
Ablation of NMDA Receptors Enhances the Excitability of
Hippocampal CA3 Neurons
Fumiaki Fukushima1, Kazuhito Nakao1, Toru Shinoe2¤a, Masahiro Fukaya3, Shin-ichi Muramatsu4, Kenji

Sakimura5, Hirotaka Kataoka1, Hisashi Mori1¤b, Masahiko Watanabe3, Toshiya Manabe2,6, Masayoshi

Mishina1*

1 Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan, 2 Division of Neuronal Network, Institute of

Medical Science, University of Tokyo, Tokyo, Japan, 3 Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan, 4 Division of Neurology,

Department of Medicine, Jichi Medical University, Tochigi, Japan, 5 Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan,

6 CREST, JST, Kawaguchi, Japan

Abstract

Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory
formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent
synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in
hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the
hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking
NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently,
mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA), suggesting enhanced
synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic
transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the
NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA
receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG
spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced
seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of
the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.
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Introduction

Hippocampal CA3 pyramidal neurons form abundant recurrent

connections with other CA3 neurons [1,2]. The activity of single

pyramidal neurons spreads to other CA3 neurons and this

facilitates the rapid synchronization of action-potential firing in

CA3 neurons [3]. Synchronized discharges of hippocampal CA3

neurons are supposed to underlie network oscillations [4], memory

consolidation [5] and seizure generation [6]. Physiological sharp

wave (SPW) activity that occurs during slow-wave sleep and

behavioral immobility is dependent on synchronous discharges by

population of CA3 pyramidal neurons [7,8]. Synchronized CA3

activity may also contribute to the pathological EEG pattern,

known as an interictal spike, which indicates a propensity for

temporal lobe seizures [6].

NMDA receptors play key roles in synaptic plasticity and

memory [9]. In the CA3 network, NMDA receptors are abundant

at the commissural/associational synapses but scarce at the mossy

fiber synapses [10]. Thus, the CA3 recurrent network is under the

control of NMDA receptors. NMDA receptors in the hippocampal

CA3 region are implied in rapid acquisition and recall of

associative memory as well as paired associate learning [11–13].

On the other hand, studies with hippocampal slices showed that

the synchronous network activity induces NMDA receptor-

dependent LTP of CA3 recurrent synapses [14] and that stimuli

that induced NMDA receptor-dependent LTP in the CA3 region

generated sharp wave-like synchronous network activity [15].

These in vitro observations raised the hypothesis that the NMDA

receptor-mediated LTP contributes to the generation of synchro-

nous network activity. Here, we generated hippocampal CA3

pyramidal neuron-specific NMDA receptor mutant mice on the

pure C57BL/6N genetic background. The ablation of hippocam-

pal CA3 NMDA receptors resulted in the enhancement of the

susceptibility to kainate-induced seizure and the emergence of

characteristic large EEG spikes. We also showed that the virus-

mediated ablation of hippocampal CA3 NMDA receptors in the
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adult mice generated characteristic large EEG spikes and that

pharmacological blockade of CA3 NMDA receptors enhanced the

susceptibility to kainate-induced seizures. These results raise an

intriguing possibility that NMDA receptors may control negatively

the excitability of the hippocampal CA3 recurrent network as a

whole in vivo.

Methods

Generation of mice
Genomic DNA carrying the exon 11 to 22 of the GluRf1 gene

was isolated by screening a bacterial artificial chromosome (BAC)

library prepared from the C57BL/6 strain (Incyte Genomics) with

the 2.2 kb-EcoRI fragment from pBKSAf1 [16]. The 13.3-kb

EcoRI-XbaI fragment of the BAC clone was used for construction

of the targeting vector. The loxP site was inserted into the BamHI

site between exon 18 and 19, and the 1.8-kb DNA fragment

carrying the loxP sequence and Pgk-1 promoter-driven neomycin

phosphotransferase gene (neo) flanked by two Flp recognition target

(frt) sites into the SpeI site between exon 20 and 21. Endogenous

EcoRI site at the 59 end of 13.3-kb EcoRI-XbaI genomic fragment

was replaced with NotI site and an exogenous EcoRI site was

inserted between the second loxP site and neo gene. The targeting

vector pf1TV was composed of the 14.8-kb NotI-XbaI fragment,

MC1 promoter-driven diphteria toxin gene derived from

pMC1DTpA and pBluescript II SK(+) [17]. The targeting vector

was linearized by NotI and electroporated into ES cells derived

from the C57BL/6N strain [18,19]. Recombinant clones were

identified by Southern blot analysis of EcoRI-digested genomic

DNA using 284-bp fragment amplified with primers 59-ATAGA-

GAAAGACATGGGGC-39 and 59-TGCTACTGTGCAG-

GAAGTG-39 from pf1TV, the 0.6 kb PstI fragment from pLFNeo

[20], and the 1.1-kb XhoI–EcoRI fragment from the BAC clone as

59 inner, neo, and 39 outer probes, respectively. The GluRf1flox

allele was also identified by PCR using primers 59-GCAGT-

GAGGCTCACACAGGCCTGAAGACTA-39 and 59-AGT-

GAACTCGGATCCTGACCATTGGCCACT-39. Chimeric mice

production and elimination of the neo gene from the genome

through Flp/frt-mediated excision were carried out essentially as

described [18–20].

GluRc1-Cre mice were obtained by inserting the cre gene in the

translational initiation site of the GluRc1 gene in frame using ES

cells derived from the C57BL/6N strain [19]. The 1.8-kb DNA

fragment, which carried the polyadenylation signal sequence and

pgk-1 promoter-driven neo gene flanked by two frt sites [20], was

inserted into the downstream of the cre gene. GluRf1+/flox mice

were crossed with GluRc1-Cre mice to yield GluRc1+/cre;

GluRf1flox/flox mice. The GluRc1+/cre allele was identified by

PCR using primers 59-AACTGCAGTCTTGCATGCTCTCTG-

GAGCC-39, 59-GGAGCGGAGACACGGGGCAT-39 and 59-

TTGCCCCTGTTTCACTATCC-39. Cre recombinase-mediat-

ed NMDA receptor ablation is hippocampal CA3 pyramidal

neuron-specific in GluRc1+/cre; GluRf1flox/flox mice (Fig. 1). It is

unknown why the GluRc1 promoter-driven Cre expression does

not exactly follow the expression pattern of GluRc1 [21]. The

insertion of the pgk-1 promoter-driven neo gene and the

polyadenylation signal sequence together may affect the Cre

expression pattern since the elimination of the neo gene through

Flp-mediated recombination altered the expression pattern.

All animal procedures were approved by the Animal Care and

the Use Committee of Graduate School of Medicine, the

University of Tokyo (Approval # 1721T062). Mice were fed ad

libitum with standard laboratory chow and water in standard

animal cages under a 12 h light/dark cycle.

AAV-Cre vector
We employed AAV to deliver Cre recombinase since AAV is

safe, non-pathogenic, non-inflammatory and extremely stable

stable [22,23]. AAV-Cre or AAV-EGFP vector contains an

expression cassette consisting of a human cytomegalovirus

immediate-early promoter (CMV promoter), followed by the

human growth hormone first intron, cDNA of Cre recombinase

with a nuclear localization signal or the enhanced green

fluorescence protein (EGFP), and simian virus 40 polyadenylation

signal sequence (SV40 polyA), between the inverted terminal

repeats (ITR) of the AAV-2 genome. The two helper plasmids,

pAAV-RC and pHelper (Agilent Technologies, Santa Clara,

California), harbor the AAV rep and cap genes, and the E2A, E4,

and VA RNA genes of the adenovirus genome, respectively.

HEK293 cells were cotransfected by the calcium phosphate

coprecipitation method with the vector plasmid, pAAV-RC, and

pHelper. AAV vectors were then harvested and purified by two

sequential continuous iodoxale ultracentrifugations. The vector

titer was determined by quantitative DNA dot-blot hybridization

or quantitative PCR of DNase-I-treated vector stocks. Before

administration, AAV vectors were diluted in phosphate-buffered

saline to 5–861010 genome copies/ml. A glass micropipette was

inserted into the hippocampal CA3 region of ketamine-anesthe-

tized mice (AP, L, V = 21.2, 61.2, +2.0; 21.7, 62.0, +2.1; 22.2,

62.5, +2.4; 22.7, 63.2, +3.5; 23.2, 62.5, +4.0). Two minutes

after the insertion, 1.0 ml of a virus solution or vehicle was injected

at a constant flow rate of 16.6 nl/min, and the glass micropipette

was left in this configuration for an additional 2 min, to prevent

reflux of the injected material along the injection track, before

being slowly retracted. AAV spread 0.5–0.7 mm both rostrodor-

sally and laterally. For every injected animal, the limit of the

infected region was verified by immunohistochemistry for Cre

recombinase or GluRf1.

Immunological analysis
Immunohistochemistry was done as described [24] using

antibodies against VGluT2 (guinea pig) [25], Calbindin (rabbit)

[26], PSD-95 (rabbit) [27], GluRa1 (rabbit) [28], GAD (guinea

pig) [29], and Cre recombinase (1:1000; rabbit; Novagen).

Immunobloting analyses in whole-brain homogenate were carried

out using antibodies for GluRf1 (rabbit) [30], and neuron-specific

enolase (1:4000; Chemicon) and chemiluminescense (Amersham

Biosciences).

Golgi staining
Coronal brain sections (2 mm) were immersed for 4 days in a

solution composed of 5% glutaraldehyde (Wako) and 2%

K2Cr2O7 (Sigma) and then transferred to a 0.75% solution of

AgNO3 (Sigma) for further 4 days. The treated brain was

sectioned (100 mm), dehydrated and mounted on glass slides.

Morphology of AAV-EGFP infected CA3 neurons
AAV-EGFP vector was delivered into the hippocampal CA3

region of ketamine-anesthetized control and mutant mice of 8

weeks old. Fourteen days later, fixed coronal brain sections

(150 mm) were prepared. Neurons were examined with a Leica

SP-5 confocal laser scanning microscope. Optical sections were

collected at intervals of 0.15 mm and averaged 16 times using a

1006objective (N.A. 1.4). The distance between axonal varicos-

ities was measured from 50 mm-portions of CA3 axons within the

CA3 stratum radiatum [31]. For spine analysis, only spines on

clearly visible tertiary apical and basal branches were imaged.

During the quantitation of the spine density, putative spines in the
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three-dimensional reconstructed image were compared with both

the unprocessed, individual optical sections and with a ‘movie’, in

which segments of the three-dimensional reconstruction were

rotated around the dendritic axis (IMARIS, Bitplane). For

dendritic analysis, neurons were imaged on a Leica SP-5 with a

406objective (N.A. 0.8). Optical sections were collected at

intervals of 2 mm and averaged 8 times. The topographical order

of the dendritic tree was made using the semi-automated program

FilamentTracer (Bitplane). Analysis of dendritic topology included

dendritic branches up to the third order. Analysis of dendritic

spines was performed in rather linear, apical secondary and

tertiary dendrites.

In situ hybridization
Isotopic detection of mRNAs was performed as described [32].

All samples were subjected to hybridization analysis at the same

time and sections were exposed to a single x-ray film for

measurement of relative optical density with IP Lab software.

The relative expression levels of the mRNAs in the hippocampal

CA3 region were calculated using the ratio of the density in the

CA3 region to that of the CA1 region, except that the GluRc1

mRNA density in the CA3 region was directly compared between

control and mutant mice. Double in situ hybridization was

performed with mixture of [33P]dATP-labeled oligonucleotide

probe for GluRf1 (complementary to residues 2583–2627,

GenBank accession No. D10028) and digoxigenin (DIG)-labeled

cRNA probe for GAD67 (complementary to residues 802–1617,

No. A28072) as described [33]. Hybridization signals were

visualized with nuclear track emulsion (NTB-2, Kodak) and

fluorescent substrate (HNPP Fluorescent Detection Set, Boehrin-

ger-Mannheim), respectively. Sections were counterstained with

NeuroTrace 500/525 green (Molecular Probes).

Kainate-induced seizure
Kainate was intraperitoneally administered to mice, and they

were monitored for 1 h to determine whether they exhibited

seizures with generalized tonic-clonic activity accompanying the

loss of postural tone. Mice were then fixed under deep

pentobarbital anesthesia for immunohistochemical analysis with

the c-Fos antibody (Oncogene) 2 h after kainate administration.

Electrophysiology
Transverse hippocampal slices (400 mm thick) were superfused

with an artificial cerebrospinal fluid (aCSF) containing (in mM):

119 NaCl, 2.5 KCl, 2.5 CaCl2, 1.3 MgSO4, 1 NaH2PO4, 26.2

NaHCO3, and 11 glucose, which was equilibrated with 95% O2/

5% CO2. Synaptic responses were evoked via a bipolar stimulating

electrode placed in the CA3 stratum radiatum and whole-cell

recordings were made from CA3 pyramidal cells using the blind-

patch technique. The stimulus strength was set at the beginning of

each experiment so that the average amplitude of synaptic

responses in the absence of any antagonists is around 200 pA at

a holding potential of 280 mV. The AMPA receptor-mediated

excitatory postsynaptic current (AMPA-EPSC) was isolated by

subtracting the synaptic response in the presence of 10 mM 6-

cyano-7-nitroquinoxaline-2,3-dione (CNQX) from that in its

absence. The NMDA receptor-mediated excitatory postsynaptic

current (NMDA-EPSC) was recorded at +50 mV in the presence

of 10 mM CNQX and 0.1 mM picrotoxin. The GABAA receptor-

mediated inhibitory postsynaptic current (GABAA-IPSC) was

recorded at 0 mV in the presence of 10 mM CNQX and 25 mM

D-2-amino-5-phosphonovaleric acid (D-APV). The stimulus

strength was constant throughout each experiment. The slow

hyperpolarizing currents induced by high-frequency stimulation

(50 Hz, 40 pulses) were recorded at 220 mV in the presence of

0.1 mM picrotoxin as described previously [34]. Patch electrodes

were filled with an internal solution containing (in mM): 140

potassium methansulfonate, 8 NaCl, 10 HEPES, 2 MgATP, and

0.3 Na3-GTP (pH 7.2 adjusted with KOH, osmolarity 290 to 300

mOsm). For pharmacological experiments, 10 mM BAPTA was

added in the pipette solution or potassium methansulfonate in the

pipette solution was replaced by cesium methansulfonate. Voltage-

clamped responses were recorded with an Axopatch 1D amplifier

(Axon Instruments, Union City, CA, USA) and the signal was

filtered at 1 kHz, digitized at 2.5 kHz, and stored on a personal

computer.

Field potential recording in vivo
Urethane-anesthetized mice (1 g/kg body weight, i.p.) were

fixed in a stereotaxic head holder (Narishige). For the recording of

local field potentials, a tungsten electrode (2–5 MV, Frederick

Haer) or a silicon probe (16 recoding sites with 50 mm separation,

NeuroNexus Technologies) was inserted into the hippocampal

CA3 region (AP = 22.0 mm from bregma, L = 62.3 mm from

midline, and V = +2.0 mm ventral to dura), the hippocampal CA1

region (AP = 22.0, L = 61.0, V = +1.2) or the dentate gyrus

(AP = 22.0, L = 61.0, V = +2.0). Signals were amplified (MEG-

1200, Nihon Kohden), band-pass filtered (0.08–1,000 Hz),

digitized at 1 kHz through an AD converter (National Instru-

ments), and stored in a computer. Analyses of data were

performed offline using LabVIEW (National Instruments) and

IGOR (Wave matics) software. Recordings using a glass electrode

(10–15 MV, GD-2, Narishige) were carried out as described [35].

Raw traces (0.08–3,000 Hz) were band-pass filtered for the

detection of MUA of neurons (0.15–3 kHz). EEG spikes with

power of twice the s.d. from the baseline mean and the duration of

about 30 ms were extracted. The unit activity was defined as a

power of more than five times the s.d. from the baseline mean and

the duration of less than 4 ms [7]. The locations of the electrode

were verified histologically. CSD analyses were carried out as

described [8].

Pharmacological experiments. Mice were anesthetized

with ketamine (80 mg/kg, i.p.; Sankyo Co., Tokyo, Japan) and

xylazine (20 mg/kg i.p.; Bayer, Tokyo, Japan), and fixed to a

Figure 1. Generation of GluRf1flox mice by homologous recombination in C57BL/6 strain derived ES cells. A, Schema of the exons 11–22
region of the GluRf1 gene (GluRf1+), targeting vector, floxed and neo-inserted allele (GluRf1flox; neo), and floxed allele (GluRf1flox). Exons 19 and 20
encode the putative transmembrane segment M4 of GluRf1. The GluRf1flox; neo allele contains two loxP sequences flanking exons 19 and 20 of the
GluRf1 gene and the neo gene flanked by two frt sequences. The neo gene was removed in vivo by crossing GluRf1+/flox; +/neo mice with FLP66 mice
carrying the Flp recombinase gene under the control of the EF1a promoter. GluRf1+/flox mice were crossed with GluRc1-Cre mice to disrupt the
GluRf1 gene selectively in the hippocampal CA3 region. Abbreviations: BSK, plasmid pBluescript; DT, diphtheria toxin gene; neo, neomycin
phosphotransferase gene; E, EcoRI; N, NotI; S, SpeI; X, XbaI. Hatched boxes indicate the location of probes for Southern blot analysis. B, Southern blot
analysis of genomic DNA from GluRf1+/+, GluRf1+/flox; +/neo, and GluRf1+/flox mice. EcoRI-digested DNA was hybridized with 39 probe. C, Agarose gel
electrophoresis of DNA fragments amplified by PCR from GluRf1+/+, GluRf1+/flox and GluRf1flox/flox mice. The amplified DNA fragments derived from
the GluRf1+ and GluRf1flox alleles were 61 bp and 169 bp, respectively. D, Western blot analysis of GluRf1 and neuron-specific enolase (NSE) proteins
in whole-brain homogenates from GluRf1+/+ and GluRf1flox/flox mice.
doi:10.1371/journal.pone.0003993.g001
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stereotaxic apparatus (David Kopf, Tujunga, CA, USA). Two

single guide cannulae (Plastics One, Roanoke, VA, USA) were

implanted into the CA3 region of the hippocampus bilaterally

(stereotaxic coordinates: AP = 22.2 mm from bregma,

ML = 62.5 mm from midline, DV = +1.4 mm from bregma),

according to an atlas of the mouse brain [36]. The tip of the

internal cannula for microinjection was inserted 1 mm below the

tip of the guide cannulae (DV = +2.4 mm from bregma). The

cannulae were fixed to the skull with dental cement. The animals

were allowed to recover for at least 5 days. D,L-APV (Sigma-

Aldrich, MO, USA) was dissolved in aCSF at a concentration of

30 mM. The aCSF was consisted of NaCl (150 mM), KCl

(3 mM), CaCl2 (1.4 mM), MgCl2 (0.8 mM), Na2HPO4 (0.8 mM),

and NaH2PO4 (0.2 mM). During drug infusions, the mice were

restrained lightly in the disposable vinyl jacket (Braintree

Scientific, Inc, MA, USA) and 0.5 ml of the drug or aCSF was

infused at a rate of 0.2 ml/min using a microinjection pump

(CMA/100, CMA/Microdialysis, Solna, Sweden). The infusion

cannulae (bilateral) were left in place for a further 1 min to diffuse

the drug from the needle tip, and the animal was then returned to

its home cage. Kainate was delivered i.p. 20–30 min after APV

injection.

Statistical analysis
All behavioral experiments were performed in a blind fashion.

Data were expressed as mean6SEM. Statistical analysis was

performed using Fisher’s exact probability test, Kolmogorov-

Smirnov test, log-rank test and Student t-test as appropriate.

Statistical significance was set at p,0.05.

Results

Selective ablation of NMDA receptors in hippocampal
CA3 pyramidal neurons

We disrupted the NMDA receptor GluRf1/NR1 gene specifi-

cally in the hippocampal CA3 pyramidal cells by Cre-loxP

recombination on the C57BL/6N genetic background. By crossing

a target mouse line carrying two loxP sequences flanking exon 19

and 20 of the GluRf1 gene (GluRf1+/flox mice) with a hippocampal

CA3 region-dominant Cre mouse line carrying the Cre recombi-

nase gene inserted into the GluRc1/KA-1 gene (GluRc1-Cre mice),

we obtained GluRc1+/cre; GluRf1flox/flox mice and GluRf1flox/flox

mice (Fig. 1), and used them in subsequent experiments as mutant

and control mice, respectively.

In situ hybridization signals for the GluRf1 mRNA were

indistinguishable between mutant and control mice at postnatal

day 1 (P1) (Fig. 2A). At P7, GluRf1 signals were diminished

specifically in the hippocampal CA3 region of mutant mice

(Fig. 2B). At P21 to P23, the hybridization signals were hardly

detectable in the CA3 region of mutant mice and slightly

decreased in the brainstem (Fig. 2C). Residual hybridization

signals for the GluRf1 mRNA were co-localized with those of the

GAD67 mRNA, suggesting that expression of the GluRf1 mRNA

was intact in CA3 interneurons (Fig. 2G, n = 17 out of 17 GAD67-

positive cells). Immunohistochemical analyses showed that immu-

noreactivity for GluRf1 protein was present in the CA3 region at

P7, though the amount appeared to be decreased (Fig. 2D).

However, the expression of GluRf1 protein was diminished to a

negligible level at P14 and P21 (Fig. 2E and F).

We examined NMDA-EPSCs by whole-cell patch-clamp

recordings from the pyramidal cell in the CA3 region of the

hippocampus at P21 to P23. NMDA-EPSCs were evoked by

stimulating associational/commissural fibers that mainly terminate

in the stratum radiatum since NMDA receptors are more

abundantly expressed in the stratum radiatum than in the stratum

lucidum (Fig. 2H). In mutant mice, NMDA-EPSCs were not

detectable, while AMPA-EPSCs were normally evoked. The ratios

of the amplitudes of NMDA-EPSCs to those of AMPA-EPSCs

were 50.9616.1% (mean6s.e.m.) in control mice and 0.260.2%

in mutant mice (n = 4 each; t-test, P = 0.03). Thus, NMDA

receptors were abolished in hippocampal CA3 pyramidal neurons

of mutant mice by P21. We used mutant and control mice at P21

to P23 in the following experiments unless otherwise specified.

Enhanced susceptibility of mutant mice to kainate-
induced seizure

To monitor the excitability of CA3 recurrent circuits in vivo, we

tested the kainate sensitivity of mutant mice since the administra-

tion of kainate to rodents stimulates initially the CA3 region and

then generates seizures [37]. Intraperitoneal administration of

kainate at 8 mg/kg induced tonic-clonic seizures with loss of the

postural tone in mutant mice within 1 h, but not in control mice

(Fig. 3A, P,0.001, Fisher’s exact probability test). Mice of both

genotypes showed seizures at a higher dosage of kainate (12 mg/

kg), but the latency to the onset of seizures was significantly shorter

in mutant mice (Fig. 3B, P = 0.03, log-rank test). Neither mutant

Figure 2. Generation of CA3 pyramidal neuron-selective NMDA
receptor knockout mice. A–C, X-ray film autoradiography for GluRf1
mRNAs. Arrowheads indicate the CA3 region. D–F, Immunohistochem-
istry for GluRf1 proteins. G, Double in situ hybridization for GluRf1
(white) and GAD67 mRNA (red), counterstained with neurotrace green
(green), in the mutant CA3 region. Arrow indicates a neuron expressing
both GluRf1 and GAD67 mRNAs. Scale bars: A–C, 1 mm; D–F, 200 mm;
G, 10 mm. Abbreviations: Cb, cerebellum; CP, caudate-putamen; Cx,
cortex; DG, dentate gyrus; Hi, hippocampus; pcl, pyramidal cell layer; sl,
stratum lucidum; so, stratum oriens. H, Representative traces of AMPA-
and NMDA-EPSCs at CA3 commissural/associational synapses.
doi:10.1371/journal.pone.0003993.g002
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nor control mice showed seizures after saline-administration.

These results suggest that kainate-induced seizure susceptibility

was enhanced in mutant mice. Susceptibility to the seizure was

comparable between control GluRf1flox/flox mice and GluRc1+/cre;

GluRf1+/flox mice, indicating that the insertion of the Cre gene in

one allele of GluRc1 locus did not influence the susceptibility.

To monitor the neuronal activity in vivo, we employed c-Fos

immunohistochemistry. There was little c-Fos immunoreactivity in

the hippocampus of both control and mutant mice administrated

with saline (n = 3, Fig. 3C). Administration of kainate at 8 mg/kg

induced strong c-Fos-immunoreactivity in the hippocampus of

mutant mice (n = 3). In contrast, no significant immunoreactivity

was detectable in the hippocampus of kainate-administrated

control mice (n = 3). Kainate at 12 mg/kg induced strong c-Fos

immunoreactivity in both control and mutant mice with seizures,

while the number of Fos-immunopositive cells in the hippocampus

was significantly smaller in mutant mice than in control mice

(n = 20 sections from 5 mice). The cellular imaging of neural

activity with c-Fos immunohistochemistry confirmed the enhanced

seizure susceptibility of mutant mice.

Histological features of the hippocampal CA3 region
Unexpectedly, we found that mutant mice lacking NMDA

receptors selectively in CA3 pyramidal neurons became more

susceptible to kainate-induced seizures. One obvious possibility is

that the ablation of NMDA receptors may disturb the neural

wiring of the hippocampal CA3 region, leading to abnormal

excitability of the network. We thus examined the histological

features of the hippocampal CA3 region in detail. The laminar

organization and cellular distribution of the hippocampal CA3

region examined by Nissl staining was indistinguishable between

control and mutant mice (Fig. 4A). Immunostaining for vesicular

glutamate transporter 2 (VGluT2) and calbindin showed that the

afferent terminals from the entorhinal cortex and the dentate gyrus

were localized in the stratum lacunosum-moleculare and the

stratum lucidum in both control and mutant mice, respectively

(Fig. 4B and C).

Golgi staining revealed no appreciable differences in dendritic

arborization of CA3 pyramidal cells between control and mutant

mice (Fig. 4G). There were no significant differences in the

numbers of branch points (control, 16.661.1, n = 8; mutant,

17.061.1, n = 9; P = 0.80; t-test) and the primary (control,

4.460.5; mutant, 3.860.6; P = 0.45), secondary (control,

7.860.7; mutant, 7.060.7; P = 0.49) and tertiary dendrites

(control, 9.461.4; mutant, 9.961.0; P = 0.76) between two

genotypes (Fig. 4I and J). Mean spine density on basal dendrites

of CA3 pyramidal cells was also comparable (n = 28 dendrites from

3–4 mice, P = 0.15) (Fig. 4H and K). Consistent with Golgi

staining, fine structures of CA3 neurons visualized by EGFP

expression revealed no detectable alteration in terms of dendritic

arborization and the distribution of presynaptic axonal boutons

and postsynaptic spines (Fig. 5).

Immunoreactivities for postsynaptic proteins, PSD-95 and

GluRa1/GluR1, were comparable in the hippocampal CA3

region between the two genotypes (Fig. 4D and E). Distribution of

interneurons in the hippocampal CA3 and hilar areas was also

indistinguishable as judged by immunostaining for GAD proteins

(Fig. 4F), parvalbumin, somatostatin and calretinin. Thus, the

histological and cytological organizations of the hippocampal CA3

region were indistinguishable between control and mutant mice.

Characteristic EEG spikes associated with multiple unit
activities in the hippocampal CA3 region of mutant mice

Since seizure is produced by synchronous firing of a population

of neurons in the brain [38], it is possible that NMDA receptor

ablation in the CA3 region may modify hippocampal network

oscillations in vivo. By recording local field potentials in vivo from

the hippocampal CA3 region of urethane-anaesthetized mutant

mice at the age of postnatal 8 weeks, we found characteristic spikes

with large amplitudes (1.5–4.0 mV) (Fig. 6A). These EEG spikes

were consistently observed in all 6 mutant mice, but never

detected in 7 control mice. The mean firing rate of the spikes

(n = 136 from 6 mice) was 0.2360.02 Hz and the distribution of

interspike intervals showed a peak at 4.75 s (Fig. 6B).

To investigate the origin of characteristic EEG spikes, we

recorded field potentials in various hippocampal regions of mutant

mice using a silicon probe with 16 recording sites. Simultaneous

recording of a single EEG spike event from the hippocampal CA3

region and surrounding neocortex showed that the amplitude of

EEG spikes was largest in the CA3 pyramidal cell layer. EEG

spikes reversed their polarity in the CA3 stratum oriens (Fig. 6C).

Current source density (CSD) analysis of EEG spikes revealed a

current sink in the CA3 pyramidal cell layer, with a source nearby

(n = 8 from 4 mice). Recording from the cortex and hippocampal

CA1 region, spikes reversed their polarity in the CA1 stratum

oriens. CSD analyses revealed a large sink in the CA1 pyramidal

cell layer (n = 8 from 4 mice). On the other hand, EEG spikes

recorded from the dentate gyrus showed neither polarity reversal

nor sinks in CSD maps (n = 8 from 4 mice). These results suggest

that characteristic spikes are generated in the pyramidal cell layers

of the CA3 and CA1 regions, but not in the dentate gyrus.

Further analysis revealed that the frequency of MUA in the

CA3 pyramidal cell layer was enormously high during spike events

(Fig. 6D, center). The strong correlation between MUA and EEG

spikes was observed in all 4 mutant mice. After EEG spikes, MUA

in the CA3 pyramidal cell layer became silent (Fig. 6D, center).

MUA in the CA1 pyramidal cell layer were also associated with

EEG spikes (Fig. 6D, right) and the association was reproducibly

observed in all 4 mutant mice. On the other hand, there was no

Figure 3. Increased susceptibility to kainate-induced tonic-
clonic seizures in the mutant mice. A, The graph represents the
percentage of mice with the generalized tonic-clonic seizures 1 h after
drug administration. ***, P,0.001, Fisher’s exact probability test. B,
Cumulative curves for the onset of seizure. Saline, n = 4–6; 8 mg/kg,
n = 7–8; 12 mg/kg, n = 12. C, c-Fos immunohistochemistry in the
hippocampus. Scale bar, 200 mm.
doi:10.1371/journal.pone.0003993.g003
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significant association in the dentate gyrus between MUA and

spikes (Fig. 6D, left). The strong association of MUA with EEG

spikes in the CA1 and CA3 pyramidal cell layers, but not in the

dentate gyrus, together with CA3 pyramidal neuron-selective

ablation of NMDA receptors, suggests that characteristic EEG

spikes were originated from synchronous firing of CA3 pyramidal

neurons and the activity of the CA3 network propagated to the

downstream CA1 region.

Balanced excitatory and inhibitory synaptic transmission
Because either enhanced excitation or reduced inhibition can

increase the excitability of hippocampal CA3 network, we

examined the mRNA levels of excitatory glutamate receptor

(GluR) subunits and glutamic acid decarboxylases (GADs)

expressed in the hippocampal CA3 region of the mutant mice

by in situ hybridization (Fig. 7A, Table 1). The GluRf1 mRNA was

strongly diminished as described above. The reduction of the

GluRc1 mRNA can be ascribed to the insertion of cre into one allele

of the GluRc1 gene but the cre insertion exerted little effect on the

kainate-induced seizure susceptibility as described above. There

was no significant difference in the GAD65 mRNA (P = 0.08),

while the level of GAD67 mRNA was slightly but significantly

reduced in the mutant mice (P,0.001). There were no significant

differences in hybridization signals of other GluR mRNAs

between control and mutant mice.

Basic electrophysiological properties of CA3 pyramidal cells

were indistinguishable between two genotypes (resting membrane

potential: control, 272.560.8 mV, n = 32; mutant

273.761.0 mV, n = 26, P = 0.37; input resistance: control,

113.265.3 MV; mutant, 117.767.2 MV, P = 0.62; membrane

capacitance: control, 251.869.4 pF; mutant, 250.268.0 pF,

P = 0.90). We then compared GABAA-IPSCs in the hippocampal

CA3 region, which have been shown to suppress the excitability of

the pyramidal cell through postsynaptic inhibition [39]. AMPA-

EPSCs were evoked at 280 mV by stimulating afferent fibers in

the CA3 stratum radiatum, which should activate both associa-

Figure 4. Normal histological organization of the hippocampal region. A, Nissl staining. B, C, Immunoperoxidase staining for VGluT2 (B)
and Calbindin (C). D–F, Immunoperoxidase staining for PSD-95 (D), GluRa1 (E), and GAD (F). G, Cytoarchitecture of Golgi-stained CA3 pyramidal
neurons. H, Higher magnification of the basal dendritic segment of CA3 pyramidal neuron in (G). I–K, Graphs represents the number of primary,
secondary and tertiary dendrites (I), total number of dendritic branching (J), and spine density (K) of CA3 pyramidal neurons. Scale bars: A, 200 mm;
G, 100 mm; I, 10 mm. Abbreviations: pcl, pyramidal cell layer; sl, stratum lucidum; slm, stratum lacunosum-moleculare.
doi:10.1371/journal.pone.0003993.g004
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tional/commissural fibers and inhibitory interneurons (and their

dendrites and axons), and then GABAA-IPSCs were measured

with the same stimulus strength at 0 mV in the presence of both

the non-NMDA receptor antagonist CNQX and the NMDA

receptor antagonist D-APV. The ratio of GABAA-IPSCs to

AMPA-EPSCs was indistinguishable between the two genotypes

Figure 5. Dendritic branching and distribution of postsynaptic spines and presynaptic boutons in CA3 pyramidal neurons of
control and mutant mice. A, Examples of three-dimensional reconstruction using IMARIS and FilamentTracer software. B, Three-dimensional
reconstruction of AAV-EGFP-infected CA3 pyramidal neurons. Graphs represent the numbers of primary, secondary and tertiary dendrites of CA3
pyramidal neurons in control (open boxes, n = 10–12) and mutant mice (filled boxes, n = 6–7). There were no significant differences between control
and mutant mice in the numbers of primary (apical, P = 0.58; basal, P = 0.06; t-test), secondary (P = 0.13, P = 0.21) and tertiary dendrites (P = 1.0
P = 0.16). C, Tertiary dendritic segments in control (left, top) and mutant (left, bottom) mice. Normalized distribution of inter-spine distances (middle,
bin size, 0.1 mm). Cumulative distribution of inter-spine distances (right, same data set). There were no significant differences in inter-spine intervals
of CA3 pyramidal neurons between two genotypes (control n = 428 from 10 dendrites of 4 mice; mutant, n = 459 from 9 dendrites of 4 mice; P = 0.74,
Kolmogorov-Smirnov test). D, Boutons on the axon in the CA3 stratum radiatum of control (left, top) and mutant (left, bottom) mice. Normalized
distribution of inter-bouton distances (middle, bin size, 0.4 mm). Cumulative distribution of inter-bouton distances (right, same data set). There were
no significant differences in inter-bouton intervals of CA3 pyramidal neurons between two genotypes (control n = 262 from 18 axons of 4 mice;
mutant, n = 322 from 24 dendrites of 4 mice; P = 0.90, Kolmogorov-Smirnov test).
doi:10.1371/journal.pone.0003993.g005

CA3 NMDA Receptor Function

PLoS ONE | www.plosone.org 8 January 2009 | Volume 4 | Issue 1 | e3993



(control, 0.5260.09; mutant, 0.6160.16; n = 12 each; t-test,

P = 0.65) (Fig. 7B). Thus, there was no significant electrophysio-

logical imbalance between AMPA receptor-mediated excitatory

and GABAA receptor-mediated inhibitory synaptic transmission in

the hippocampal CA3 region.

High-frequency stimulation failed to induce slow
hyperpolarizing currents in hippocampal CA3 pyramidal
neurons of mutant mice

In hippocampal CA1 pyramidal neurons, synaptic excitation is

followed by an early GABA-mediated hyperpolarization and late

AHP mediated by Ca2+-dependent K+ channels [40]. We thus

examined the effect of NMDA receptor ablation on Ca2+-

dependent K+ channels in hippocampal CA3 neurons. At a

holding potential of 220 mV, high-frequency stimulation, which

should activate both AMPA receptors and NMDA receptors in

normal mice, induced slowly decaying outward currents in the

pyramidal cells of control mice (Fig. 7C; peak amplitude, 46.165.4

pA, n = 12). In contrast, such slow outward currents were hardly

evoked by the same high-frequency stimulation in mutant mice

(Fig. 7C; 0.562.1 pA, n = 12, P,0.001). The outward currents in

control mice were abolished by D-APV (Fig. 7D; control,

46.1365.36 pA, n = 13; D-APV, 0.3862.41 pA, n = 12,

Figure 6. Characteristic large EEG spikes in the hippocampal CA3 region of mutant mice. A, Representative local field potential
recordings from the CA3 region. B, Histogram of interspike intervals (bin, 0.25 s). C, Laminar profiles of field potentials and CSD analysis. Recording
positions are illustrated on the left. Sinks and sources are indicated by cold and warm colors, respectively. Abbreviations: al/ec, alveus and external
capsule; Cx, cortex; gcl, granule cell layer; ml, molecular layer; pcl, pyramidal cell layer; slm, stratum lacunosum-moleculare; so, stratum oriens. D,
Wide-band recordings of extracellular activities (top), filtered MUA (middle) and raster plots and peri-event time histograms between MUA (bin,
200 ms) and EEG spikes in the dentate gyrus (left), CA3 (center) and CA1 regions (right). Arrowheads indicate the onset of spikes. MUA were aligned
to the onset of spikes (time 0).
doi:10.1371/journal.pone.0003993.g006
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P,0.001), suggesting that NMDA receptors are required for the

response. NMDA receptor activation results in influx of Ca2+ into

postsynaptic cells, which would activate Ca2+-dependent K+

channels. In fact, inclusion of the Ca2+ chelator BAPTA in the

internal solution of patch pipettes diminished the outward currents

(Fig. 7D; BAPTA, 1.9964.76 pA, n = 7, P,0.001). The outward

currents were also diminished when recorded with a Cs+-based

internal solution (Fig. 7D; Cs+, 7.7462.35 pA, n = 4, P,0.001),

suggesting that the currents were mediated by postsynaptic K+

channels. Taken together, the slow kinetics and sensitivities to D-

APV, BAPTA and Cs+ of the outward hyperpolarizing currents

suggest that the high-frequency stimulation evokes slow AHP

currents [41,42] mediated by Ca2+-activated K+ channels, which

are activated by Ca2+ influx through NMDA receptor channels.

These results suggest that the NMDA receptor-slow AHP coupling

is diminished in the hippocampal CA3 pyramidal neurons of

mutant mice, which may result in enhanced excitability of the

CA3 recurrent network as a whole. The coupling between NMDA

receptors and AHP currents is found in various regions [34,43–

45]. However, the durations of AHP currents observed in our

Figure 7. High-frequency stimulation failed to induce slow hyperpolarizing currents in hippocampal CA3 pyramidal neurons of
mutant mice. A, X-ray film autoradiography for mRNAs of AMPA receptors, kainate receptors, and GADs. Scale bar, 200 mm. B, Representative traces
of AMPA-EPSCs and GABAA-IPSCs in the CA3 pyramidal cells. Graph shows the ratio of GABAA-IPSCs to AMPA-EPSCs. C, Representative traces of slow
hyperpolarizing currents. D, Peak amplitudes of the slow hyperpolarizing currents of the control mice in the absence (control) or presence of D-APV.
Those recorded with a BAPTA-containing (BAPTA) or Cs+-based internal solution (Cs+) are also shown. ***, P,0.001, t-test.
doi:10.1371/journal.pone.0003993.g007

Table 1. Ratios of hybridization signal densities of GluR and
GAD mRNAs in the CA3 region to those in the CA1 region.

mRNA Control Mutant

GluRf1/NR1 0.8660.02 (n = 10) 0.0460.01 (n = 5)

GluRa1/GluR1 0.9860.02 (n = 10) 0.9560.01 (n = 12)

GluRa2/GluR2 0.9160.03 (n = 8) 0.8960.03 (n = 11)

GluRa3/GluR3 0.8860.02 (n = 10) 0.8660.02 (n = 12)

GluRc2/KA-2 1.1660.03 (n = 9) 1.1760.02 (n = 10)

GluRb2/GluR6 1.1160.09 (n = 8) 1.1960.04 (n = 8)

GAD65 1.1260.05 (n = 10) 0.9960.05 (n = 11)

GAD67 1.1160.02 (n = 10) 0.9460.03 (n = 12)

Slices were prepared from 3 mice of both genotypes.
Hybridization signal densities of the GluRc1/KA-1 mRNA in the CA3 region were
51.560.8 (n = 10) in control mice and 32.360.5 (n = 12) in mutant mice.
doi:10.1371/journal.pone.0003993.t001
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experiment were much longer than those observed in previous

studies.

These results with hippocampal CA3-specific NMDA receptor

mutant mice raise an intriguing possibility that MDA receptors

suppress the excitability of the CA3 recurrent network as a whole

by restricting synchronous firing of CA3 neurons, although the

possibility cannot be excluded that the enhanced excitability of the

mutant mice might be due to subtle cytoarchitectural abnormal-

ities of CA3 pyramidal neurons. To test the possibility, we then

examined the effect of NMDA receptor ablation in the CA3 region

of the adult brain on hippocampal network oscillations by

employing a virus-mediated gene knockout technique [22,23].

Ablation of CA3 NMDA receptors in the mature brain also
generated characteristic EEG spikes with large
amplitudes

An adeno-associated viral expression vector for Cre recombinase

(AAV-Cre, titer of 5–861010) was streotaxically microinjected to the

hippocampal CA3 region of GluRf1flox/flox mice at 8–9 weeks old.

Immunohistochemical analysis revealed that the infection of AAV-

Cre was limited to the hippocampal CA3 region and spread within

40–70% of the region (Fig. 8A–C). Immunoreactivity for GluRf1
was diminished in the well-demarcated infected CA3 region by 2

weeks after infection (Fig. 8C). Age-matched GluRf1+/+ mice

microinjected with AAV-Cre served as controls.

Local field potential recording from the CA3 region showed

characteristic EEG spikes with large amplitudes in GluRf1flox/flox

mice 2–3 weeks after AAV-Cre infection (n = 5 out of 9 mice)

(Fig. 8D). The frequency of large EEG spikes was variable among

subjects, which may be related to the variance of AAV-infected

regions among animals. No such spike activity was detected in

EEG records from the CA3 region of AAV-Cre-infected GluRf1+/+

mice (n = 7 out of 7 mice, P = 0.02, Fisher’s exact probability test)

(Fig. 8D). CSD analysis revealed the sink in the pyramidal cell layer

of the CA3 region and the sources in neighboring stratum oriens

(Fig. 8E, n = 8 spikes). Thus, the ablation of CA3 NMDA receptors

induced by AAV-Cre infection in the adult brain also resulted in the

generation of characteristic EEG spikes.

Pharmacological blockade of CA3 NMDA receptors
enhanced the susceptibility to kainate-induced seizure

We finally examined the seizure susceptibility of wild-type mice

by focal injection of a competitive NMDA receptor antagonist,

APV. We bilaterally injected 30 mM APV or aCSF into the

hippocampal CA3 region of C57BL/6N mice at postnatal 8–10

weeks. About 20–30 minutes later, the animals were intraperito-

neally administrated with the convulsive dose of kainate (30 mg/

kg) [46]. Kainate-induced tonic-clonic seizures with loss of the

postural tone appeared within 1 h in both groups of mice (n = 8

each; P = 0.23, Fisher’s exact probability test) (Fig. 9). However,

the latency to the onset of seizures was significantly shorter in mice

injected with APV (n = 8; P = 0.0044, Log-rank test). Thus, the

focal blockage of CA3 NMDA receptors also enhanced the

susceptibility to kainate-induced seizure.

Discussion

Here, we generated hippocampal CA3 pyramidal neuron-

specific NMDA receptor mutant mice on the C57BL/6N genetic

background. The expression of the GluRf1 mRNA was compa-

rable between mutant and control mice at P1 but strongly

decreased in mutant mice at P7. The significant expression of

GluRf1 protein, though reduced, was found in the CA3 region at

P7 but diminished to a negligible level by P14. We found that the

mutant mice lacking NMDA receptors in the hippocampal CA3

pyramidal neurons showed enhanced susceptibility to kainate-

induced seizures. This observation was rather unexpected since

NMDA receptor-mediated LTP was implied to contribute to the

generation of synchronous network activity by in vitro studies

[14,15]. We found that characteristic EEG spikes with large

amplitude were generated by the ablation of NMDA receptors in

CA3 pyramidal neurons. Strong association of MUA with the

characteristic EEG spikes in the CA3 pyramidal cell layer of

mutant mice suggests that the CA3 NMDA receptor ablation

increases the synchronous network activity possibly by affecting

the firing pattern of CA3 neurons. In contrast, CA1 region-specific

ablation of NMDA receptors appeared to hardly affect EEG in vivo

[47]. NMDA receptor antagonists have minimal effects on basal

synaptic transmission but completely block the generation of long-

term potentiation in the CA1 region in vitro [48–50]. Hence,

NMDA receptors in the CA1 region are not considered to be

involved in spontaneous network activity. The difference in the

neural wiring pattern such as the abundance of recurrent networks

may underlie the different effects of NMDA receptor ablation in

the hippocampal CA1 and CA3 regions on network activity. Our

results raise an intriguing possibility that NMDA receptors may

suppress the excitability of the CA3 network as a whole in vivo.

It is possible that the ablation of NMDA receptors may disturb

the neural wiring of the hippocampal CA3 region, leading to

abnormal excitability of the network. It is well known that the

NMDA receptor plays a role in the activity-dependent refinement

of synaptic connections and neural pattern formation [51–54].

Chronic blockade of NMDA receptors in hippocampal slice

cultures during the first two weeks of postnatal development leads

to a substantial increase in synapse number and results in a more

complex dendritic arborization of CA1 pyramidal cells [31]. The

activity blockade in hippocampus during postnatal 2–3 weeks by

Figure 8. Hippocampal CA3 NMDA receptor ablation in the
adult brain also generated characteristic EEG spikes with large
amplitudes. A–C, AAV-Cre-mediated ablation of NMDA receptors in
the hippocampal CA3 region. Nissl staining (A) and imunohistochem-
istry for Cre (B) and GluRf1 (C). Scale bar, 0.5 mm. D, Representative
local field potential recordings from the CA3 region. E, Laminar profiles
of field potentials and CSD analysis. Recording positions are illustrated
on the left. Sinks and sources are indicated by cold and warm colors,
respectively. Cx, cortex; ec, external capsule; pcl, pyramidal cell layer; so,
stratum oriens.
doi:10.1371/journal.pone.0003993.g008
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tetrodotoxin infusion produced both behavioral and electrograph-

ic seizures 2 weeks after the infusion [55] and the increase in the

density of axonal varicosities and postsynaptic AMPA receptor

GluR1 and NMDA receptors [56]. Thus, reduced neuronal

activity during development might potentially enhance the

excitability. However, the cytoarchitecture was indistinguishable

between control and mutant mice at P21–23. There were no

detectable differences in the dendritic branching and the density of

axonal boutons and dendritic spines between control and mutant

mice at P21–23. The sustained expression of NMDA receptor

proteins at least by P7 in mutant mice may support the

development of CA3 pyramidal neuron cytoarchitectures. An

alternative possibility is that the excitability of the CA3 network

may be suppressed by NMDA receptor-mediated signaling. No

significant differences were detectable in the basic membrane

properties and balance between excitatory and inhibitory synaptic

transmission between control and mutant mice. At synapses,

activation of NMDA receptors evokes excitatory postsynaptic

potential on the CA3 pyramidal neurons in vitro [57]. However, the

enhancement of the kainate-induced seizure susceptibility and the

emergence of characteristic EEG spikes associated with MUA in

the mutant mice can be hardly explained if major roles of NMDA

receptors would be simply mediating and strengthening the

excitatory transmission at the commissural/associational synapses.

Besides excitatory transmission and its enhancement, NMDA

receptors may mediate diverse suppressive signals including spike-

timing dependent long-term depression [58], LTP of slow GABA-

IPSCs [59], the increase in Ih currents [60], and coupling with K+

channels [34,43–45]. Thus, it is possible that NMDA receptor

signaling may suppress the excitability of the CA3 network in vivo,

although the possibility cannot be excluded that the enhanced

excitability of the mutant mice might be due to subtle

developmental abnormalities of CA3 pyramidal neurons.

We thus examined whether the excitability of the CA3 network

is enhanced by ablation of NMDA receptors in the adult brain

with a virus-mediated gene knockout technique [22,23]. We found

that EEG spikes with large amplitude were generated by focal

ablation of NMDA receptors in the CA3 region of adult mice by

AAV-Cre infection. The frequency of large EEG spikes was

variable among subjects, which may be related to the variance of

AAV-infected regions among animals. Furthermore, the blockade

of NMDA receptors by focal injection of APV into the

hippocampal CA3 region enhanced the susceptibility to kainate-

induced seizures. These results suggest that NMDA receptors

control negatively the excitability of the hippocampal CA3

recurrent network as a whole in vivo by restricting synchronous

firing of CA3 neurons, although the mechanism remains to be

solved. Since slow AHP currents are involved in accommodation

of action potential discharge of CA1 pyramidal neurons [40], it is

possible that the frequency of action potentials may increase in a

mutant CA3 pyramidal neuron where NMDA receptor-AHP

coupling is eliminated. Prolonged discharges of CA3 pyramidal

neurons might increase the chance of their synchronous firing,

leading to the enhancement of the excitability of the CA3 network

as a whole. Interestingly, Colgin et al. reported that blockade of

NMDA receptors enhanced spontaneous sharp waves in rat

hippocampal slices [61], supporting the idea that activation of

NMDA receptors can serve to dampen the excitation of sharp

waves. On the other hand, studies through computational models

showed that when recurrent networks with conductance delays

exhibit population bursts, spike-timing-dependent plasticity

(STDP) rules exert a strong decoupling force that desynchronizes

activity [58]. Thus, elimination of NMDA receptor-dependent

STDP might enhance synchronization in CA3 recurrent networks.

One or combination of such NMDA receptor-mediated suppres-

sive signals [34,43–45,58–60] might underlie the regulation of

CA3 network excitability. The NMDA receptors in the hippo-

campal CA3 region are implied in rapid acquisition and recall of

associative memory as well as paired associate learning [11–13].

These functions may be mediated not only by the plasticity at

synapses but also by the NMDA receptor-mediated neural

network oscillation.
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57. Debanne D, Gähwiler BH, Thompson SM (1998) Long-term synaptic plasticity

between pairs of individual CA3 pyramidal cells in rat hippocampal slice
cultures. J Physiol 507: 237–247.

58. Lubenov EV, Siapas AG (2008) Decoupling through synchrony in neuronal

circuits with propagation delays. Neuron 58: 118–131.
59. Huang CS, Shi SH, Ule J, Ruggiu M, Barker LA, et al. (2005) Common

molecular pathways mediate long-term potentiation of synaptic excitation and
slow synaptic inhibition. Cell 123: 105–118.

60. Fan Y, Fricker D, Brager DH, Chen X, Lu HC, et al. (2005) Activity-dependent

decrease of excitability in rat hippocampal neurons through increases in I(h). Nat

Neurosci 8: 1542–1551.

61. Colgin LL, Jia Y, Sabatier J-M, Lynch G (2005) Blockade of NMDA receptors

enhances spontaneous sharp waves in rat hippocampal slices. Neurosci Lett 385:

46–51.

CA3 NMDA Receptor Function

PLoS ONE | www.plosone.org 14 January 2009 | Volume 4 | Issue 1 | e3993


