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The advent of microprocessed “metabolic carts” and rapidly incremental protocols greatly expanded the clinical applications
of cardiopulmonary exercise testing (CPET). The response normalcy to CPET is more commonly appreciated at discrete time
points, for example, at the estimated lactate threshold and at peak exercise. Analysis of the response profiles of cardiopulmonary
responses at submaximal exercise and recovery, however, might show abnormal physiologic functioning which would not
be otherwise unraveled. Although this approach has long been advocated as a key element of the investigational strategy, it
remains largely neglected in practice. The purpose of this paper, therefore, is to highlight the usefulness of selected submaximal
metabolic, ventilatory, and cardiovascular variables in different clinical scenarios and patient populations. Special care is taken
to physiologically justify their use to answer pertinent clinical questions and to the technical aspects that should be observed to
improve responses’ reproducibility and reliability. The most recent evidence in favor of (and against) these variables for diagnosis,
impairment evaluation, and prognosis in systemic diseases is also critically discussed.

1. Introduction

Cardiopulmonary exercise testing (CPET) provides a means
of unraveling abnormal physiologic functioning which may
not be apparent at rest [1, 2]. The advent of microprocessed
CPET systems [3] increased our technical capabilities in
recording several variables throughout a single exercise
bout—even of a relatively “short” duration of 10 minutes
[4, 5]. The response normalcy to rapidly incremental CPET
is more commonly judged by comparing the observed values
at discrete time points (e.g., at the estimated lactate threshold
(LT) and at peak exercise) with those previously obtained
in apparently healthy subjects [6, 7]. It should be noted,
however, that relying only in such discrete analysis leads
to substantial loss of physiologic information given by the
observation of the responses profiles during submaximal
exercise and recovery [8–11].

In this context, authoritative textbooks [2, 12] and guide-
lines [13, 14] advocated that the trending of certain variables
is a crucial component of the interpretative strategy as
they might show substantial abnormalities even when the
discrete values are still within the expected range [15–17].
Moreover, the response dynamics are highly reproducible [8–
11], encompassing a range of exercise intensities which are
likely to be faced by the patients in daily life [18–26]. Although
the scientific foundations supporting their use have long been
established, [8–17] they are still not routinely assessed and
clinically valued in practice.

Thepurpose of this brief review, therefore, is to emphasize
the practical usefulness of analyzing the response profiles of
selected variables during rapidly-incremental CPET. Special
care is taken to physiologically justify their use to answer
relevant clinical questions and to the technical details that
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Figure 1: Noninvasive estimation of the lactate threshold by the
𝑉-slope method (gas exchange threshold (GET), panel (a)) and
the ventilatory method (ventilatory threshold (VT), panel (b)) in
a normal subject. Note that the GET slightly precedes the VT as
the later depends on the ventilatory response to the “extra-CO

2
”

generated by buffering of H+ associated with (lactate) increase. 𝑆
1

and 𝑆
2
refer to the two sequential slopes (before and after the GET)

with 𝑆
2
being characteristically steeper than 𝑆

1
(i.e., slope inclination

>1.)

should be observed to improve responses’ reproducibility and
reliability. The response profiles to be discussed, however,
are applicable to ramp-incremental [4] cycle ergometry, and
the practitioner should be aware that different patterns of
response can be anticipated if other ergometers (e.g., tread-
mill) and protocols (e.g., step-like) are used.

2. Metabolic Responses

2.1. Estimated Lactate Threshold

2.1.1. Physiological Background. The rate at which arterial
lactate anions [Lac−]a and the associated proton (H+)
accumulate as exercise progresses is directly related to the
ratio between lactic acid (LA) release as a final byproduct of
muscle anaerobic glycolysis and LA clearance by metabolism
and buffering [29–31]. Although there seems to exist a period
of time—not a discrete time point—in which LA production
exceeds its rate of clearance, the term LA “threshold” (LT)
[32, 33] is widely used. LA production increases as tissue O

2

delivery diminishes [34] though some LA can be produced
without any evidence of tissue hypoxia [35]. This justifies the
notion that LA release during exercise is a reasonably sensi-
tive (albeit non-specific) [36] marker of tissue anaerobiosis.

LA dissociates fast in Lac− and H+ in the physiological
pH; that is, it is a strong acid. Plasma bicarbonate (HCO

3

−
) is

the main buffer of lactic acidosis leading to the formation of
carbonic acid (H

2
CO
3
) which in turn dissociates into carbon

dioxide (CO
2
) and water; that is,

H+Lac− +HCO
3

−
⇐⇒ H

2
CO
3
⇐⇒ CO

2
+H
2
O. (1)

Although this reaction has the advantage to turn a fixed
acid into a volatile gas, the “extra-CO

2
” (approximately

22–26mL of additional CO
2
is produced from each mEq

decrease of [HCO
3

−
]) [31] derived from buffering of Lac−-

associated protons will not only accelerate CO
2
output (�̇�CO

2

)

relative to O
2
uptake (�̇�O

2

) but also stimulate ventilation (�̇�E).
These phenomena underlie the techniques for a noninvasive
estimation of the LT.

2.1.2. Technical Considerations. As LA is buffered by HCO
3

−,
�̇�CO
2

increases (1) out of proportion of �̇�O
2

, and a plot
between these variables will show a discernible breakpoint;
that is, the �̇�CO

2

-�̇�O
2

relationship evidences an increased
slope at the point of [Lac−]a increase.This is more commonly
referred as the gas exchange threshold and determined by the
V-slopemethod (Figure 1(a)) [37]. Increase in �̇�CO

2

will drive
�̇�E in its direct proportion leading the latter to increase faster
than �̇�O

2

. The consequent increase in �̇�E/�̇�O
2

(and the end-
tidal partial pressure for O

2
, 𝑃ETO2) with a stable �̇�E/�̇�CO

2

(and 𝑃ETCO2) establishes the so-called ventilatory threshold
(Figure 1(b)) [38]. It should be noted that despite reflecting
the same phenomenon (LA buffering), the gas exchange
threshold slightly precedes the ventilatory threshold (VT)
(Figure 1). After the LT, �̇�E/�̇�CO

2

and 𝑃ET CO
2
remain stable

for a variable period of time during the “isocapnic buffering”.
However, as more H+ is released with further increases in
work rate, �̇�E eventually increases out of proportion to �̇�CO

2

at the respiratory compensation point (RCP) thereby leading
to alveolar hyperventilation and progressive reductions in
𝑃ET CO

2
towards the end of the test (Figure 1(b)).

Irrespective of the denomination, the following technical
aspects for the LT estimation should be noted:
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(1) automatic estimations (by the CPET software) should
be viewed with caution and routinely double-checked
with manually determined values;

(2) if an unitary tangent is used to estimate the LT in the
𝑉-slope plot, the range of �̇�O

2

and �̇�CO
2

values should
be the same as any discrepancy would invalidate its
underlying mathematical (and physiological) princi-
ples [37] (Figure 1(b));

(3) use of discrete R (�̇�CO
2

/�̇�O
2

) values (i.e., > 1 from
tabular data) as indicative of the LT might lead to
erroneous estimations;

(4) �̇�O
2

at any particular WR during a ramp-incremental
test is lower than the steady-state �̇�O

2

value at that
same WR due to a variable �̇�O

2

kinetics delay. As a
result, the WR corresponding to �̇�O

2

LT precedes the
WR in which the LT was identified by approximately
30–45 s (or even more in patients) [4]. Accordingly,
if one is interested in exercising a subject at the �̇�O

2

LT, the selected WR should lead the WR-LT by this
timeframe;

(5) a given change in �̇�E has a greater effect on CO
2

release than O
2
uptake by the lungs; consequently,

preexercise hyperventilation may deplete the amount
of CO

2
stored in the body withoutmajor effects onO

2

stores [39]. As the body capacitance for CO
2
increases

during the early phase of the ramp, repletion of the
CO
2
stores slows �̇�CO

2

relative to �̇�O
2

; that is, �̇�CO
2

-
�̇�O
2

slope in this region becomes shallow (“𝑆
1
” in

Figure 1(a)). As the body CO
2
reservoirs are filled

in with exercise progression, the rate of CO
2
storage

will decrease thereby accelerating �̇�CO
2

relative to
�̇�CO
2

[40]. This might mistakenly suggest the onset of
lactic acidosis, that is, a “pseudo-LT” [41]. Precautions
should therefore be taken to avoid hyperventilation
prior to the noninvasive estimation of LT by the 𝑉-
slope method;

(6) LT should always be expressed relative to predicted
�̇�O
2

peak not to the attained �̇�O
2

peak, especially in
patient populations where the latter procedure might
create a false concept of preserved (or even increased)
�̇�O
2

LT, and

(7) �̇�O
2

peak declines with senescence at a steeper rate
than �̇�O

2

LT; that is, �̇�O
2

LT (%�̇�O
2

peak) increases as
a function of age in both genders [41–43].

2.1.3. Clinical Usefulness. The physiologic changes associated
with [Lac−]a and H+ accumulation (e.g., metabolic acidosis,
impaired muscle contraction, hyperventilation, and altered
�̇�O
2

kinetics) are important to document clinically as they
are associated with reduced cardiopulmonary performance.
An early LT is a marker of impaired aerobic metabolism [44–
49] due to insufficient O

2
delivery, increased recruitment of

fast-twitch type II fibers which are metabolically less efficient
than the slow-twitch type I fibers (i.e., have a greater O

2
/ATP

ratio), and/or mitochondrial enzymatic dysfunction. The

isolated analysis of the LT does not allow the differentiation of
cardiovascular limitation from sedentarity though a severely
decreased LT (e.g., <40% predicted �̇�O

2

peak) [6] is more
frequently found in patients. A low LT has been found useful
to predict an increased risk of post-operatory complications
in the elderly [50, 51], worse prognosis in chronic heart
failure (CHF) [52], and disease severity in pulmonary arterial
hypertension (PAH) [53]. On the other hand, improvements
in LT after pharmacological and nonpharmacological inter-
ventions have been associated with increased functional per-
formance in a range of clinical populations [54–69]. Although
there is lack of evidence that training at (or above) the �̇�O

2

LT is essential to improve exercise capacity in patients with
CHF, coronary artery disease (CAD), and chronic obstructive
pulmonary disease (COPD), training at higher intensities
elicits larger physiological adaptations in less severe patients
who are able to tolerate such regimens [54, 70, 71]. Training
at the �̇�O

2

LT also seems to reduce the risk of complications
during early phases of cardiac rehabilitation [72, 73]. In
patients with COPD, however, LT cannot always be identified
(even using theV-slopemethod), andwhen identified it varies
widely as expressed in �̇�O

2

% peak [74]. In fact, important
subjective improvements after rehabilitation can be found
despite the lack of measurable physiological effects [75]
which casts doubt on its usefulness to target exercise training
intensity in these patients.

2.2. Δ Oxygen Uptake (�̇�
𝑂
2

)/ΔWork Rate (WR)

2.2.1. Physiological Background. From a relatively constant
value of 500mL/min at unloaded pedaling, �̇�O

2

increases
linearly as exercise progresses during a rapidly-incremental
exercise test [4]. The slope of the Δ�̇�O

2

/ΔWR relationship,
therefore, is an index of the overall gain of the �̇�O

2

response,
andnormal valueswould indicate adequatemetabolic cost for
the production of a given power output [4, 8].

2.2.2. Technical Considerations. For an accurate calculation
of the Δ�̇�O

2

/ΔWR slope, any delay in �̇�O
2

increase at the start
of the ramp or any eventual plateau near the end of exercise
should be discarded (Figures 2(a) and 4). Considering that
the LT can potentially distort the response’s linearity [157–
160], it is advisable to check if there is an inflection point
in the Δ�̇�O

2

/ΔWR at the LT. If this is discernible, the slope
should be calculated over the sub-LT range.

2.2.3. Interpretative Issues. Δ�̇�O
2

/ΔWR is not significantly
influenced by the training status, ageing, or gender
(Figure 3(a)) [2, 10, 12–14]. A shallow Δ�̇�O

2

/ΔWR over
the entire range of values and/or a shift from a linearly
increasing profile to a shallower rate of change has been
shown to be indicative of circulatory dysfunction [77–80]
(Figure 4) and severe impairment in mitochondrial function
[81].The latter pattern of response has been found to enhance
ECG sensitivity to detect myocardial ischemia [82–86], and
some studies suggested that it might be useful to unravel
early abnormalities in the coronarymicrocirculation [87, 88].
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Figure 2: Procedures to establish 3 dynamic submaximal relationships by simple linear regression during incremental CPET in young (24-
yr-old, left panels) and old (70-yr-old, right panels) subjects. (a) Δ oxygen uptake (�̇�O2 )/Δ work rate (WR); (b) Δ heart rate/Δ�̇�O2 (c) Δ
minute ventilation (�̇�E)/Δ carbon dioxide output (�̇�CO2 ). The arrows show the range of values considered for analysis. RCP is the respiratory
compensation point. (Modified with permission from [10].)
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Figure 3:The submaximal relationships depicted in Figure 2 as a function of age in males (left panels) and females (right panels). Regression
lines are shownwith their respective 95% confidence intervals for those relationships inwhich the variables were influenced by age. Regression
coefficients and intercepts of the linear prediction equations are depicted with their respective standard error of the estimate (SEE). (Modified
with permission from [10]).

2.3. �̇�
𝑂
2

Efficiency

2.3.1. Physiological Background. �̇�E increases curvilinearly
relative to �̇�O

2

in response to a ramp-incremental exercise
test. At least in theoretical grounds, several variables known
to interfere with both �̇�E and �̇�O

2

would bear an influence
in this relationship; that is, it is deemed to be modulated by
cardiovascular, pulmonary, and muscular factors [161–168].
Most authors have expressed the �̇�E-�̇�O

2

relationship with
�̇�O
2

as the dependent variable [89, 165, 169]. In this construct,
higher �̇�O

2

values (or steeper rates of change) for a given �̇�E

would indicate a more “efficient” O
2
uptake by the lungs. It

should be emphasized, however, that exercise �̇�E is more
closely related to �̇�CO

2

than �̇�O
2

[170] which makes the
concept of �̇�O

2

efficiency prone to misinterpretation (see
Section 2.3.3).

2.3.2. Technical Considerations. Baba and coworkers [165]
proposed a logarithmic transformation of �̇�E over the entire
exercise period to “linearize” this relationship, the so-called
�̇�O
2

efficiency slope (OUES) (Figure 5(a)). More recently, Sun
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tomy in a 21-year-old male with thromboembolic occlusion of the
left pulmonary artery. Note that after the surgery, peak �̇�O2 increased
not only due to a higher peak WR but also owing to a large
improvement in Δ�̇�O2/ΔWR.

et al. [89, 169] expressed the OUE as a ratio (�̇�O
2

/�̇�E in mL/L)
over time which, as expected, gives a mirror image of the
ventilatory equivalent for O

2
. The authors proposed the term

OUE plateau (OUEP) to the 90 s-average of the highest con-
secutive �̇�O

2

/�̇�E measurements; that is, the values just before
the LT (Figure 5(b)). Although they reported that OUEP was
more reproducible than OUES, this was not yet indepen-
dently confirmed. It has been claimed that both relationships
are independent of interobserver variability and effort [90,
164, 171–173]. However,Williamson et al. [173] recently found
that there was a significant increase in OUES as exercise
moved from low to moderate intensity with a peak value at
an RER value of 1.0. Oscillatory breathing (see Section 3.3)
has been found to interfere little with OUE estimations [89].
It should be recognized that both OUES and OUEP require
separate computation though some commercially available
CPET systems allow logarithmic transformations for OUES
calculation.

2.3.3. Interpretative Issues. It is well established that exercise
hyperpnea is under stronger influence of 𝑃aCO2 and pHa
(rather than 𝑃aO2) [170]. As detailed later (Section 3.1),
changes in CO

2
set-point and ventilatory “efficiency” control

the rate of CO
2
clearance. This brings substantial uncer-

tainty on the exact physiological meaning of a disturbed
relationship between �̇�E and �̇�O

2

. Nevertheless, the literature
pertaining to the clinical usefulness of OUES is rather vast
in CHF [90, 164, 165, 167, 171, 172], and interest in this

relationship has been spread to other populations (cystic
fibrosis, and surgical candidates) [174, 175]. A number of
studies have found that OUES is strongly correlated with �̇�O

2

peak [90, 164, 165, 167, 171, 172, 176, 177] and may hold prog-
nostic value in CHF [18, 89–94]. However, the prognostic
advantage of OUES over Δ�̇�E/Δ�̇�CO

2

slope remains unclear
[178, 179]. In the pediatric group, mixed results were reported
and at least one study found that OUES determined at dif-
ferent WRs differed significantly within patients with cystic
fibrosis and correlated only moderately with �̇�O

2

peak and
VT [180]. Interestingly, OUES showed to be more sensitive
to the effects of training than Δ�̇�E/Δ�̇�CO

2

slope in patients
with CHF [96], a finding correlated with enhanced cerebral
andmuscle hemodynamics in another study [95]. On a single
investigation from the group which proposed OUEP, this
relationship either on isolation or in combination with oscil-
latory breathing was prognostically superior to traditional
key CPET parameters in CHF [89]. Predicting equations for
OUES and OUEP have been recently published [169].

2.4. Postexercise �̇�
𝑂
2

2.4.1. Physiological Background. After ramp-incremental
exercise, �̇�O

2

does not decline immediately towards the
resting level. The traditional view is that there would be a
“debt payment” of energy deficit contracted at the start of
effort (O

2
deficit). Indeed, the time course of �̇�O

2

recovery
after amoderate, constant test has been found to track the rate
of phosphocreatine resynthesis [181]. At early recovery,
replenishment of local O

2
sources in muscles (oxymyoglobin

and dissolved O
2
) and reloading of haemoglobin are also

needed [182]. At later stages, lactatemetabolism (oxidation or
gluconeogenesis) and increased cathecolamines and
temperature also interfere with the dynamics of �̇�O

2

decrease
[183, 184].

2.4.2. Technical Considerations. �̇�O
2

during recovery has
been evaluated by (a) the ratio between total �̇�O

2

during exer-
cise and recovery [185], (b) the time constant of �̇�O

2

decay
(i.e., time to reach 63% of the lowest value as obtained by fit-
ting a decreasing monoexponential function) [182, 186, 187],
(c) 𝑡1/2 (time required for �̇�O

2

to decrease to half of its
peak value) [185, 188–190], and (d) �̇�O

2

𝑡-slope (the response
slope during the first minute of recovery by linear regression)
[188, 189]. A further increase in �̇�O

2

during recovery [191] (i.e.,
a �̇�O

2

“overshoot”) has been found indicative of severe hemo-
dynamic dysfunction as it reflects prolonged �̇�O

2

kinetics
[192, 193]. Importantly, the level of effort seems not critical
for a valid analysis of post-exercise �̇�O

2

dynamics [190].

2.4.3. Interpretative Issues. Delayed �̇�O
2

recovery has been
related to functional impairment in CHF [188, 189, 192,
194], myocardial ischemia [195], COPD [196], and functional
impairment in several conditions, including cystic fibrosis
[197], diabetes [198], deconditioning [199], and obstructive
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sleep apnea [139]. Impairment in cardiovascular responses to
exercise as indicated by a delayed recovery of cardiac output
was closely associated with slower off-exercise �̇�O

2

kinetics in
CHF [200]. Improvements in O

2
delivery might be expected

to speed the rate of O
2
recovery in cardiovascular diseases

(Figure 6) [201].

3. Ventilatory Responses

3.1. Excess Exercise Ventilation

3.1.1. Physiological Background. Adequate increases in alveo-
lar ventilation (�̇�A) are paramount to wash out metabolically
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Figure 8: Exercise-induced right-to-left shunt as suggested by
sudden decrease in oxyhemoglobin saturation by pulse oximetry
(SpO
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CO
2
and O

2
(�̇�E/�̇�CO2 and �̇�E/�̇�O2 ) associated with a sustained

decrease in the end-tidal partial pressure for CO
2
(𝑃ETCO2) with a

concomitant increase in 𝑃ETO2 in a patient with pulmonary arterial
hypertension. Shunting of systemic venous blood in the arterial cir-
culation stimulated the peripheral chemoreceptors thereby leading
to this pattern of ventilatory and gas exchange responses. Unl is
unloaded pedaling.

produced CO
2
. Exercise �̇�E for a given �̇�CO

2

is inversely
related to the prevailing level at which𝑃aCO2 is regulated (the
CO
2
“set-point”) and the dead space (𝑉D)/tidal volume (𝑉T)

ratio; that is,

�̇�E

�̇�CO
2

=
1

𝑃aCO2 (1 − (𝑉D/𝑉T))
. (2)

Consequently, the largest �̇�E/�̇�CO
2

values will be found in
those who chronically hyperventilate (low CO

2
“set-point”)

and have the large 𝑉D coupled with a low 𝑉T [202–206]. In
the clinical literature, an increased slope of the �̇�E-�̇�CO

2

rela-
tionship has been termed ventilatory “inefficiency” though it
could be argued that there is no “inefficiency”when increased
�̇�E results from alveolar hyperventilation. “Excess exercise
ventilation” seems therefore a more appropriated descrip-
tion of a greater-than-expected ventilatory response to
metabolic demand [205].

3.1.2. Technical Considerations. There are a number of alter-
natives to express the �̇�E-�̇�CO

2

relationship during progres-
sive exercise: (1) as a ratio ( �̇�E/�̇�CO

2

) at peak exercise, at the
VT (Figure 1(b)), and as the lowest (nadir) value and (2) as
a slope of �̇�E versus �̇�CO

2

from the beginning of exercise to
the RCP (Δ�̇�E/Δ�̇�CO

2(rest-RCP)
) (Figure 2(c)) or, alternatively, up

to peak exercise (Δ�̇�E/Δ�̇�CO
2(rest-PEAK)

) (Figure 7) [25, 26, 207].

Sun et al. reported that the �̇�E/�̇�CO
2(nadir)

had the least
variability with the advantage that choosing the lowest value
does not require VT identification [26]. However, �̇�E/�̇�CO

2

might not decline at all during early exercise in some patients
with severe cardiopulmonary disease (Figure 8) which might
preclude LT identification. 𝑃aCO2 is relatively constant up
to the RCP, and, as described (2), a steeper-than-normal
Δ�̇�E/Δ�̇�CO

2(rest-RCP)
can be explained by a higher𝑉D/𝑉T and/or

a low CO
2
set point. Δ�̇�E/Δ�̇�CO

2(rest-PEAK)
is expected to be

even steeper than Δ�̇�E/Δ�̇�CO
2(rest-RCP)

(Figure 7(a)) because
the former adds a component of hyperventilation to lactic
acidosis and/or to other sources of �̇�E stimuli at near
maximum exercise [26, 207]. It should be emphasized,
however, that there are interpretational pitfalls of using
Δ�̇�E/Δ�̇�CO

2(rest-PEAK)
as a single linear characterization of a

relationship which is characteristically curvilinear (Figure 7).
�̇�E/�̇�CO

2nadir
is equal to Δ�̇�E/Δ�̇�CO

2(rest-RCP)
when the slope has

an 𝑦-intercept of zero. However, Δ�̇�E/Δ�̇�CO
2(rest-RCP)

has a
positive 𝑦-intercept in normal subjects [208] which explains
why �̇�E/�̇�CO

2VT
is usually greater than the slope. �̇�E/�̇�CO

2VT
will also exceed the slope if the VT is a low value (i.e.,
in less fit subjects) [10]. On the other hand, a very steep
Δ�̇�E/Δ�̇�CO

2(rest-RCP)
would produce a negative 𝑦-intercept

thereby making it greater than �̇�E/�̇�CO
2VT

[205].

3.1.3. Interpretative Issues. Δ�̇�E/Δ�̇�CO
2(rest-RCP)

in healthy
young males is approximately 30 [25, 26]; however, it
increases with age probably as a result of larger 𝑉D/𝑉T in
older subjects [10, 11]. Females have lower 𝑉T for a given
�̇�E than males independent of senescence which might
explain their higher Δ�̇�E/Δ�̇�CO

2(rest-RCP)
across all age ranges

(Figure 3(c)) [10, 11]. There is plenty of evidence that
Δ�̇�E/Δ�̇�CO

2(rest-RCP)
is clinically useful as a prognostic marker

in CHF [52, 108, 109, 163, 209–212] and, more recently, in
PAH [97, 98, 213] withmore discriminatory information than
�̇�O
2

peak. The prognostic value in CHF persisted in patients
on 𝛽-blockers [99, 100]. Interestingly, Δ�̇�E/Δ�̇�CO

2(rest-PEAK)
has

been found better than Δ�̇�E/Δ�̇�CO
2(rest-RCP)

to predict 1-year
cardiac mortality and hospitalization in these patients [207].
As expected, composite scores adding Δ�̇�E/Δ�̇�CO

2

to other
cardiopulmonary variables improved even further their
prognostic value [211]. A single study found that coexistence
of COPD tends to “normalize” Δ�̇�E/Δ�̇�CO

2

in CHF patients
which casts doubt on its prognostic usefulness in this specific
subpopulation [214].

In patients with PAH, Δ�̇�E/Δ�̇�CO
2

and �̇�E/�̇�CO
2

(at
rest, VT, and peak) are higher compared to CHF [215].
�̇�E/�̇�CO

2VT
> 37 plus 𝑃ETCO2VT < 30mmHg increased the

probability of pulmonary vascular disease [111]. In those with
idiopathic PAH, higher Δ�̇�E/Δ�̇�CO

2

and �̇�E/�̇�CO
2

(VT and
nadir) were related to clinical [53] and hemodynamic impair-
ment [104]. Importantly, these indexes improvedwith specific
treatment [104, 105] and after pulmonary endarterectomy
[106]. Although to date there is a lack of evidence that indices
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Figure 9: Time course of end-tidal partial pressure for carbon dioxide (𝑃ETCO2) during incremental exercise and early recovery in a healthy
control (panel (a)) and five patients with pulmonary arterial hypertension of progressing severity (panels (b) to (f)). Note that𝑃ETCO2 becomes
lower and even fails to increase as disease progresses. Moreover, it frequently increases (instead of diminishing) during recovery. Panel (f), in
particular, depicts a severely impaired patient showing abrupt and sustained decrease in 𝑃ETCO2 concomitant with the opening of a forame
ovale (Figure 8). Unl is unloaded pedaling.

of excess exercise ventilation in PAH hold the same prognos-
tic importance as in CHF, Deboeck et al. recently described
that �̇�E/�̇�CO

2VT
(and the 6-min walking distance) were

independent predictors of death [98]. Oudiz et al., however,
found that �̇�E/�̇�CO

2

was valuable to prognosis assessment
onlywhen exercise-induced right-to-left shunt (Figure 8)was
absent [119]. Although �̇�E/�̇�CO

2

is particularly disturbed in
chronic thromboembolic pulmonary hypertension (CTEPH)
(Figure 7(b)), thrombotic vessels occlusion increases 𝑉D/𝑉T
and excess exercise ventilation to levels which may not be
proportionately related to hemodynamic impairment [216].

In patients with other chronic respiratory diseases,
Δ�̇�E/Δ�̇�CO

2(rest-RCP)
> 34 increased the risk of post-operative

complications after lung resection surgery with better pre-
diction power than �̇�O

2

peak and predicted post-operative
�̇�O
2

peak [110]. It could also be empirically expected that
a low �̇�E/�̇�CO

2VT
would be rarely associated with increased

𝑉D/𝑉T whereas the opposite would be likely at very high
�̇�E/�̇�CO

2VT
. In fact, Roman and coworkers recently described

that when �̇�E/�̇�CO
2VT

was ≤28 and within 29–32, 96% and
83%of subjects had normal𝑉D/𝑉T. On the other hand,𝑉D/𝑉T
was abnormal in 87% of the cases when �̇�E/�̇�CO

2VT
was ≥39.

Unfortunately, intermediate values were not useful to dis-

criminate the underlying mechanisms. Interestingly, 95% of
the patients with an obstructive ventilatory defect (FEV

1
/

FVC < 0.7) and �̇�E/�̇�CO
2VT
≥ 39 had increased 𝑉D/𝑉T [217].

3.2. End-Tidal Partial Pressure for 𝐶𝑂
2

3.2.1. Physiological Background. Expired CO
2
concentration

increases as air from the serial (“anatomic”) 𝑉D is progres-
sively enriched with CO

2
from the gas exchanging areas.

Consequently, the largest partial pressures for CO
2
are

found at the end of tidal expiration (𝑃ETCO2). However,
𝑃ETCO2 is influenced not only by the metabolic rate (i.e.,
the rate of increase in mixed venous 𝑃CO

2

) but also by
the deepness of the previous inspiration (i.e., VT) and the
duration of the exhalation. 𝑃ETCO2 reflects poorly 𝑃aCO2,
(ideal alveolar) as there are significant regional variations
in alveolar 𝑃CO

2

(𝑃ACO2) and �̇�A-to-perfusion ratios—even
in normal subjects [2, 16]. It should also be recognized that
𝑃ETCO2 becomes systematically greater than 𝑃aCO2 during
incremental exercise as the first is the peak of the intrabreath
oscillation of 𝑃ACO2 and 𝑃aCO2 measured in peripheral
arterial blood is an average of the oscillation over several
breaths [2, 16].
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Figure 11: Heart rate (HR) response as a function of O
2
uptake (�̇�O2 )

in 3 males of same age: a patient with abnormal O
2
delivery and/or

extraction (severe pulmonary arterial hypertension, ΔHR/Δ�̇�O2 =
158 beats/L), a normal sedentary subject (ΔHR/Δ�̇�O2 = 65 beats/L),
and a triathlete (ΔHR/Δ�̇�O2 = 26 beats/L).

3.2.2. Technical Considerations. 𝑃ETCO2 increases from rest
to LT (which is proportional to decrease in �̇�E/�̇�CO

2

) in this
time range, followed by a stable phase during the isocapnic
buffering period, and then a fall after the RCP (Figures 1(b)
and 9(a)). Asmentioned,𝑃aCO2 underestimation by 𝑃ETCO2
is roughly proportional to 𝑉D/𝑉T; consequently, computing
𝑉D/𝑉T using 𝑃ETCO2 instead of 𝑃aCO2 overestimates 𝑉D/𝑉T
in normal subjects and underestimates it in patients [218].

3.2.3. Interpretative Issues. 𝑃ETCO2 differs from 𝑃aCO2 as a
result of ventilation-to-perfusion inhomogeneities, right-to-
left shunt, and changes in breathing pattern [2, 16]. However,
arterial blood gases are not routinely measured during
clinical CPET. Consequently, interpretation of a reduced
𝑃ETCO2 is complex in the absence of 𝑃aCO2 measurements
as it might be related to abnormal gas exchange, alveolar
hyperventilation, or a tachypneic and shallow pattern of
breathing. Regardless of the exact mechanism, abnormally
low values at the LT have been found useful for the diagnosis
of pulmonary vascular diseases in patients with unexplained
dyspnea [111].There is now established evidence that 𝑃ETCO2
at rest [112–114], LT [115], and peak exercise [116] are valuable
for prognosis estimation and disease severity assessment in
CHF [219, 220]. Low 𝑃ETCO2 values have also been found in
PAH (see also later) [97, 111, 117, 118]. Decreased 𝑃ETCO2 at
rest and during exercise seems to track the blunted cardiac
output response to exercise in cardiovascular disease [219,
221]. Accordingly, exercise training after acute myocardial
infarction increases both𝑃ETCO2 and cardiac output [120]. In
addition to reduced cardiac output, an augmented ventilatory
drive may also account for a reduction in 𝑃ETCO2 whereas
altered breathing pattern seems to have a minor role in CHF
[204].
𝑃ETCO2 is typically lower in PAH than CHF [111, 219].

In fact, Yasunobu and co-workers suggested that observation
of an unusually low 𝑃ETCO2 at the LT (<30mmHg or, in
particular, <20mmHg) in a patient with exertional dyspnea
of unknown cause without evidence of acute hyperven-
tilation (ie, normal R) should prompt the hypothesis of
pulmonary vasculopathy [111]. 𝑃ETCO2 response profile is
also informative as failure to increase below the LT or
progressive decreases from the start of exercise are associ-
ated with worsening clinical and hemodynamic impairment
(Figures 9(b) to 9(e)) [111] and are rarely found in CHF [112–
116]. Based on (2), it might be expected that if 𝑃ETCO2
changed parallel to𝑃ACO2, a hyperbolic relationship between
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Figure 12: Change in Δ heart rate (HR)/Δ oxygen uptake (�̇�O2 )
(arrow) slope (arrow) during incremental CPET in a patient with
severe cardiovascular limitation to exercise (panel (a)). Note that
this led to a plateau in O

2
pulse (�̇�O2/HR ratio) as the 𝑦-intercept

becomes zero; that is, the relationship passes through its origin
(panel (b)). Unl is unloaded pedaling.

�̇�E/�̇�CO
2

and 𝑃ETCO2 at the LT would result. As this was
observed by Yasunobu et al. [111] and confirmed by others
[104, 216], it seems that alveolar hyperventilation is an
important contributing mechanism to the excess exercise
ventilation in PAH. Moreover, sharp decreases in 𝑃ETCO2
may indicate exercise-induced intracardiac shunt, a finding
with ominous consequences (Figures (8) and 9(f)) [119].
Additionally, an abnormal increase in 𝑃ETCO2 during early
recovery has been described in PAH (Figure 9(c)), even in
mildly-impaired patients [111].

3.3. Exertional Oscillatory Ventilation (EOV)

3.3.1. Physiological Background. An abnormal pattern of
ventilation consisting of cyclic hyperpnea and hypopnea
without interposed apneas can be detected by CPET in
some patients with advanced CHF. The EOV might occur
throughout the test, but the oscillations frequently dampen
as exercise progresses [121, 222–224]. The pathophysiological
mechanisms are multifactorial including low cardiac output
leading to a prolonged time of pulmonary venous blood to
reach the central or peripheral chemoreceptors, low lung
volume, pulmonary congestion, augmented chemoreceptor
sensitivity, and the narrow difference between the eupneic
𝑃aCO2 and the apneic (or hypoventilatory) threshold [27, 122,
123, 225–235].

3.3.2. Technical Considerations. Different criteria for EOV
might help explaining why its prevalence has been found to
vary from 12% to 50% in CHF [123, 124, 236–238]. A widely
used definition is as follows (Figure 10): (1) three or more
regular oscillations (i.e., clearly discernible from inherent
data noise); (2) standard deviation of three consecutive cycle
lengths (time between 2 consecutive nadirs) within 20% of
the average; (3) minimal average amplitude of �̇�E oscillation
of 5 L/min (peak value minus the average of two in-between
consecutive nadirs) [27]. Alternative definitions require: (i)
criteria for persistence of the EOV pattern (three or more
consecutive cyclic oscillations) for at least 60% of exercise at
an amplitude ≥ 15% of the average resting value [122, 239–
241] or (ii) 3 or more consecutive cyclic fluctuations with
amplitude exceeding 30% of mean �̇�E and oscillatory cycle
within 40 to 140 s in 3 or more gas exchange/ventilatory
variables [124].

3.3.3. Clinical Usefulness. There is now well-established evi-
dence that EOV holds important negative prognostic impli-
cations in patients with CHF [27, 124, 222, 236, 239], being
related to worsening clinical status [121, 122, 124], severe
hemodynamic dysfunction [123], and reduced functional
capacity [125, 126]. Unfortunately, EOV may preclude an
adequate identification of the LT by either the 𝑉-slope or the
ventilatory equivalent methods [242]. EOV is highly repro-
ducible regardless of the CHF aetiology [121]. Interestingly,
several interventions including inotropics [237], exercise and
inspiratory muscle training [243–245], and transplantation
[237] lessened of even abolished EOV. Future larger tri-
als should establish whether EOV might add independent
information to commonly used outcomes for interventional
studies in CHF.

4. Cardiovascular Responses

4.1. Δ Heart Rate (HR)/Δ Oxygen Uptake (�̇�
𝑂
2

)

4.1.1. Physiological Background. Increases in HR with pro-
gressive exercise are initially mediated by parasympathetic
tonus withdrawal and, subsequently, by increased sympa-
thetic activity [246]. There is an effectively linear increase in
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Figure 13: O
2
pulse (�̇�O2/HR) as a function of time during incremental exercise. (a) Curvilinear increase up to a normal predicted value in a

healthy subject; (b) abnormally low peak values due to ventilatory limitation and early exercise cessation in a patient wirh COPD; (c) failure
to increase and early plateau in a patient with end-stage pulmonary arterial hypertension; (d) decrease at near maximum exercise in a patients
with concomitant electrocardiographic abnormalities indicative of coronary artery disease. Unl is unloaded pedaling.

HR as a function of �̇�O
2

during ramp-incremental exercise
[3, 24, 25] though departs from linearity might occur at
higher exercise intensities (Figure 2(b)) [247]. According
to the Fick principle, reduced stroke volume (SV) and/or
diminished C(a–v)O

2
would lead to a steeper ΔHR/Δ�̇�O

2

slope. Consequently, cardiac dysfunction, decreased arte-
rial O

2
content (anemia and hypoxemia), and impaired

muscle aerobic capacity (e.g., deconditioning, mitochondrial
dysfunction) can potentially increase ΔHR/Δ�̇�O

2

. On the

other hand, training has a flattening effect on ΔHR/Δ�̇�O
2

(Figure 11).

4.1.2. Technical Considerations. Although �̇�O
2

is the appro-
priate dependent variable, this relationship has been tradi-
tionally described with HR on the 𝑦-axis [3, 24, 25]. Linearity
of the HR response throughout the test duration should be
firstly established. In event of late departures from linearity,
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Figure 14: Heart rate (HR) response after incremental exercise in a
healthy control and a patient with pulmonary arterial hypertension
(PAH) of same age and gender (both females aged 31). Note the
delayed HR recovery (HRR) up to the 5th minute after-exercise in
the patient compared to the control. HRR1min ≤ 18 bpm after cycle
ergometer exercise test has recently been found an independent
predictor of mortality in these patients [28].

the slope should be calculated only over the initial linear
phase response (Figure 2(b)). As detailed later, pronounced
changes in linearitymay hold important clinical implications.

4.1.3. Clinical Usefulness. ΔHR/Δ�̇�O
2

increases with age
being consistently higher in females than males (Figure 3(b))
[10]. As expected, cardiovascular and muscular diseases
which are known to impair O

2
delivery and/or utiliza-

tion have been found to increase both the slope and the
intercept of the ΔHR/Δ�̇�O

2

relationship [127–130]. Some
specific conditions, however, may prevent HR to increase
even in the presence of disease: (a) patients under 𝛽-blocker
therapy [248], (b) ischemic involvement of the sinusal node
artery [249], and (c) advanced CHF [250]. The so-called
O
2
pulse (�̇�O

2

/HR ratio) is a commonly used derivation
of ΔHR/Δ�̇�O

2

. As the primary �̇�O
2

-HR relationship has a
negative 𝑦-intercept, O

2
pulse increases hyperbolically [16]

towards an asymptotic value at end-exercise (Figure 13(a))
whichmight reflect the SV response [131].However, all patho-
logic conditions known to increase ΔHR/Δ�̇�O

2

(including
desaturation, anemia, and impaired O

2
extraction) will also

diminish peak O
2
pulse. Moreover, early exercise termina-

tion due to symptom limitation (including breathlessness
in patients with COPD) (Figure 13(b)) and/or submaximal
effort would decrease peak O

2
pulse in the absence of

cardiovascular limitation. In these cases, however, a normal
ΔHR/Δ�̇�O

2

is reassuring. A more clinically useful pattern
of response relates to abrupt increases in ΔHR/Δ�̇�O

2

slope

to an extent that the relationship goes through its origin
or becomes with a negative 𝑦-intercept; that is, O

2
pulse

turns flat (Figure 12) or even decreases (Figure 13(d)). This
suggests that the HR response became the sole mechanism
for cardiac output increase due to a severely impaired SV
response. In practical grounds, there is limited evidence that
as myocardial perfusion is reduced in patients with coronary
artery disease, there is reversible left ventricle dysfunction
thereby steepening ΔHR/Δ�̇�O

2

(Figure 12(a)) and flattening
(Figure 12(b)) (or even decreasing) (Figure 13(d)) O

2
pulse

[88, 132, 133].

4.2. Heart Rate Recovery (HRR)

4.2.1. Physiological Background. At the start of exercise, HR
increases as a result of early parasympathetic withdrawal and
subsequent sympathetic activation [246]. After effort cessa-
tion, vagal reactivation (with opposition of the sympathetic
drive) is primarily responsible for the return to baseline con-
ditions [251], especially during the first 30 seconds of recovery
[252]. Consequently, autonomic imbalance (increased sym-
pathetic stimuli and/or impaired parasympathetic activity)
might slow post-exercise HR decay.

4.2.2. Technical Considerations. HRR is the difference
between peak HR and HR at selected time points after
exercise (e.g., 30 sec and every minute thereafter). HRR
analysis may be performed independent of the mode of
exercise (treadmill [134, 135, 140, 152, 253], cycle ergometer
[28, 254–256], or field tests [257]), and a cool-down period
at the end of maximal effort seems not to interfere with its
prognostic value [28, 134, 150].

4.2.3. Interpretative Issues. HRR has been found a simple
and inexpensive prognostic marker in healthy populations
[134], CHF [135], CAD [151, 258], PAH [28] (Figure 14),
diabetes mellitus [136], and COPD [137]. Abnormal HRR
has also been demonstrated in other systemic disorders
such as metabolic syndrome [138], obstructive sleep apnea
[139], sarcoidosis [140], rheumatological diseases [141, 142],
polycystic ovary syndrome [143], polycystic kidney disease
[144], and HIV infection [145]. Of note, it has been useful
for risk stratification in CHF patients with mildly reduced
peak �̇�O

2

[259]. HRR seems to be responsive to exercise
training in some disorders [146–149], probably due to effects
of exercise on autonomic regulation [260, 261]. Interestingly,
these modifications were related to increased survival after
rehabilitation in patients with previousmyocardial infarction
[262, 263].

5. Conclusions

Interpretation of incremental CPET is best performed by a
judicious analysis of all available physiological information
provided by the procedure (and by previous testing) tak-
ing into consideration the underlying clinical question(s).
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Table 1: Clinical usefulness and suggested cutoffs of selected dynamic responses to rapidly incremental CPET.

Variable Clinical usefulness Cutoffs/patterns of abnormality

Metabolic

Estimated lactate
threshold (LT)

(i) Prognosis in CHF [52]
(ii) Marker of disease severity in PAH [53]
(iii) Risk predictor of postoperatory complications in
the elderly [50, 51]
(iv) Guide exercise training intensity [72, 73]
(v) Responsive to rehabilitation in less impaired
patients with chronic cardiopulmonary diseases [54, 70]

(i) �̇�O2 LT < 40% predicted �̇�O2 peak [2]
(ii) Influenced by age, gender, and fitness [4, 7, 42, 76]

Δ�̇�O2 /Δ work rate
(mL/min/W)

(i) Indicative of impaired O2 delivery and/or utilization
[77–81]
(ii) Adjunct for the diagnosis of myocardial ischemia
[82–88]

(i) <lower limit of normality (<8.5mL/min/W) [4, 8]
(ii) Decrease in slope (or plateau) as exercise progresses
[77–81]

�̇�O2 efficiency slope
(OUES)

(i) Functional impairment and prognosis in CHF
[18, 89–94]
(ii) Response to interventions in CHF [95]
(iii) More sensitive to training than the Δ �̇�E/Δ�̇�CO2
slope in CHF [96]

Mortality in CHF
<1.05 L/min/log (L/min) or <65% predicted [89]

�̇�O2 efficiency plateau
(OUEP)

Functional impairment and prognosis in CHF [89] Mortality in CHF
<25mL/L or <65% predicted [89]

Ventilatory

Excess exercise
ventilation

(i) Prognosis in PAH [97, 98] and CHF, even under
𝛽-blocker therapy (CHF) [99, 100]
(ii) Responsive to therapy in CHF [101–103], PAH
[104, 105], and CTEPH [106]
(iii) Responsive to exercise training [107]

<age—and gender-specific lower limits of normality
[10, 11]
Mortality in CHF
Δ�̇�E/Δ�̇�CO2(rest-RCP) ≥ 34 [108]
Δ�̇�E/Δ�̇�CO2(rest-PEAK) ≥ 45 [109]

Mortality in PAH
�̇�E/Δ�̇�CO2nadir ≥ 52 [97]
�̇�E/�̇�CO2LT ≥ 54 [98]
Δ�̇�E/Δ�̇�CO2(rest-RCP) ≥ 62 [98]
Δ�̇�E/Δ�̇�CO2(rest-PEAK) ≥ 48 [97]

Postoperative complications of lung resection
Δ�̇�E/Δ�̇�CO2(rest-RCP) ≥ 34 [110]

End-tidal partial
pressure for CO2
(𝑃ETCO2)

(i) Adjunct for the diagnosis of PVD [111]
(ii) Prognosis in CHF [112–116]
(iii) Marker of disease severity in PAH [97, 111, 117, 118]
(iv) Diagnosis of a patent forame ovale in PAH [119]
(v) Responsive to drug therapy in PAH[105] and CHF
[101]
(vi) Responsive to exercise training [120]

Diagnosis of PVD [111]
“likely” = ≤ 30mmHg at the LT
“very likely” = ≤ 20mmHg at the LT
progressive reductions as exercise increases
sudden increase with exercise cessation

Mortality in CHF
≤33mmHg at rest [112, 114]
≤36mmHg at the LT [115]
<31mmHg at peak [116]

Exertional oscillatory
ventilation

(i) Indicative of worsening clinical status, severe
hemodynamic dysfunction, and reduced functional
capacity in CHF [121–126]
(ii) Responsive to interventions in CHF [101]

Three or more regular �̇�E oscillations (standard
deviation of three consecutive cycle lengths within 20%
of their average), with minimal average amplitude of
ventilatory oscillation of 5 L/min [27]

Cardiovascular

ΔHeart rate/Δ�̇�O2
(beat/L)

(i) Indicative of abnormal cardiovascular response to
exercise [127–130]
(ii) Adjunct for the diagnosis of myocardial ischemia
[88, 131–133]

<age—and gender-specific lower limits of normality
[9, 10]
Changes in linearity with increases in steepness
[88, 132, 133]
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Table 1: Continued.

Variable Clinical usefulness Cutoffs/patterns of abnormality
Heart rate recovery
(HRR) (beats/min)

(i) Prognosis in asymptomatic subjects referred for
exercise testing [134], CHF [135], PAH [28], Type 2
diabetes [136], and COPD [137]
(ii) Disease severity in metabolic syndrome [138],
obstructive sleep apnea [139], sarcoidosis [140],
rheumatological diseases [141, 142], polycystic ovary
syndrome [143], polycystic kidney disease [144], and
HIV infection [145]
(iii) Responsive to aerobic training in CHF, COPD,
obstructive sleep apnea, and systemic lupus
erythematosus [146–149]

Mortality in patients referred for exercise testing
Treadmill, cooldown:

HRR1 min ≤ 12 [134, 150, 151]

Treadmill, no cooldown:
HRR1 min ≤ 18 [135]
HRR2 min ≤ 22 [152]

Treadmill, no cooldown:
HRR2 min ≤ 42 [153]

Mortality in CHF
Treadmill, cooldown:

HRR1 min < 6.5 [154]

Treadmill, no cooldown:
HRR1 min ≤ 12 [155]

Bike, cooldown:
HRR1 min < 17 [156]

Mortality in PAH
Bike, cooldown:

HRR1 min ≤ 18 [28]

Mortality in COPD
Bike, cooldown:

HRR1 min ≤ 14 [137]

Mortality in Type 2 diabetes
Treadmill, cooldown:

HRR1 min < 12
HRR2 min < 28 [136]

�̇�O2 : oxygen uptake; �̇�CO2 : carbon dioxide output; �̇�E: minute ventilation; COPD: chronic obstructive pulmonary disease; CHF: chronic heart failure; PAH:
pulmonary arterial hypertension; PVD: pulmonary vascular disease; RCP: respiratory compensation point.

Although a considerable lack of information on the indi-
vidual diagnostic and prognostic value of the dynamic sub-
maximal relationships still persists, the bulk of evidence is
reassuring in relation to their practical usefulness. Large-
scale, multicentric studies, however, are urgently needed to
validate the suggested cutoffs of abnormality (Table 1) in
different clinical scenarios and disease populations.

Abbreviations

CAD: Coronary artery disease
CHF: Chronic heart failure
COPD: Chronic obstructive pulmonary disease
CPET: Cardiopulmonary exercise testing
CTEPH: Chronic thromboembolic pulmonary

hypertension
EOV: Exertional oscillatory ventilation
FEV
1
: Forced expiratory volume in one second

FVC: Forced vital capacity

GET: Gas exchange threshold
HR: Heart rate
HRR: Heart rate recovery
LA: Lactic acid
LT: Lactate threshold
OUES: Oxygen uptake efficiency slope
OUEP: Oxygen uptake efficiency plateau
PAH: Pulmonary arterial hypertension
𝑃a: Arterial partial pressure
𝑃A: Alveolar pressure
𝑃ET: End-tidal partial pressure
PVD: Pulmonary vascular disease
R: Respiratory exchange ratio
RCP: Respiratory compensation point
SpO
2
: Pulse oxygen saturation

Unl: Unloaded pedaling
�̇�CO
2

: Carbon dioxide output
𝑉D/𝑉T: Dead space to tidal volume ratio
�̇�A: Alveolar ventilation
�̇�E: Minute ventilation
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�̇�E/�̇�O
2

: Ventilatory equivalent for O
2

�̇�E/�̇�CO
2

: Ventilatory equivalent for CO
2

�̇�O
2

: Oxygen uptake
VT: Ventilatory threshold
WR: Work rate.
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