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Abstract

Background: In this paper, we modify our previously developed conjoint tumor-normal
cell model in order to make a distinction between tumor cells that are responsive to
chemotherapy and those that may show resistance.

Results: Using this newly developed core model, the evolution of three cell types:
normal, tumor, and drug-resistant tumor cells, is studied through a series of numerical
simulations. In addition, we illustrate critical factors that cause different dynamical patterns
for normal and tumor cells. Among these factors are the co-dependency of the
normal and tumor cells, the cells’ response mechanism to a single or multiple
chemotherapeutic treatment, the drug administration sequence, and the treatment
starting time.

Conclusion: The results provide us with a deeper understanding of the possible
evolution of normal, drug-responsive, and drug-resistant tumor cells during the cancer
progression, which may contribute to improving the therapeutic strategies.

Keywords: Cancer modeling, Cellular aging, Conjoint cell growth, Chemotherapy, Drug
resistance
Introduction
Assessing the evolution of cancer, in the presence of surrounding normal cells, is the

subject of many biomedical studies. Recently reported evidence strongly indicates that

the dynamics of tumor cells and the surrounding normal cells are not independent of

each other and may be mutually tuned [1-8]. Examination of the coupled population

dynamics of tumor and normal cell populations can potentially provide substantial

knowledge that may contribute to the identification of more effective therapeutic inter-

ventions, particularly in aging populations. Among the variety of research papers in

this field, many are based on the analysis of mathematical and computational models.

In many of these models, the growth of normal and tumor cells are considered to be

independent and are expressed by such functions as the Gompertz, the logistic, and

the exponential equations [9-13]. However, the mutual interaction of tumor cells with

surrounding normal cells, which was first mathematically introduced in a conjoint

model by Witten [14], could shed light on some of the complex patterns that can be

detected during cancer progression [15-17].

The interaction of tumor and normal cells is not the exclusive factor causing differ-

ent dynamical patterns during cancer progression, The interaction of cells with the
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host immune system, therapeutic agents such as chemotherapy, immune therapy, or

any other therapeutic interactions are additional factors which can influence the evolu-

tion patterns of the cell populations [18-33].

While researchers continuously improve cancer treatment strategies, one of the most

serious obstacles in cancer treatment are related to drug resistance, where the chemother-

apeutic treatments do not lead to the hoped for outcome. The issues related to the drug

resistance have been broadly studied from a variety of different perspectives [34-38].

This work aims to contribute to a deeper understanding of drug resistance effects on

cancer progression through the analysis of a new mathematical model and its concomi-

tant computational simulation for a coupled tumor-normal cell framework that is more

aligned with experimental evidence. To simulate the population evolution of our model,

we have used Mathematical V7.0. Model parameter values are estimated based on values

previously introduced in the literature and are given in Table 1 of this paper. Additionally,

the other parameters in some parts are varied in order to study the system’s evolution.

This paper is structured as follows: in The basic conjoint tumor-normal cell model

Section, we briefly review the normal-tumor cell conjoint model. In Conjoint core

model in a chemo-resistance setting section, we introduce the drug resistance assump-

tions and subsequently modify the conjoint model to make a distinction between

tumor-responsive and tumor-resistant cells. In Chemo-treatment strategies in a resist-

ance setting section, we include the effects of chemotherapeutic treatment to the modi-

fied conjoint model and we examine and discuss the dynamics of the system. We

conclude and examine future research directions.

The basic conjoint tumor-normal cell model

Feizabadi & Witten [28] extended the earlier work of Witten [17] proposing the follow-

ing generalized model to describe the inter-connection between normal and tumor

cells. The core model equation system is given by:

dT tð Þ
dt

¼ rTT 1−
T
KT

� �
þ f T Nð Þ 1að Þ

dN tð Þ
dt

¼ rNN 1−
N
KN

� �
þ f N Tð Þ 1bð Þ
Table 1 Table of parameters: parameters used in simulations have been estimated based
on the values introduced in following sources

Parameter Units Description Estimated value Reference source

rT Time−1 Growth rate for the drug sensitive tumor cells 0.3 [31]

KT Cells Carrying capacity of tumor cells 1.2×106 [31]

β Time−1 Normal-tumor cell interaction rate 1 [31]

ρ0 Cells Interaction clearance term 1 [31]

ρ1 Cells Half-saturation for interaction 1000 [31]

rN Time−1 Growth rate for the normal cells 0.4 [31]

KN Cells Carrying capacity of normal cells 106 [31]

κ Time−1 Tumor-normal cell interaction rate 0–0.028 [31]

T* Cells Critical size of tumor 3×105 [31]



Feizabadi and Witten Theoretical Biology and Medical Modelling 2015, 12:3 Page 3 of 11
http://www.tbiomed.com/content/12/1/3
where T(t), N(t), KT, KN, rT, rN are respectively the total number of tumor cells at time

t, the total number of normal cells at time t, the carrying capacity for the tumor cells,

the carrying capacity for the normal cells, and the per capita growth rate for the tumor

and normal cells, and fT(N), fN(T) are the functional rules relating normal-to-tumor

and tumor-to-normal interaction respectively [39]. Witten and Feizabadi [28] have

shown that one possible set of coupled, nonlinear equations for the tumor-normal cell

system may be expressed follows:

dT tð Þ
dt

¼ rTT 1−
T
KT

� �
−β

ρ0N
ρ1 þ N

� �
; T 0ð Þ ¼ T 0 2að Þ

dN tð Þ
dt

¼ rNN 1−
N
KN

� �
þ κT 1−

T
T �

� �
; N 0ð Þ ¼ N0 2bð Þ

where T, N, KT, KN, rT, rN are previously defined. In each equation, the second terms

represent the interaction between tumor and normal cells. Here, β and κ have the units

of 1/time. Also, for consistency, ρ0 and ρ1 have units of cells. T* is the critical size of

the tumor and as the size of tumor exceeds the critical size, the normal cells growth

rate decreases. Figure 1(a) illustrates the time evolution of normal and tumor cells in a

hypothetical environment in which they grow independently (uncoupled) from one an-

other, and where each cell population follows a Gompertzian-like behavior. In this fig-

ure the growth parameters are considered to be identical for both normal and tumor

cells. In Figure 1(b) and 1(c), the conjoint growth is added to the model. As can be seen

by the different parameter values, the growth of the normal and tumor cells can be af-

fected as a result of the cellular interactions. The ability of tumor cells to inhibit the

normal cell’s growth increases as the population of tumor cells passes the critical value

T. In Figure 1(c) the growth of tumor cells is delayed due to the influence of the sur-

rounding normal cells introduced by a higher value for the interaction parameter β.

Figure 1(d) illustrates the case in which the normal cells have died out as a result of the

strong interaction effect from the tumor cells. These results are not surprising as this is

essentially a competitive exclusion model.

In the next portion of the paper we consider a modified conjoint model in which we

make a distinction between the group of tumor cells that are responsive to one type of

chemotherapeutic agent and those which are resistant to that same chemotherapeutic

agent.

Mathematical models and results
Conjoint core model in a chemo-resistance setting

One of the ongoing challenges to maximizing chemotherapeutic success in cancer

treatment is the long-standing challenge of tumor cell resistance to single or multiple

drug cocktails [40]. This mechanism, known as chemo-resistance, is complex and de-

pends upon many factors including but not limited to the specific drug, specific tumor,

or the specific host’s defense mechanism [41]. Coupled with chemo-resistance is the

challenge of age-related sensitivity or insensitivity to various drug cocktails. Thus, a

dose that might not be lethal in a 20 year-old patient could well be lethal in a 60 year-

old patient.

Drug resistance is classified into three major categories. The first category is associ-

ated with pharmacologic resistance or when the drug cannot effectively reach the
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Figure 1 Blue curve: Evolution of normal cells. Red curve: Evolution of tumor cells. In this figure
the blue curve illustrates the evolution of the normal cell population and the red curve illustrates the
evolution of tumor cell population. The horizontal dashed line represents the magnitude of the critical
population of tumor cells T*; a) In this figure, the normal and the tumor cells grow, uncoupled following
a Gompertzian law. KT = KN = 1.1*106; rT = 0.4; rn = 0.4;T*C = 3*105; b) In this figure, the normal and the
tumor cells grow conjointly using the following parameter values β = 1;ρ0 = 1;ρ1 = 1000; κ =0.028. In this
case, the tumor cells can now suppress the growth behavior of normal cells. The population of the
normal cells declines as the population magnitude of the tumor cells passes the critical value of
T*C = 3*105 (the horizontal dashed line). The inhibition time in which the normal cells begin to decrease is
approximately t = 30 (unit of time); c) β = 50. In this simulation the role of normal cells on the growth of
tumor cells is significantly increased. As can be seen, the growth of tumor cells starts with a delay. As
compared with the Figure 1b, the shrinkage starts at almost t = 40. Therefore, the normal cells maintain a
higher population for a longer time. Figure 1d, expresses the evolution of normal and tumor cells when
κ =0.039, β = 1. This time, the interaction effect of tumor cells on normal cells is increased. Under this set
of simulation conditions, the population of normal cells goes to minimum value and they die out
of system.
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tumor site due to insufficient pharmo-kinetic properties. The second category is rooted

in the biochemistry of the tumor cell, for example when the drugs are not active at the

tumor cell sites. The third category is when chemo-resistance results from genetic mu-

tation of the tumor cells [42,43].

In order to overcome drug resistance, we need to improve treatment efficacy by bet-

ter understanding the resistance mechanisms and their effect on the cancer progres-

sion. This is a complex challenge and, so far has remained beyond traditional clinical

and experimental examination. The complexity of the problem has led investigators to

further develop their understanding using modeling and simulation methods. In fact,

this challenge has been the subject of many theoretical and computational studies

[44-51]. In the upcoming section of the paper we focus on this problem by introducing

a chemo-resistant tumor cell component to our model. We modify the model as

follows.

First, we rely on reported evidence indicating that metastatic tumors with larger sizes

are more likely to show resistance to chemotherapeutic drugs [52,53]. Therefore, the



Feizabadi and Witten Theoretical Biology and Medical Modelling 2015, 12:3 Page 5 of 11
http://www.tbiomed.com/content/12/1/3
effect of normal cells in reducing the large population of tumor cells is not significant.

Consequently, we have assumed that the second term is equation 2a is ignorable. For

the purposes of discussion, we have assumed that the drug resistant tumor cells are

created as a result of tumor cell mutation. They become resistant tumor cells with a

mutation rate μ [42]. Further, we assume that the drug resistant tumor cells also grow

under the logistic growth law where the population growth rate, rR, is modified by the

density dependent term associated to the total number of tumor cells. In our model, KR

is the carrying capacity for the drug resistant tumor cells. Lastly, we remember that the

population of the normal cells is controlled by the tumor cell population. Combining

all of these assumptions along with our earlier model equations, we obtain the follow-

ing new equation system:

dT tð Þ
dt

¼ rTT 1−
T þ TR

KT

� �
−μT tð Þ; T 0ð Þ ¼ T0 3að Þ

dTR tð Þ
dt

¼ rRTR 1−
T þ TR

KR

� �
þ μT tð Þ; TR 0ð Þ ¼ TR0 3bð Þ

dN tð Þ
dt

¼ rNN 1−
N
KN

� �
þ κ T þ TRð Þ 1−

T þ TR

T �

� �
: N 0ð Þ ¼ N0 3cð Þ

The behavior of the normal, drug sensitive tumor, and drug resistant tumor cells is
simulated in Figure 2. Understanding the evolution of each component becomes more

critical in connection with the treatment of the system with chemotherapeutic agents

that will be discussed in the next section.

In the drug resistance model, as the population of total tumor cells which now in-

cludes both the responsive and the resistant tumor cells, passes the critical value T* the

normal cell population decreases in number. In Figure 2(a) the growth rate of both the

drug responsive and the resistant tumor cells are considered to be identical. In this case

the population of the resistant tumor cells is larger due to the fact that mutation of re-

sponsive tumor cells continually decreases the population of the responsive tumor cell

population and subsequently increases the size of the resistant tumor cell population.

In Figure 2(b), the growth rate of responsive tumor cells is higher than that of the re-

sistant tumor cells. Here, we can see that for a period of time, the population of the re-

sponsive tumor cell population is larger. However, ultimately the population of the

drug resistant tumor cells becomes higher than that of the tumor responsive cells. In

Figure 2(c), the tumor-normal cell coupling coefficient is increased slightly. Under this

new condition, the population of normal cells has become smaller than the critical

value, T* = 5*105. Therefore, the tumor cells overwhelm the normal cells and the nor-

mal cells die out of the system faster than before, In addition, the population of the

drug resistant tumor cells continues to grow. We next consider the effect of adding a

chemotherapeutic agent to our system.

Chemo-treatment strategies in a resistance setting

The conjoint model, in the presence of the chemo-resistant tumor cells, may also be

modified to consider the introduction of chemotherapeutic agents. To systematically

investigate the evolution of the cells, we have simulated the system’s dynamics under

the following conditions. We first assume that due to the drug resistance, the first che-

motherapeutic agent introduced to the system has a cytotoxic effect only upon the
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Figure 2 The evolution of normal cells and tumor cells in a chemo-resistance setting. In this figure
the blue curve illustrates the evolution of normal cell population, red curve illustrates the evolution of the
drug responsive tumor cell population, and the purple curve illustrates the evolution of the drug resistant
tumor cell population. The horizontal dashed line represents the magnitude of the critical population of
tumor cells, T*. a) In this figure, normal and tumor cell populations grow in a coupled setting where the
parameter values are given by. KT = KN = KR = 106; rT = rr = 0.25; rn = 0.4; T*C = 5*105; κ = 0.124; μ = 5*10−3. Due
to mutation and growth, the population of drug resistant tumor cells is higher than that of the drug
sensitive tumor. Normal cell numbers decrease as the total number of tumor cells exceed the magnitude of
the critical tumor cell population. b) In this figure, rT = 0.25; rr = 0.2. Here, the population of drug responsive
tumor cells is higher at the beginning of the developmental curve. However, at approximately t = 160 days,
the system contains a higher population of drug resistance cells. c) In this figure, κ = 0.126, rT = 0.25; rr = 0.2.
Using this set of parameters we find that the population of normal cells has become smaller that critical
value of tumor cells. In such a case the normal cells die out of the system.
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drug responsive tumor cells, T. Due to the effect of this toxicity, the population of

tumor cells decreases following an interaction with this drug. Secondly, we have simu-

lated the dynamics of the system under a combination therapy, where the second
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chemotherapeutic agent is effective only on the drug resistant tumor cells, TR. Finally,

the effects of the drug cocktail are studied when the time of drug administration is

varied.

As suggested by Gardner [54] and used in other studies [29,33], the drug interaction

may be structured as aϕ(1 − e−MC)ϕ. Here, φ is the cell population number of the three

types of cells: T, TR, N. The parameter C is the concentration of the drug at the site,

M is the pharmacokinetic factor, and aφ is the response factor. The function F(C) = aϕ
(1 − e−MC) is the fraction cell kill for a given amount of drug “C”. In the presence of
b)a)

d)c)

f)e)
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Figure 3 The evolution of normal and tumor cells during the phase of therapy in a chemo-resistance
setting. In this figure the blue, red, and purple curves illustrate the evolution of the normal population, the drug
responsive tumor cell population, and the drug resistant tumor cell population respectively. a) The behavior of
the coupled normal-tumor cells in the absence of drug resistant tumor cells and with no chemotherapy
is simulated when KT = KN = 106, rT = 0.25 rn = 0.5, κ = 0.124, T*C = 5*105. b) The conjoint normal-tumor cells
are now simulated in the presence of an anti-tumor drug. The fraction killing rate is considered to be
constant with the value of a T (1-e

-MC) = 0.1, and the treatment is started at t = 50 days. It is assumed that
the administered drug has no effect on normal cells; aN (1-e-MC) = 0. c) the drug resistance conjoint
model in which the tumor cells are categorized either as drug responsive or drug resistant is simulated
when KT = KN = KR = 1*106, rT = 0.25 rn = 0.5, rR = 0.1, κ = 0.124, T*C = 5*105, μ = 10−3. d) The three component
model is simulated as the system interacts with an anti-tumor drug effective only on the drug responsive tumor
cells, aT (1-e

-MC) = 0.1 at t = 50 days. e) In this figure, the dynamics of the three-component is simulated where
the system is treated with two distinct drugs, one effective only on drug responsive tumor cells and one on
the drug resistant tumor cells when aT (1-e

-MC) = 0.1 and aR (1-e
-MC) = 0.02 and both treatments are started at

t = 50. f) A similar treatment to that of Figure e is simulated at t = 5 days.



Feizabadi and Witten Theoretical Biology and Medical Modelling 2015, 12:3 Page 8 of 11
http://www.tbiomed.com/content/12/1/3
the chemotherapeutic agents, the previous mutation model may now be modified as

follows:

dT tð Þ
dt

¼ rTT 1−
T þ TR

KT

� �
−μT tð Þ−aT 1−e−MC

� �
T ; ; T 0ð Þ ¼ T0 4að Þ

dTR tð Þ
dt

¼ rRTR 1−
T þ TR

KR

� �
þ μT tð Þ−aR 1−e−MC

� �
TR; ; TR 0ð Þ ¼ TR0 4bð Þ

dN tð Þ
dt

¼ rNN 1−
N
KN

� �
þ κ T þ TRð Þ 1−

T þ TR

T�

� �
−aN 1−e−MC

� �
N : N 0ð Þ ¼ N0 4cð Þ

In the first two simulations, Figure 3(a,b), the conjoint tumor-normal cell population

model is simulated where there is no mutation and hence no resistant tumor cell popu-

lation. In a drug-free system, the coupling effect and the decrease in of normal cells

can be observed as the tumor cells exceed the critical value T*. This same system is

then simulated when the tumor cells interact with anti-tumor drugs and the toxicity of

the drug kills the tumor cells. As the size of tumor cells decrease, the normal cells re-

cover and subsequently return to a higher population number. In Figure 3(a-f ), the

number of normal cells increases slightly beyond the carrying capacity (KR = 1*106). At

this point which, for instance, can be seen around t = 50 in Figure 2(b), the tumor cell

population is less than the magnitude of the critical population, T*; therefore, the sec-

ond term of equation 4 is positive and slightly increases the population of normal cells.

In fact, normal cells react to the presence of small groups of tumor cells in the system.

In Figure 3(c), tumor cells we return to the two population tumor cell model; resist-

ant and non-resistant tumor cells. The appearance of the drug resistant tumor cells at

t ~ 50 days and their subsequent growth is illustrated in this figure. Given the mutation

rate of μ = 10−3, the population of drug responsive tumor cells decreases. However, the

population of drug resistant tumor cells increases over time as there are no chemother-

apeutic agents that target this population.

Figure 3(d) illustrates the dynamics of the cell populations when the system interacts

with an anti-tumor drug which is effective only on the drug responsive tumor cells.

The drug is administered at t = 50 days. The drug responsive tumor cells decrease and

die out of the system. Due to the chemotherapeutic treatment, the total number of

tumor cells falls below the critical size of tumor cells. Therefore, the normal cells main-

tain higher population for a period of time. However, mutated drug-resistant tumor

cells increase and their population will eventually pass the critical value. As a result,

the normal cells start to decrease again. This kind of chemotherapeutic intervention

can create a delay in possible organ failure by maintaining a higher number of normal

cells for a period of time.

In the next simulation, we introduce the combination therapy protocol. A combin-

ation therapy is considered a more effective treatment strategy with cancers that show

resistance to some of the chemotherapeutic agents. In this mode of intervention, while

the tumor is treated by the recommended chemotherapeutic drug protocol, other che-

motherapeutic drugs are also used in order to target those tumor cells that have devel-

oped defense mechanisms against the first type of chemotherapeutic agent. In Figure 3

(e) illustrate the dynamics of the system under a multiple therapeutic protocol. In this

simulation, both drugs are administered at the same time, t = 50. A lower dosage and

therefore lower toxicity is considered for the anti-resistant tumor cell population. This

mode of intervention was chosen due to the fact that, at the start of chemotherapy, drug
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responsive tumor cells have a higher population. Therefore, a higher drug dosage was

considered for the non-resistant population. As can be seen in Figure 3(e), the normal ap-

pear, at first, to be stimulated by the tumor cell population growth but eventually return

to their carrying capacity value while the drug sensitive tumor cell population dies out of

the system as a result of interaction with the anti-cancer drug. In this simulation, due to

the toxicity of the second type of the introduced anti-cancer drug, the maximum popula-

tion of the drug resistant tumor cells is much smaller as compared to a case in which the

tumor is treated with only a single chemotheraputic drug (Figure 3(d)).

In Figure 3(f ), both treatments are supposed to be started simultaneously at an earlier

time; t = 5 days. As can be seen in this figure, not only have the normal cells reached

their carrying capacity, but also the growth of tumor cells has been delayed.
Conclusions
This work, a modification of our previous work, focuses on examining the dynamics of in-

terconnected normal and tumor cells treated with chemotherapeutic agents, when some of

the tumor cells show chemo-resistance. We examined these dynamics using a collection of

different simulation parameters. Simulations demonstrated that in a conjoint system, nor-

mal cells enter a phase of diminished growth as the total number of tumor cells passes the

magnitude of a critical tumor cell population . To control the population of tumor cells

and the decrease of the population of normal cells, which may lead to organ failure, tumor

cells can be treated with chemotherapeutic agents. In order to overcome the drug resist-

ance, implementing a combination treatment is recommended. In a combination thera-

peutic approach, the dosage and the time of chemotherapy introduction play a critical role

in minimizing the population of tumor cells, while maintaining the maximum population

of the normal cells. According to our simulations, starting the combinatory therapy in the

early stage of the cancer progression may lead to better control of the cancer progression

as this treatment protocol can minimize the tumor cell population.

In our simulations, the growth rate and mutation rate of the cells are two other import-

ant factors that can potentially cause different evolution patterns. Another factor that

plays a significant role in the system dynamics is the dosage of the anti-tumor drugs. It is

more probable that a better response is achieved by increasing the drug dosage. However,

since a majority of the chemotherapeutic drugs are toxic to normal cells and the host im-

mune system, Consequently, the dosage and the level of toxicity must be carefully consid-

ered in order to minimize the potential damage to normal cells and to the patient.

In addition, damages that can be produced by chemotherapy are significant in the

presence of an impaired immune system. The lack of inclusion of the effects of the im-

mune system in our model is one of its limitations. Therefore, considering how the

interaction of tumor cells with the host immune system may affect tumor progression

are elements that can potentially be included in our model to achieve outcomes more

aligned with clinical and biological observations.
Methods
Computational calculations

All calculations were executed on an PC using Mathematica v7.0. Code is available

from the first author.
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