected to the x–y–plane. Coordinates are related via r′ = E · r by the deformation
gradient tensor E = exp(κt), c.f. Equation (3), here shown for ε̇t = 0.5.

3. Brownian Dynamics Simulation

The Brownian dynamics algorithm that we employ in this work is identical, apart from the
different choice of flow field, κ, with the one we had presented previously. The Fokker-Planck equation
of the tumbling-snake model subject to isotropic boundary conditions at chain ends at all times,
∀t f (0, u, t) = f (1, u, t) = 1/4π, can be cast in the form of two coupled Itô stochastic differential
equations for variables Ut (segment unit vector at time t) and σt ∈ [0, 1] (relative contour position at
time t) as follows

dUt = (I−UtUt)·
(

κ·Utdt +
√

2ε′0
λ dWt

)
− 2ε′0

λ Utdt,

dσt =
√

2(1−ε′)
λ dW ′t ,

(5)

where dWt is a three-dimensional Wiener process and dW ′t is another one-dimensional Wiener process,
independent from the former (Figure 2). The transverse projector operator I−UtUt guaranties that
the stochastic dynamics preserves the Ut property of being a unit vector. Note that the link tension
coefficient ε affects the stress tensor, but not the dynamics of the orientational distribution function.
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Figure 2. Tumbling-snake model. Strength of the orientational and one-dimensional diffusion of
segment vector Ut at relative position σt along the polymer contour determined by ε′ ∈ [0, 1].
The link-tension coefficient ε affects the stress tensor.

From Equation (5) it is transparent that 1− ε′ is related to a one-dimensional “reptation” diffusion
coefficient, and ε′0 = ε′(N − 1)2 related to the orientational diffusion coefficient of polymer segments.
The factor (N − 1)2 appears because σt is a relative rather than absolute contour position. For
implementation details see [34,35].

The moments required to evaluate the stress tensor given by Equation (1), such as
〈uu〉(1)(t), i.e., the left hand sides of Equation (2), are obtained during Brownian dynamics via plain
averaging over an ensemble of stochastic trajectories at times t. To be specific, 〈uu〉(1)(t) = 〈UtUt〉
and B(t) = λκ : 〈σt(1− σt)UtUtUtUt〉 involving the evaluation of a 2nd and 4th rank tensor, whose
number of nonvanishing and independent components depends on κ (2 and 6 components, respectively,
for the case of biaxial elongation).

4. Small Elongation Rate Expansion of the Stationary Viscosities for Biaxial Elongational Flows

Results for the stationary viscosities at small rates can be derived analytically. They are particularly
useful because this limiting case can strictly not be accessed during Brownian dynamics, because the
error bars increase with decreasing rate. They are furthermore useful to, e.g., test ratios between zero
rate viscosities or to compare asymptotic behaviors for different types of flow. The approach to derive
analytical results is based on a spherical harmonics expansion of the single-link distribution function
around equilibrium.

4.1. Stationary Regime, Constant ε

To begin with, we assume a constant ε and we are interested in the rate-dependent steady-state
values of the extensional viscosities. The methodology employed is described in detail in the
Supplementary Section A and the final expression for the expansion, up to 2nd order in the
dimensionless Weissenberg number Wi = ε̇λ, is given in Supplementary Equation (S6). Upon inserting
this expansion into the stress tensor Equation (1) we obtain both elongational viscosities up to second
order in Wi in terms of the biaxiality parameter b

η1(ε̇)
Gλ = 3+b

60
(
1+ 2

3 ε
)
+ 4

35

(
1− 2b

3 −
b2

3

) (3
4 + ε

)
∆1Wi

+ 12
245

(
1+ b2

3

) [
ε (∆2 + 6∆3)

(
1+ b

3

)
+ 3

4

(
1+ b2

3

)
(∆2 − 8∆3)

]
Wi2,

η2(ε̇)
Gλ = b

30
(
1+ 2

3 ε
)
− 16b

105
(3

4 + ε
)

∆1Wi

+ 8b
245

(
1+ b2

3

) [( 3
4 + ε

)
∆2 + 6(ε− 1)∆3

]
Wi2,

(6)
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or alternatively, if we normalize with the known zero-rate shear value, η0 = 1
60
(
1+ 2

3 ε
)

Gλ [33,35],
the result can also be written as

η1(ε̇)
η0

= 3 + b + 240
35(1+2

3 ε)

(
1− 2b

3 −
b2

3

) (3
4 + ε

)
∆1Wi

+ 720
245(1+2

3 ε)

(
1+ b2

3

) [
ε (∆2 + 6∆3)

(
1+ b

3

)
+ 3

4

(
1+ b2

3

)
(∆2 − 8∆3)

]
Wi2,

η2(ε̇)
η0

= 2b− 960b
105(1+2

3 ε)

(3
4 + ε

)
∆1Wi

+ 480b
245(1+2

3 ε)

(
1+ b2

3

) [ ( 3
4 + ε

)
∆2 + 6(ε− 1)∆3

]
Wi2.

(7)

This way we see that the first and second zero-rate elongation viscosities limWi→0 η1,2(ε̇) are 3 + b
and 2b times, respectively, the zero-rate shear viscosity, η0. The following abbreviations have been
introduced for numerical prefactors appearing in (6) and (7)

∆j ≡ 24
∞

∑
ν=1,odd

1
(πν)4k j(ν)

, (j = 1, 2, 3) (8)

with the kernels k1(ν) = K2, k2(ν) = K2
2, and k3(ν) = K2K4 that depend on both ε′ and ε′0 via

Kj(ν) ≡ (1− ε′)(πν)2 + j(j + 1)ε′0. (j = 1, 2, 3) (9)

Evaluating the ∆j’s we can obtain more explicit predictions for two limiting cases (i) and (ii):
(i) When ε′ = 0, implying Kj(ν) = (πν)2, the ∆j are readily evaluated, ∆1 = 1/40 and ∆2 = ∆3 =

17/6720, and Equation (6) reduces to

η1(ε̇)
Gλ = 3+b

60
(
1+ 2

3 ε
)
+ 1

350

(
1− 2b

3 −
b2

3

) (3
4 + ε

)
Wi

+ 17
19600

(
1+ b2

3

) [
ε
(

1+ b
3

)
− 3

4

(
1+ b2

3

)]
Wi2,

η2(ε̇)
Gλ = b

30
(
1+ 2

3 ε
)
− 2b

525
(3

4 + ε
)

Wi

+ 17b
29400

(
1+ b2

3

) (
ε− 3

4
)

Wi2, (ε′ = 0)

(10)

up to order Wi3. These expressions (10) further include the Doi & Edwards results for ε = 0. (ii) In the
second limit, ε′ = 1 with N = 2, thus ε′0 = ε′, the chain reduces to a rigid dumbbell. For this case
Kj(ν) = j(j + 1) and all kernels k j are independent on ν, leading to ∆1 = 1/24, ∆2 = 1/144, and
∆3 = 1/480. We thus obtain from Equation (6)

η1(ε̇)
Grdλrd

= 3(3+b)
5

(
1 + 2

3 ε
)
+ 1

35

(
1− 2b

3 −
b2

3

) ( 3
4 + ε

)
Wird

+ 1
1050

(
1+ b

3

) [
ε
(

1+ b
3

)
− 3

8

(
1+ b2

3

)]
Wi2rd,

η2(ε̇)
Grdλrd

= 6b
5
(
1 + 2

3 ε
)
− 4b

105
( 3

4 + ε
)

Wird

+ 2b
2275

(
1+ b2

3

) (
ε− 3

8
)

Wi2rd, (ε′ = ε′0 = 1)

(11)

with Wird ≡ ε̇λrd, G = 6Grd and λ = 6λrd. To the best of our knowledge, this expansion for the rigid
rod subjected to biaxial flows is provided here for the first time. Our result, Equation (11), also accounts
for hydrodynamic interaction by identifying ε = λ

(2)
2 /λ

(1)
2 [35].
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4.2. Stationary Regime, Variable ε

If, instead of a constant link tension coefficient, we consider the variable link tension coefficient of
the tumbling snake model given by ε = ε0S2

2 where S2
2 = 3

2 tr(〈uu〉ani · 〈uu〉ani) is the uniaxial order
parameter of the 2nd moment (here 〈uu〉ani = 〈uu〉(1) − 1

3 I) [34,38], then, up to second order in Wi
we obtain

ε(ε̇) = ε0
4(3 + b2)

75
(Γ1Wi)2 , (12)

where Γ1 is a numerical coefficient

Γ1 = 12
∞

∑
ν=1,odd

1
(πν)2K2

, (13)

that appeared in the Supplementary Equation (S1b) of Ref. [38]. The corresponding steady-state
viscosities are given, up to O(Wi3), by

η1(ε̇)
Gλ = 3+b

60 + 4
35

(
1− 2b

3 −
b2

3

)
Wi + 9(∆2−8∆3)

245

(
1+ b2

3

)2
Wi2 + 2(3+b)(3+b2)ε0

3375 (Γ1Wi)2 ,

η2(ε̇)
Gλ = b

30 −
12b
105 ∆1Wi + 6b(∆2−8∆3)

245

(
1+ b2

3

)
Wi2 + 4b(3+b2)ε0

3375 (Γ1Wi)2 .
(14)

We refrain from writing down more explicit expressions for the special cases of (i) ε′ = 0, using
the ∆j’s mentioned above for this case, as well as Γ1 = 1/8, and (ii) ε′ = ε′0 = 1, using Γ1 = 1/4.

5. Transient Elongational Viscosities in the Linear Viscoelastic Regime

To study the transient viscosities after startup of flow we consider a time-dependent spherical
harmonics expansion of the single-link distribution function around equilibrium, up to first order in
Wi, to be able to obtain the linear viscoelastic analytical predictions; the procedure is described in the
Supplementary Section A; the final expression for the expansion of the time-dependent single-link
distribution function is given by Supplementary Equation (S4).

5.1. Transient Regime, Constant ε

Inserting this expansion into the stress tensor Expression (1), assuming a constant ε, we obtain
analytical expressions for the time dependent viscosities, η+

1 (t), and η+
2 (t), which turn out to be 3 + b

and 2b times the time-dependent shear viscosity, that was first presented in [34],

η+1 (t)
Gλ = (3 + b)

[
1

60
(
1+ 2

3 ε
)
− 1

15 ∆0(t)
]

,

η+2 (t)
Gλ = 2b

[
1

60
(
1+ 2

3 ε
)
− 1

15 ∆0(t)
]

,
(15)

where the following abbreviation has been introduced,

∆0(t) = 24
∞

∑
ν=1,odd

exp(−K2(ν)t/λ)

(πν)4 , (16)

with K2(ν) from Equation (9). An important property of ∆0(t) is its initial value, ∆0(0) = 1/4.
It decreases monotonically with time, initially with a slope of −24[(2− ε′) + ε′0]/λ, and ultimately
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vanishes as t → ∞. Taking the rigid dumbbell limit, ε′ = 1 and N = 2, the ∆0(t) can be evaluated
analytically and Equation (15) becomes

η+1 (t)
Grdλrd

= 3(3+b)
5

[
1+ 2

3 ε− exp
(
− t

λrd

)]
,

η+2 (t)
Grdλrd

= 6b
5

[
1+ 2

3 ε− exp
(
− t

λrd

)]
. (ε′ = ε′0 = 1)

(17)

To the best of our knowledge, this is the first time this result for a rigid dumbbell is presented.

5.2. Transient Regime, Variable ε

If, instead of a constant link tension coefficient, we consider a variable link tension coefficient
given as ε = ε0S2

2, the least order expansion with respect to Wi gives

ε(ε̇, t) = ε0
4(3 + b2)

75
Wi2 [Γ1 − Γ1(t)]

2 , (18)

where the dimensionless Γ1(t) = 12 ∑∞
ν=1,odd exp(−K2t/λ)/(πν)2K2 with Γ1(0) = Γ1, cf.

Equation (13), is taken from the Supplementary Equation (S3b) of Ref. [38]. Putting this together, ε at
small rates adn times increases quadratically with rate and time. The precise expression is

ε(ε̇, t) = ε0
3(3 + b2)

25
(ε̇t)2. (19)

As the variable link tension coefficient thus vanishes in the linear viscoelastic regime, the full time
dependent planar elongation viscosities are given by Equation (15) evaluated at ε = 0, i.e.,

η+1 (t)
Gλ = (3 + b)

(
1

60 −
1

15 ∆0(t)
)

,

η+2 (t)
Gλ = 2b

(
1

60 −
1

15 ∆0(t)
)

.
(20)

For times t� λ, this expression reduces, with ∆0(t) given by Equation (16), to

η+1 (t)
Gλ = 3+b

10 [2(1− ε′) + ε′0]
t
λ ,

η+2 (t)
Gλ = b

5 [2(1− ε′) + ε′0]
t
λ . (t� λ)

(21)

where use had been made of the already mentioned initial slope of ∆0(t).

6. Brownian Dynamics Results for Planar Elongational Flow

Having derived analytical expressions for the various regimes, we now turn to the presentation
of full rate- and time-dependent exact numerical results for the tumbling-snake model for the special
case of planar elongational flow (b = 1).

κ = ε̇

 −1 0 0
0 0 0
0 0 1

 (22)

where polymers tend to align in z-direction to the expense of a compression in x-direction, while y is
the neutral direction. All figures presented in this manuscript are generated using the variable link
tension coefficient; predictions for the case of a constant ε are available in the Supplementary Section B.
All types of biaxial flows discussed above can be studied using an identical procedure. Mixed flows
pose no additional problem and amount to consider a more general κ or even a time-dependent κ(t)



Polymers 2018, 10, 329 9 of 18

in Equation (3) of the Brownian dynamics algorithm (5). The analytical results will be used to test the
simulation results, and to extend their validity to “infinitely” small rates and times, where simulation
results tend to become more difficult to sample.

6.1. Steady-State Planar Elongation

The steady-state value of the variable link tension coefficient ε = ε0S2
2 as a function of

dimensionless elongation rate Wi for polymerization degree N = 100 (Z ≈ 33 entanglements) and
various values of ε′0 = ε′(N − 1)2 is shown in Figure 3. At small elongation rates, as expected from
Equation (12) evaluated at b = 1,

ε(ε̇) = ε0
16
75

(Γ1Wi)2 , (b = 1) (23)

ε increases quadratically with the elongation rate, whereas at large Wi, and irrespective of the value of
ε′0, then ε→ ε0. This is also expected since for a fully aligned sample the order parameter approaches
unity, S2 → 1. Thus, the model predictions for the case of a variable ε become identical to the ones for
a constant ε at large rates, Wi� 1.

Figure 3. Predictions for the variable link tension coefficient, ε/ε0 = S2
2 in planar elongational flow as a

function of dimensionless elongation rate Wi for N = 100 (Z ≈ 33 entanglements) and various values
of ε′0. The thick lines give the analytical predictions of Equation (23) when ε′0 = 0 (dark blue) and 0.9
(dark yellow). The dependency of Γ1 on ε′0 determines their offsets and is relatively weak for any N.
For N > 2 the coefficient Γ1 decreases monotonically with increasing ε′, starting from Γ1 = 0.125 at
ε′ = 0. For any N ≥ 20 one has Γ1 ≈ 0.081 at ε′ = 0.9 (and Γ1 ≈ 0.078 at ε′ = 1).

The reduced steady-state first viscosity, η1(ε̇), as a function of the dimensionless elongation rate
is presented in Figure 4. All solid lines in this figure are determined by Equation (14) evaluated at
b = 1, i.e.,

η1(ε̇)
Gλ = 1

15 + 16
245 (∆2 − 8∆3)Wi2 + 32ε0

3375 (Γ1Wi)2 ,

η2(ε̇)
Gλ = 1

30 −
12
105 ∆1Wi + 8

245 (∆2 − 8∆3)Wi2 + 16ε0
3375 (Γ1Wi)2 . (b = 1)

(24)

with numerical prefactors ∆′js given by Equation (8). The corresponding predictions of the simplified
tumbling-snake model (ε′ = 0) read,

η1(ε̇)
Gλ = 1

15 −
17

14700 Wi2 + ε0
6750 Wi2

η2(ε̇)
Gλ = 1

30 −
1

350 Wi− 17
29400 Wi2 + ε0

13500 Wi2, (b = 1, ε′ = 0)
(25)
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where we have used the numerical values for ∆2 and ∆3 quoted after Equation (6), and Γ1 = 1/8 for
ε′ = 0.

Figure 4. Predictions for η1(ε̇)/Gλ for the tumbling snake model with variable ε as a function of
dimensionless elongation rate Wi for N = 100 and various values of the parameters ε0 and ε′0. (a) ε0 = 0,
various ε′0, (b) ε0 = 0.1, various ε′0, (c,d) ε′0 = 0.1, various ε0. The solid lines mark the predictions of the
small rate expansion, Equation (24), or Equation (25) for the case of ε′0 = 0. At large rates the viscosity
approaches the value given by Equation (26).

Figure 4a shows the variation of η1(ε̇) upon changing ε′0 (or ε′) while keeping N = 100 and ε = 0
fixed. The prediction at small elongation rates is independent of the value of ε′0 and approaches the
value 4η0. However, as Wi increases the first planar viscosity shear-thins after about Wi ≈ 1. This is
in disaccord with the predictions for the uniaxial elongation viscosity of the tumbling-snake model,
ηE, which seems to be passing from a maximum when ε′0 > 0 (see inset of Figure 2a of Ref. [39]).
However, both share the same power-law behavior at large elongation rates which is always equal to
−1 irrespective of the value of ε′0, as for the Doi & Edwards model [18].

In Figure 4b we show the same variation as in Figure 4a but now with ε0 = 0.1. Again, η1(ε̇)

follows Equation (24), or Equation (25) for the case of ε′0 = 0, at small elongation rates and, irrespective
of the value of ε′0, reaches monotonically the same value at large elongation rates. This value is simply
equal to

η1(∞)

Gλ
≡ lim

Wi→∞

η1(ε̇)

Gλ
=

ε0

6
⇒ η1(∞)

4η0
=

5ε0

2
(b < 3) (26)

where η0 = Gλ/60 is the zero rate shear viscosity for the case of variable ε, that vanishes at vanishing
rate. The reduced first planar viscosity thus drops (or rises) from a value of 1/15 at small rates to ε0/6
at infinitely large ones. For the scenario ε0 = 0.1 shown in Figure 4b, the reduced first planar viscosity
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reduces to η1(∞)/Gλ = 1/60. Equation (26) can be readily derived by noting that as Wi → ∞ then
limWi→∞ ε = ε0 as well as

lim
Wi→∞

〈u2
z − u2

x〉(1) = 1

lim
Wi→∞

〈u2
z − u2

x〉(2) = 1/6, (b < 3) (27)

lim
Wi→∞

Bzz − Bxx = Wi/6.

These expressions hold as long as κzz is the largest diagonal component of κ, which is the case for
any b < 3. Using similar arguments, η2(∞) = 0 for b < 3. Equation (27) are analogous to the case of
uniaxial elongation [39], apply independently of the value of ε′0, and originate from the dominance
of the third term in the stress tensor expression, Equation (1), at large elongation rates leading to a
leveling-off of the first viscosity at a value given by Equation (26). By further increasing the value of
the parameter ε0, for given ε′0 and N, the small elongation rate predictions are unaffected (Figure 4c,d).
At large Wi the curves always reach the value of the reduced η1(∞), Equation (26). When the value of
ε0 exceeds 2/5 then η1(∞) > 4η0 (Figure 4d). The corresponding predictions when the link tension
coefficient is considered constant, but non-vanishing, are given in Supplementary Figure S1.

From a visual comparison between planar η1(ε̇) and uniaxial ηE(ε̇) (see Figure 2 of Ref. [39])
we note that their predictions are similar. To better quantify the similarities between η1 and ηE we
compare the two in Figure 5 in a way so that they both have the same zero-rate prediction. We show
the comparison upon changing ε′0 whilst keeping N = 100 and ε = 0 (Figure 5a) or ε0 = 0.1 (Figure 5b)
fixed. We find that ηE(ε̇)/3Gλ is slightly exceeding η1(ε̇)/4Gλ in the intermediate flow regime,
starting at about Wi ≈ 3. Further, η1(ε̇)/4Gλ for ε′0 = 0.5 is basically coinciding with ηE(ε̇)/3Gλ for
ε′0 = 0. For the case ε0 > 0 in Figure 5b we note that at large elongation rates ηE(∞)/3Gλ reaches
a constant value larger than the corresponding one for planar elongation, η1(∞)/4Gλ, which stems
from the way the two viscosities were made dimensionless; if both were made dimensionless with Gλ

the corresponding value would be the same for both viscosities.

Figure 5. Comparison of the predictions for the first planar η1(ε̇)/4Gλ (black, blue, denoted as PEF in
the legends) and uniaxial ηE(ε̇)/3Gλ (red, pink, UEF) reduced viscosities as a function of dimensionless
elongation rate Wi for N = 100 and two values of the parameter ε′0. (a) ε0 = 0, (b) ε0 = 0.1.

The reduced steady-state second viscosity, η2(ε̇), as a function of the dimensionless elongation
rate is presented in Figure 6. As for η1(ε̇), the prediction at small elongation rates is independent
of the values of ε′0 and ε0 in accord with Equation (24), or Equation (25) for the case of ε′0 = 0, and
approaches the value 2η0. Also, like η1(ε̇), as Wi increases the second viscosity shear-thins after about
Wi ≈ 1. It can be noted that the predictions when ε0 is kept fixed (panels a and b) are almost the same
irrespective of the value of ε′0 and the power-law behavior at large elongation rates when ε = 0 is equal
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to −3/2 as for the Doi & Edwards model. In panels Figure 6c,d we note that as the ε0 increases under
fixed ε′0, η2(ε̇) increases after about Wi ≈ 20.

Figure 6. Predictions for η2(ε̇)/Gλ, analogous to Figure 4, as a function of dimensionless elongation
rate Wi for N = 100 and various values of the parameters ε0 and ε′0. (a) ε0 = 0, various ε′0, (b) ε0 = 0.1,
various ε′0, (c,d) ε′0 = 0.1, various ε0. The solid lines mark the predictions of the small rate expansion,
Equation (24), or Equation (25) for the case of ε′0 = 0.

6.2. Transient Planar Elongation

Next we inspect the transient link tension coefficient, ε/ε0, as a function of dimensionless time t/λ

for N = 100 and various values of the parameter ε′0 and dimensionless elongation rates Wi (Figure 7).
At early times, this coefficient follows 12

25 (ε̇t)2 according to Equation (19) with b = 1, irrespective of
Wi and ε′0, whereas at larger times it monotonically approaches the steady-state values of the squared
order parameter S2

2. A similar behavior was also noted for the transient behavior of the variable link
tension coefficient in uniaxial elongation [39].

Figure 7. Predictions for the link tension coefficient, ε(t)/ε0 as a function of dimensionless time for
N = 100 and various values of the parameter ε′0 and dimensionless elongation rate Wi. The thick
straight lines give the prediction of 12

25 (ε̇t)2 according to Equation (19) with b = 1.
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In Figure 8 we show the transient first viscosity η+
1 (ε̇, t) as a function of the dimensionless time

for various dimensionless elongation rates along with the linear viscoelastic prediction, that follows
from Equation (20) with b = 1,

η+1 (t)
Gλ = 4

(
1

60 −
1

15 ∆0(t)
)
= 2

5 [2(1− ε′) + ε′0]
t
λ + O

( t
λ

)2 ,

η+2 (t)
Gλ = 2

(
1

60 −
1

15 ∆0(t)
)
= 1

5 [2(1− ε′) + ε′0]
t
λ + O

( t
λ

)2 . (b = 1)
(28)

The first term on the right hand side provides the full dependency on time, the second the initial
slope. For all elongation rates we indeed notice from our Brownian dynamics results that as t→ 0 the
transient first viscosity η+

1 (ε̇, t)/Gλ increases with increasing ε′0, as suggested by the slope provided by
Equation (28). As was the case for the shear viscosity [34,38] and the uniaxial elongation viscosity [39],
by using the variable link tension coefficient ε = ε0S2

2 we have amended the problematic predictions
of the original tumbling-snake model, in which a constant link tension coefficient is considered,
according to which both limiting η+

1 (t)/Gλ and η+
2 (t)/Gλ approach a constant value, ε0/15 and

ε0/30, respectively, irrespective of the value of the parameter ε′0 and thus the mode, reptation versus
orientational diffusion. Additional Figures S3 and S4 are provided in Supplementary Section B. By
further increasing the elongation rate (Wi = 100) the transient first viscosity goes over the linear
viscoelastic prediction only when ε0 > 0, and reaches the steady-state value without reaching an
overshoot, independently of the value of the parameters ε′0 > 0 and ε0. We observed a similar trend in
the case of uniaxial η+

E (ε̇, t) [39]. Similarly for larger elongation rate (Wi = 1000) but now the curves
depart much sooner and more intensely from the linear viscoelastic prediction, just like η+

E (ε̇, t) does
depart from η+

E (t). The non-appearance of an undershoot in shearfree flows is attributed to the absence
of a rotational contribution to κ, and because the orientational diffusion of segments does therefore not
lead to any deterministic rotation. On the other hand, under shear the tumbling behavior of polymer
chains is not only due to the rotational component of κ, but triggered by the orientational diffusion
term, present for ε′0 > 0. It produces undershoots at large shear rates [34,38]. Overall, the predictions
for the transient first viscosity exhibit the same time-dependency with the uniaxial elongation viscosity
except at large times as they approach their steady-state values (Figure 9).

Finally, we investigate the transient second viscosity η+
2 (ε̇, t) as a function of the dimensionless

time for various dimensionless elongation rates along with the linear viscoelastic predictions given
by Equation (28) in Figure 10. Like η+

1 (ε̇, t), for all elongation rates and as t/λ → 0 the transient
second viscosity η+

2 (ε̇, t) increases with increasing ε′0, following Equation (28). Also, at small times
and irrespective of the elongation rate and the values of the parameters ε′0 and ε0, η+

2 (ε̇, t) follows the
linear viscoelastic prediction, Equation (28). It implies that the ratio between the two viscosities is two,
initially. The most important distinctions between the transient behavior of η+

1 (ε̇, t) and η+
2 (ε̇, t) are

the appearance of an overshoot, independently of the values of the parameters ε′0 and ε0, and the fact
that for ε0 > 0 and any ε′0 the curves are only slightly above the linear viscoelastic curve at small times.
As for η+

1 (ε̇, t), an undershoot is not predicted, as expected.
Finally, it should be noted that, as was the case for shear flow and UE, model predictions for

constant values of the parameters ε′0 and ε0 but with a different number of Kuhn segments N are found
to be identical, for both steady-state and transient quantities, for large values of N (N ≥ 10), since the
two viscosities were scaled with the modulus G and the relaxation time λ, both of which do depend
on N; thus, this comparison is not shown.
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Figure 8. Predictions for η+
1 (ε̇, t)/Gλ for the model with variable ε as a function of time for N = 100 and

various values of the parameter ε0 and the dimensionless elongation rate Wi for (a) ε′0 = 0, (b) ε′0 = 0.1,
(c) ε′0 = 0.5, and (d) ε′0 = 0.9. The solid black lines represent the linear viscoelastic results, Equation (28),
their initial slopes are given by the right hand side of this equation with ε′ = ε′0/(N − 1)2. For the
model with constant ε the transient viscosities do not vanish in the limit t/λ→ 0 (see Supplementary
Section B).

Figure 9. Comparison between the predictions for η+
1 (ε̇, t)/4Gλ (denoted as PEF in the legends) and

η+
E (ε̇, t)/3Gλ (UEF) as a function of dimensionless elongation rate Wi for N = 100 for the model with

variable link-tension coefficient ε. (a) ε′0 = 0, (b) ε′0 = 0.5.
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Figure 10. Predictions for η+
2 (ε̇, t)/Gλ, analogously to Figure 7 for η+

1 (ε̇, t)/Gλ, for the model
with variable ε as a function of time for N = 100 and various values of the parameter ε0 and the
dimensionless elongation rate Wi for (a) ε′0 = 0, (b) ε′0 = 0.1, (c) ε′0 = 0.5, and (d) ε′0 = 0.9. The solid
black lines represent the linear viscoelastic results, Equation (28). For the model with constant ε the
transient viscosities do not vanish in the limit t/λ→ 0 (see Supplementary Section B).

7. Conclusions

In this work, we discussed the features of the tumbling-snake model for concentrated solutions
and entangled polymer melts subjected to both steady-state and transient biaxial elongation, focussing
on planar elongation as an application of the more general framework. The model employs a variable
link tension coefficient, given by ε = ε0S2

2 [34,38], which, as for shear flow and uniaxial elongation,
has amended several shortcomings of a constant link tension coefficient originally suggested by
Bird et al. [33,37]. In particular, the two planar transient elongation viscosities η+

1,2(ε̇, t) do not approach
a finite value as t → 0 upon using the variable link tension coefficient. We have shown that the
predictions of the first planar viscosity η1 and the uniaxial elongation viscosity are similar with respect
to their transient and stationary behaviors, in accord with available experimental data [7]. On the other
hand, the steady-state second planar viscosity η2 always thins irrespective of the value of the ultimate
strength of the link-tension coefficient, ε0. Overall the second viscosity seems to share many features
with shear viscosity with respect to rate and time, except that η2, unlike the shear viscosity [34,38],
does not (and should not) exhibit an undershoot in the course of time after startup of flow.

As a concluding remark, the tumbling-snake model with variable link-tension coefficient has
been shown to provide a very adequate description of the available rheological measurements of
entangled polymer melts and concentrated polymer solutions when subjected to shear [34,35,38],
uniaxial elongation [39], and planar elongation. The model is tractable analytically at small and large
rates, that are unaccessible or difficult to access by numerical inspection, and for all intermediate rates
the model is solved conveniently by simple Brownian dynamics. Introducing further refinements,
such as contour length fluctuations (see e.g., [23,47,48] and references therein), convective constraint
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release [27–29], flow-induced alignment of chain ends [46,49], and chain stretch [25,50], the latter being
significant in strong elongation flows, could further improve the tumbling-snake’s model capacity to
quantitatively predict the rheological response of entangled polymer melts and concentrated polymer
solutions. As for our works preceding the present study, no such refinements were attempted to
present predictions of the tumbling-snake model for future reference. This includes our analytical
results for biaxial elongation in the case of purely one-dimensional diffusion, ε′0 = 0, or the transient
viscosities for a rigid dumbbell, as such results were apparently not available so far.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/10/3/329/s1,
Section A: Methodology to obtain the real spherical harmonics expansion of the single-link distribution function,
Section B: Results of the BD simulations when a constant link tension coefficient is employed (Figures S1–S4),
Figure S1: Steady-state first planar viscosity, Figure S2: Steady-state second planar viscosity, Figure S3: Transient
first planar viscosity, Figure S4: Transient second planar viscosity.
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