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Abstract

Background: A major challenges in the analysis of large and complex biomedical data is to develop an approach for 1)
identifying distinct subgroups in the sampled populations, 2) characterizing their relationships among subgroups, and 3)
developing a prediction model to classify subgroup memberships of new samples by finding a set of predictors. Each
subgroup can represent different pathogen serotypes of microorganisms, different tumor subtypes in cancer patients, or
different genetic makeups of patients related to treatment response.

Methods: This paper proposes a composite model for subgroup identification and prediction using biclusters. A biclustering
technique is first used to identify a set of biclusters from the sampled data. For each bicluster, a subgroup-specific binary
classifier is built to determine if a particular sample is either inside or outside the bicluster. A composite model, which
consists of all binary classifiers, is constructed to classify samples into several disjoint subgroups. The proposed composite
model neither depends on any specific biclustering algorithm or patterns of biclusters, nor on any classification algorithms.

Results: The composite model was shown to have an overall accuracy of 97.4% for a synthetic dataset consisting of four
subgroups. The model was applied to two datasets where the sample’s subgroup memberships were known. The procedure
showed 83.7% accuracy in discriminating lung cancer adenocarcinoma and squamous carcinoma subtypes, and was able to
identify 5 serotypes and several subtypes with about 94% accuracy in a pathogen dataset.

Conclusion: The composite model presents a novel approach to developing a biclustering-based classification model from
unlabeled sampled data. The proposed approach combines unsupervised biclustering and supervised classification
techniques to classify samples into disjoint subgroups based on their associated attributes, such as genotypic factors,
phenotypic outcomes, efficacy/safety measures, or responses to treatments. The procedure is useful for identification of
unknown species or new biomarkers for targeted therapy.
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Introduction

Recent advances in biotechnology have generated great interest

in the development of statistical methods and data mining

techniques to analyze massive amounts of biological and medical

data for understanding biological processes, discovering new

species, or identifying new biomarkers for safety assessment,

disease diagnostics and prognostics, and prediction of treatment

response, etc. For example, metagenomics utilizes DNA sequence

data to detect and identify representative species in environmental

and clinically relevant samples and to discover genes or organisms

with novel or useful functional properties [1–4].

In clinical treatment, patients are heterogeneous due to

differences in genetic pre-dispositions, lifestyle, and disease

characteristics. Personalized medicine utilizes genomic predictors

of target patient population for assignment of more effective

therapies to ensure safety and avoid adverse events or unnecessary

treatment [5,6]. A main goal is to develop a procedure that can

classify patients into subgroups representing different disease

characteristics or different responses to a specific treatment. For

example, acute lymphoblastic leukemia (ALL) is a heterogeneous

disease, including several subtypes (T-ALL, E2A-PBX1, BCR-

ABL, TEL-AML1, MLL) differing in their response to chemo-

therapy [7–9]. Identifying important leukemia subtypes to

accurately assign patients to specific risk/treatment groups is a

difficult and expensive process, requiring the combined expertise

of hematologist/oncologist, pathologist, and cytogeneticist [9].

In food safety surveillance, serotyping of pathogen strains is

usually the first important step for identification and character-

ization of Salmonella isolates in outbreak investigations. However,

standard methods for serotype identification of strains are tedious

and time-consuming [10,11]. Considering there are over 2,500
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outbreak strains of unknown or new serotypes, development of a

procedure for early and fast screening and source tracking is

essential. PFGE (pulsed-field gel electrophoresis) genotyping

method has been used to investigate the relatedness of individual

cases, and to confirm an outbreak of a disease and determine its

possible source [10–13]. Previous works [10,11,14–16] reported

that serotypes of Salmonella isolates could be deduced and

predicted based on PFGE fingerprints. Thus, PFGE fingerprint

profiling using data mining algorithms can potentially provide a

possible alternative method for fast screening and identifying

Salmonella serotypes.

In the aforementioned applications, the primary goal is to

develop a class prediction model that can accurately identify

population subgroups (cancer or strain subtypes) for new samples.

There are three main aims: 1) classifying samples into distinct

subgroups from large and complex unlabeled multivariate data, 2)

characterizing the relationships among the subgroups identified,

and 3) developing a prediction model to classify subgroup

memberships of new samples by finding a set of predictor

variables.

Classification is the standard approach to developing a model

for class prediction of new samples. Classification is a supervised

analysis, in which each sample has a predefined class label. A

classification model builds a mathematical function for predicting

class memberships of new unlabeled samples by learning the

relationships between the class memberships of samples and their

attributes from the sampled data [17–21]. The objective of this

learning is to search for a prediction function and a least number

of predictor variable that maximizes the probability of classifica-

tion accuracy. In other words, a classification model utilizes class

label information to optimize predictive accuracy. Without class

labels, classification analysis is not viable for sample classification

and prediction. Furthermore, standard classification algorithms

are only applicable to the samples from the classes that are present

in the sampled data. The algorithms are incapable of classifying

the samples from classes other than those presented within the

dataset, such as classifying new cancer subtypes in clinical

medicine or new serotypes in pathogen identification.

Cluster analysis is the standard data mining technique for

identification of structures and patterns in the data by partitioning

samples into disjoint subgroups and finding their relationships.

There are hierarchical and non-hierarchical clustering algorithms.

The hierarchical algorithm clusters the objects into a tree-like

dendrogram [22]. The hierarchical clustering method can provide

the relationship among the samples or the clusters; however, it is

inefficient for determining subgroups when the number of samples

is large. The non-hierarchical clustering algorithms divide objects

into a pre-specified number of groups; k-means [23] and self-

organizing maps (SOM) [24] are two commonly known

algorithms. Specification of the number of subgroups is a challenge

when the number of subgroups is large.

Clustering techniques provide a global analysis of samples by

partitioning samples with similar attributes in the same cluster.

Each sample is assigned to one and only one cluster, based on all

attributes. In many applications, such as gene expression

experiments, functionally related genes may exhibit a similar

pattern only in a subset of patients with certain medical conditions,

not in all patients; also, some genes may involve more than one

function or no function at all, and associate with more than one

condition or no condition. A primary goal in these applications is

to identify those subsets of co-expressed/co-regulated genes with

associated subsets of samples with similar conditions. Cluster

analysis cannot effectively identify the substructures between a

subset of genes and a subset of samples. Biclustering analysis

provides an approach to identify substructures in the sampled

data. Biclustering techniques identify biclusters by simultaneously

clustering both samples and attributes [25–39]. Each bicluster is

defined as a subset of attributes associated with a subset of samples.

For an overview of biclustering methods see the reviews of

Madeira and Oliveira [28] and Kriegel et al. [32]. Alternatively,

Baker el al. [40,41] developed GeneWeaver system aiming to

integrate multiple data sources to identify associations between

phenotypes and gene sets. The system was capable of demon-

strating the clustered genes and phenotypes as hierarchical

associations. Recently, Zhang et al. [42] further developed an

approach to finding maximum bicliques in bipartite graphs, which

was incorporated into the GeneWeaver system. Bicluster analysis

can be viewed as an application of GeneWeaver to identify

substructures in single study.

Both cluster and bicluster analyses are unsupervised analyses, in

which samples do not have a predefined class label. These two

methods are effective techniques for subgroup identification and

characterization, but, are inefficient for subgroup prediction.

Several supervised biclustering procedures have been proposed for

classification of labelled sample datasets [43–46]; these methods

incorporate label information into the process of building

biclusters. More discussion in the use of cluster/bicluster analysis

for prediction and supervised biclustering procedures are given in

the Discussion section.

In this paper, we propose a composite modeling approach for

subgroup identification and prediction via a bicluster analysis. The

proposed approach combines an unsupervised biclustering tech-

nique to identify potential sample subgroups in the first step, and a

supervised classification technique to predict sample subgroup

memberships in the second step. The proposed composite model

neither depends on any specific biclustering algorithm or patterns

of biclusters, nor on any classification algorithms. Any biclustering

methods can be used in the first step of bicluster identification.

This paper uses a SVD-based biclustering algorithm to identify

constant biclusters [39]; this method has been shown to perform

well in extensive comparisons with various biclustering methods,

and found to be generally superior in terms of sensitivity and

specificity. The primary focus of this paper is subgroup classifi-

cation and prediction. Three well-known classification algorithms

are considered in the second step of subgroup classification and

prediction: support vector machine [17,18], random forests[19],

and diagonal linear discriminant analysis [21]. The proposed

composite model for subgroup identification and prediction is

applied to a synthetic dataset and three real datasets for

illustration.

Methods

Consider a two-way data matrix with rows representing the

measured attributes and columns representing samples. Many

singular value decomposition (SVD) approaches for bicluster

analysis of microarray data have been proposed and demonstrated

to be effective [34–39]. In this paper, a SVD-based biclustering

method [39] was used to identify substructures between subsets of

attributes and subsets of samples. An advantage of SVD-based

biclustering methods is that the biclustering results do not depend

on the random starting seeds. In the proposed approach, first a set

of biclusters was identified using the SVD-based biclustering

method [39], followed by generating a set of binary classifiers,

each built from one of the biclusters identified. A composite model

is then developed to classify samples into disjoint subgroups

described below.

Subgroup Identification and Prediction via Bicluster Analysis
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Denote the collection of biclusters identified as C = {C1,

C2,…,Ck}. Each bicluster Ci consists of a subset of samples Si

that have similar attributes Gi (i = 1,.,k). Thus, each Si represents a

subgroup in the sampled population. A subgroup-specific binary

classifier mi can be built to determine whether or not a sample s
with the attribute g is in the associated subgroup Si, that is,

mi(g|Gi) = I{s M Si}, where I is an indicator function (Figure 1). A

composite classification model M, which consists of the collection

of the binary classifiers M = {m1, …, mk}, is developed to partition

samples into several disjoint subgroups described below.

For a given sample s with the attribute g, each component

binary classifier predicts whether or not the sample s belongs to its

corresponding subgroup, where there are k predictive outcomes.

Denote yes as ‘‘1’’ and no as ‘‘0’’. Suppose the composite

classification model consists of five binary classifiers (m1,…,m5)

with the corresponding subgroups (S1, …, S5). For example, the

outcome (1,0,0,0,0) of the composite model implies that the sample

is in S1, (0,0,1,1,0) implies that the sample is in S3 and S4, and

(0,0,0,0,0) implies that the sample is not in any of the five

subgroups. For k binary classifiers, there are 2k possible patterns of

predictive outcomes. Each pattern represents a subgroup. How-

ever, when k is modest or large, many patterns would contain very

few samples or no samples at all. When the number of patterns is

Figure 1. Subgroup-specific binary classifier. For each bicluster
Ci = {Gi, Si}, a subpopulation-specific genomic binary classifier mi(Gi) = I{s
M Si}, is built to predict where or not a sample is in the subpopulation Si,
where I is an indicator function.
doi:10.1371/journal.pone.0111318.g001

Figure 2. A synthetic 3006100 data matrix consists of two main bicluster regions with the size of 50650 having 10 overlapping
columns. The columns represent 100 samples consisting of 4 subgroups: S1 (columns 1–40, blue), S2 (columns 41–50, red), S3 (columns 51–90,
green), and S4 (columns 91–100, black); the first 100 rows represent attributes: G1 (rows 1–50), G2 (rows 1–100), G3 (rows 51–100), and G4 (rows 1–
100).
doi:10.1371/journal.pone.0111318.g002

Subgroup Identification and Prediction via Bicluster Analysis
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large, a minimum of n* = 5–10 samples may be set as the criterion

to form a (major) subgroup for further analysis. The patterns that

contain less than n* samples are referred to as minority subgroups.

Binary classifiers can be developed using any classification

algorithms. This paper uses the three well-known algorithms:

support vector machine (SVM) [17,18], random forests (RF) [19],

and diagonal linear discriminant analysis (DLDA) [21]. These

three algorithms were shown to perform well and have been the

most popular classification algorithms for class prediction of high

dimensional data [47].

In the development of a classification model, the most important

consideration is to unbiasedly evaluate its ‘‘performance’’. The

common measures of performance are sensitivity (the proportion

of correct positive classifications out of the number of true

positives), specificity (the proportion of correct negative classifica-

tions out of the number of true negatives), and accuracy (the total

number of correct classifications out of the total number of

samples). Procedures with both high sensitivity and high specificity

will have high accuracy. To obtain unbiased estimates, the current

sampled data are divided into a training set and a separate test set

[48]; the training set is used for model development, and the test

set is used for performance assessment. The split-sample and cross-

validation methods are commonly used to evaluate performance of

a classifier. The split-sample method randomly splits the data into

two subsets from either the entire data or a designated test dataset.

Split-sample validation is useful when the sample size is large.

Table 1. Upper panel, frequency distributions of classification patterns identified by the SVM composite model (m1, m2, m3, m4)
for the synthetic training dataset consisting of 4 subgroups, S1, S2, S3, and S4; Lower panel, performance of the SVM composite
prediction model for the test dataset of 1,000 simulated samples.

Subgroup
Pattern

S1
(n = 40)

S2
(n = 10)

S3
(n = 40)

S4
(n = 10)

Total
(n = 100)

Training

0010 40 0 0 4 44

0100 0 0 40 2 42

1111 0 10 0 1 11

0110 0 0 0 1 1

0111 0 0 0 1 1

1011 0 0 0 1 1

Sensitivity 1 1 1 0 0.90

Specificity 0.93 0.99 0.97 1 0.98

Test

Sensitivity 1.000 0.994 1.000 0.654 0.964

Specificity 0.968 0.997 0.963 0.999 0.990

Table values are the averages over 1,000 repetitions.
doi:10.1371/journal.pone.0111318.t001

Figure 3. Lung Cancer data: three biclusters are identified, 55640, 18622 and 4610, using top 100 genes.
doi:10.1371/journal.pone.0111318.g003

Subgroup Identification and Prediction via Bicluster Analysis
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Cross validation involves repeatedly splitting the sampled data into

a training set and test set to generate different training and test

sample partitions to repeatedly estimate ‘‘accuracy’’ measures.

Leave-one-out is a cross validation in which one sample is left out

as a test set while all the other samples constitute the train set. The

‘‘accuracy’’ measures are estimated after all samples are tested.

This paper uses both leave-one-out and split-sample for perfor-

mance evaluation.

Results

Simulation Experiment
A simulation experiment was conducted to illustrate the

proposed approach using asynthetic dataset of size 300 (rows)6100

(columns). The dataset consisted of two main bicluster regions with

the size of 50650 having 10 overlapping columns. The first main

bicluster consisted of rows 1–50 and columns 1–50, and the second

bicluster consisted of rows 51–100 and columns 41–90. The

remaining columns 91–100 were in neither biclusters. The

bicluster (signal) data were generated from the normal distribution

N (11,1.22) and background data were generated from the normal

random variable N (6, 1). For masking purpose, random signals

were also generated in the first 100 attributes for the last 10

samples. This dataset can be summarized as four biclusters as

follows. The columns represent 100 samples consisting of 4

subgroups: S1 (columns 1–40, blue), S2 (columns 41–50, red), S3

(columns 51–90, green), and S4 (columns 91–100, black); the first

Table 2. Subgroup classification for the 111 lung cancer patients of the GSE3141 dataset using the composite model with the
SVM, RF and LDA algorithms, and K-means (2-means, 3-means and 4-means) cluster analysis.

Methods
Subgroup
pattern Adenocarcinoma

Squamous
cell
carcinoma

SVM 000 39 6

010 2 0

100 12 52

RF 000 38 5

010 2 1

100 13 50

110 0 2

DLDA 000 35 4

010 7 2

100 11 37

110 0 15

2-Means 0 42 6

1 11 52

3-Means 0 32 3

1 14 3

2 7 52

4-Means 0 33 4

1 9 2

2 6 22

3 5 30

Total 53 58

doi:10.1371/journal.pone.0111318.t002

Table 3. Subgroup classification for the 97 breast cancer patients (46 from patients who developed distant metastases within 5
years and 51 from patients who continued to be disease-free after a period of at least 5 years) using the SVM, RF, and DLDA
composite models.

Subgroup pattern SVM Random Forest DLDA

(0,0) 57 64 47

(0,1) 6 4 15

(1,0) 31 27 28

(1,1) 3 2 7

Logrank test for (0,1) vs (1,0) subgroups 0.284 0.519 0.599

doi:10.1371/journal.pone.0111318.t003

Subgroup Identification and Prediction via Bicluster Analysis
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100 rows represent attributes: G1 (rows 1–50), G2 (rows 1–100),

G3 (rows 51–100), and G4 (rows 1–100) (Figure 2).

Applying the SVD-based biclustering method [39] to the

permutated dataset, four bicluster regions were identified. The

dimensions of the four biclusters, C1, C2, C3, and C4 were

100616, 50651, 50658, and 100615, respectively. Three

classification algorithms were then used to develop four binary

classifiers m1, m2, m3, and m4. There were 16 possible patterns.

Table 1 (upper panel) lists those 6 patterns with their

frequencies from the SVM algorithm, where the column labels

the true sample subgroup. Among the 16 possible patterns, there

were major subgroups (n$5) and three minor subgroups (n,5),

and the remaining 10 patterns have no samples. Three major

subgroups were (0,0,1,0), (0,1,0,0), and (1,1,1,1) identifying S1, S3,

and S2, respectively. The sensitivity and specificity are shown in

the last two rows. The overall accuracy is 0.90. All the subgroups

S1–S3 were identified correctly. A test dataset consisting of 1,000

samples were generated for performance evaluation. The four

subgroups were generated according to the probabilities 0.4, 0.1,

0.4, and 0.1 in contrast to the training set where the numbers of

four subgroups were fixed at 40, 10, 40, and 10. The sensitivity

and specificity for the 1,000 simulated samples were calculated for

each of the four subgroups. The procedure was repeated 1,000

times. The averaged sensitivity and specificity over the 1,000

repetitions were shown in Table 1 (lower panel). The averaged

accuracy is 0.974. The sensitivity was 0.654 for S4; since the

Figure 4. Breast Cancer data: two biclusters are identified, 45627 and 13618, using 6391 genes 100 of which are demonstrated.
doi:10.1371/journal.pone.0111318.g004

Figure 5. The prediction model divided the 97 patients into
four subgroups using SVM. The logrank test for differences among
the four subgroups (0,0), (0,1), (1,0), and (1,1) was 0.003.
doi:10.1371/journal.pone.0111318.g005

Subgroup Identification and Prediction via Bicluster Analysis
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samples sample size was 1,000, the number of S4 samples was

about 100 in each evaluation. Unlike the analysis of training

samples, sufficient number of data from S4 was generated to form

a subgroup and identified.

Tables S1 and S2 are the results from the RF and DLDA

algorithms, respectively. The performances of the three algorithms

are similar, in general. All three algorithms show high sensitivity

and specificity in identifying (test) the S1 and S3 samples. S2 has

the attributes across two subgroups S1 and S3. S4 was designed to

have indefinite attributes and difficult to be identified. The pattern

corresponding to S2 is (1,1,1,1) using SVM and DLDA, and the

pattern is (1,1,0,0) using RF. SVM appears to perform slightly

better than RF and DLDA. For S4, as expected, the sensitivity is

low in all three algorithms.

Analysis of a lung cancer dataset
A public lung cancer microarray dataset was used to evaluate

the performance of the proposed procedure and compare with k-

means cluster analysis. The dataset was from a study (GSE3141) of

using gene expression signatures to identify patterns of oncogenic

pathway deregulation in lung cancer subtypes [49]. The original

GSE3141 dataset was retrieved from the Gene Expression

Omnibus [50]. The dataset consisted of 111 lung cancer samples

with 53 adenocarcinoma (AD) and 58 squamous cell carcinoma

(SQ) subtypes. This analysis was performed to distinguish these

two lung cancer subtypes assuming no information on the sample

subtypes. In the analysis, a quantile normalization algorithm was

performed to remove the systematic biases. For each probe,

standard error was calculated across all samples and ranked

decreasingly. The top 100 probes with the largest standard errors

were selected as attribute variables.

The proposed approach was performed on the data matrix of

100 genes by 111 samples. The bicluster analysis identified 32

biclusters. A cutoff of at least 10 samples was used to eliminate

small biclusters, such as sizes of 262 or 263, resulting in 3 clusters

(Figure 3). The sizes of the three biclusters were 55640, 18622,

and 4610. A composite model M = {m1, m2, m3} was built based

on the three biclusters. The leave-one-out cross (LOU) validation

was used to classify each sample into one of the possible 8

subgroups.

Table 2 shows the results from the composite models and k-

means methods for k = 2, 3, 4. Note that unlike the composite

model using LOU, all 111 samples were used in the k-means

analysis. The SVM algorithm identified three patterns (0,0,0),

(0,1,0), and (1,0,0), while RF and DLDA identified four patterns

(0,0,0), (0,1,0), (1,0,0), and (1,1,0). The classifier m1 generated from

the bicluster C1 appears to be associated with the SQ subtype.

Note that the classifier m3 by itself or in combination with m1 and

m2 assigned none samples in a subgroup. That is, all samples,

including 10 samples from C3 were not in C3, as predicted by m3.

Based on the majority rule, SVM, RF, and DLDA correctly

identified 41, 40, and 42 out of the 52 AD subtypes, respectively.

All three algorithms identified 52 out of the 58 SQ subtypes. The

performance between the composite models and 2-mean are

generally similar. The 52 SQ subtypes identified by the 2-means

and by the three composite models are identical. The 42 AD

subtypes identified by 2-means contained those 41, 40, and all 42

ADs identified by the SVM, RF, and DLDA composite models,

Table 4. Frequency distributions of classification patterns identified by the SVM composite model (m1–m10) for the Salmonella
PFGE training dataset consisting of five serotypes.

13
Subgroups
(n$5)

4,5,12:i-
n = 1113 Hadar n = 982

Oranienburg
n = 997

Thompson
n = 990

Typhi
n = 972

Total
n = 5054

0000000000 27 73 126 49 142 417

1000000000 653 0 0 0 0 653

1000000100 211 0 0 0 0 211

1000001000 212 0 0 0 0 212

0000001000 6 0 0 0 0 6

0100000000 0 0 0 0 829 829

0010000000 0 1 0 940 0 941

0001000000 0 0 34 0 0 34

0000100000 0 0 215 0 0 215

0001100000 0 0 593 0 0 593

0001110000 0 0 10 0 0 10

0000110000 0 0 9 0 0 9

0000010000 0 905 10 1 1 917

0000000100 2 0 0 0 0 2

0000011000 2 0 0 0 0 2

0010010000 0 3 0 0 0 3

Correct
identification

1082 905 861 940 971 4759

Sensitivity 0.967 0.922 0.864 0.950 0.999 0.942

Specificity 1 0.997 1 1.000 0.932 0.982

Sixteen classification patterns are identified; 13 of the 16 have frequencies of at least 5 (last column). The last two rows show the sensitivity and specificity of the model
performance.
doi:10.1371/journal.pone.0111318.t004
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respectively. Using n* = 5, SVM identified two subgroups,

including 39 AD and 52 SQ subtypes; RF identified two subgroups

of 38 AD and 50 SQ subtypes; DLDA identified four subgroups

with 42 AD and 52 SQ subtypes.

In the 4-means analysis, Groups 0 and 1 were from the split of

Group 0 in the 2-means analysis, and Groups 2 and 3 were from

the split of Group 1. However, the results of the 3-means analysis

were peculiar. For example, there were 32, 14, and 7 adenocar-

cinomas for Groups 0, 1, and 2, respectively. Comparing with the

4-means analysis, the 32 consisted 21, 9, and 2 from Groups 0, 1,

and 2, respectively; similarly, the 14 consisted of 12 and 3 from

Groups 0 and 2, respectively.

Analysis of the breast cancer dataset
The dataset of van’t Veer et al. [51] contained 97 breast cancers

(46 from patients who developed distant metastases within 5 years

and 51 from patients who continued to be disease-free after a

period of at least 5 years). The outcome was cancer-related

survival time with 6391 genes as predictor variables.

Two biclusters with dimensions of 45627 and 13618 were

identified from the 6391 genes and 97 patients (Figure 4). Two

patients belonged to both biclusters; two binary classifiers, m1 and

m2, were developed. The leave-on-out cross validation analysis

divided the 97 patient into 4 subgroups. Table 3 shows the results

from the composite models. The m1 classifier identified low risk

group patients and m2 identified high risk group patients. Figure 5

shows the plots of the survival time for four subgroups from the

SVM model. Figures S1 and S2 are the plots from the RF and

DLDA composite models, respectively. The logrank tests for the

differences between the two major subgroups (0,1) versus (1,0)

were 0.284, 0.510, and 0.599 for SVM, RF, and DLDA,

respectively.

Analysis of the Salmonella isolate dataset
The Salmonella isolate dataset consisted of 45,924 PFGE

isolates covering 32 mostly encountered serotypes published by

Zou et al. [16]. The sample isolates were genotyped by the Pulsed-

Field Gel Electrophoresis (PFGE) with DNA bands representing

the presence and absence of a feature in a location as a fingerprint

of isolates. Each isolate has 60 or 61 bands. Five serotypes,

I4,[5],12:i-, Hadar, Oranienburg, Thompson, and Typhimurium,

were randomly selected for data analysis. Each serotype consisted

of about 2,000 isolates. The analysis was to illustrate the use of the

proposed composite model to identify the five serotypes and their

subtypes, if any, and evaluate its performance as compared with

the k-means clustering and SVM and RF classifications when the

test set contained isolates from the serotypes that are not observed

in the training set. The DLDA algorithm was not considered in

this example since the PFGE fingerprints were binary features.

The data were first randomly divided into a training and a test

dataset for each serotype. The bicluster analysis identified 10

biclusters and built 10 binary classifiers (m1–m10) from the training

dataset. The SVM and RF composite models then were applied to

each training sample; 16 patterns were identified. The SVM

model identified 16 patterns. Based on n* = 5 as a cutoff, 13

subgroups were identified (Table 4). Note that the classifier m9

Figure 6. Hierarchical cluster analysis of the 14 subgroups identified from the test dataset using the average linkage distance. The
14 subgroups consist of 5 major subgroups: 1. Thompson (0010000000); 2. Typhimurium (0100000000); 3. Decoy (0000000000); 4. Oranienburg
(0001000000, 0000100000, 0001100000, 0001110000, 0000110000); 5. Hadar (0000010000, 1000010000) and I4,[5],12:i- (1000000000, 1000000100,
1000001000, 0000001000).
doi:10.1371/journal.pone.0111318.g006
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and m10 by itself or in combination with other classifiers assigned

no samples into a subgroup. The interpretation (and presentation)

of the performance was based on the known serotypes; in the

analysis, the serotype was determined by majority rule. The

sensitivities were from 86% to 99%, specificities were high at least

99%, except the Typhimurium with 93.2%. The overall accuracy

was 94.2% and specificity was 98.2%.

The RF model identified 15 patterns, one less than the SVM

model (Table S3). The difference is in the serotypes 4,5,12:i-

identification. In the SVM classification, there were two patterns

(1000000000) and (1000000100) with 653 and 211 for a total of

864 isolates, respectively. In the RF classification, there was no

(1000000100) pattern, instead, the pattern (1000000000) consisted

of 898 isolates. In addition to m9 and m10, m8 assigned no samples

into a subgroup. Based on n* = 5 as a cutoff, 12 subgroups were

identified. The sensitivities were from 86% to 99%, specificities

were 93% to 100%. The overall sensitivity (accuracy) was 94.2%

and specificity was 98.2%.

The SVM and RF composite models were applied to the test

dataset, which included 1,000 additional samples (named

‘‘Decoy’’) from the serotypes other than the five training serotypes.

The analysis of the test dataset classification described below is for

the SVM composite model, the results for the RF composite model

are given in Table S4.

The SVM model identified 24 classification patterns from the

10 binary classifiers m1–m10. Based on the n* = 5 as a cutoff, 14

subgroups were identified (Table 5), where 13 of the 14 were

identical to the 13 subgroups that were identified in the training

data. The additional subgroup consisted of 8 Hadar isolates. The

serotypes and their associated binary classifiers were: 4,5,12:i-: m1,

m7, (m1, m7), (m1, m8); Hadar: m6, (m1, m6); Oranienburg: m4, m5,

(m4, m5), (m5, m6), (m4, m5, m6); Thompson: m3; Typhimurium:

m2.The sensitivities between the training and test datasets were

similar for the data of the five training serotypes. The overall

specificity was lower since there were 1,000 additional ‘‘Decoy’’

isolates (Table 4 and Table 5). For the ‘‘Decoy’’ serotype, the

sensitivity and specificity were 74.7% and 91.7%, respectively.

The accuracies were 95.9% and 96.1% by excluding and

including the ‘‘Decoy’’ isolates, in the calculation, respectively.

The relationships among the 14 subgroups were further analyzed

using the hierarchical cluster using the Euclidean distance function

and the average agglomeration method (Figure 6). The 14

subgroups identified all 5 major serotypes and their subtypes,

and the ‘‘Decoy’’ serotype: 1. Thompson (0010000000); 2.

Typhimurium (0100000000); 3. Decoy (0000000000); 4. Oranien-

burg contained 5 subtypes (0001000000, 0000100000,

0001100000, 0001110000, 0000110000); 5. Hadar contained 2

subtypes (0000010000, 1000010000); 6. I4,[5],12:i- contained 4

subtypes (1000000000, 1000000100, 1000001000, 0000001000).

The PFGE test data were further analyzed using the k-means

clustering to identify serotypes and their subtypes, and the SVM

and RF algorithms to predict serotypes (including 1,000 Decoy

isolates). Table 6 shows the sensitivity, specificity and accuracy of

the three procedures. The k-means analysis was performed for

k = 5 to 15; only the results for k = 5, 6, 10, and 15 are presented.

The k-means analysis was also based on majority rule to determine

the serotype. The k-means’ performances were similar except for

k = 5, in which the number of clusters were mis-specified. It

appears that k-means has generally better performance than the

composite model, except when a smaller k is specified. The SVM

has much better performance than either the composite model or

k-mean methods for the test dataset without Decoy data, the

accuracy is more than 99%. The SVM is unable to predict the

Decoy data since their serotypes are not in the training classes.

Currently, PFGE is routinely used molecular subtyping method

by CDC (Centers for Disease Control and Prevention) and state

health labs in the US for Salmonella surveillance and outbreak

investigation [52], the ability to rapidly identify the serotype or a

subtype of a Salmonella isolate is essential. The same serotype may

have different subtypes, such as Salmonella Newport, and Dublin

etc. These subtypes are closely related with their gene composition

and variations. Current routine serotyping methods cannot

provide sufficient information for subtype classification. The

serotype subtype classification is important for the studies of

genetic diversity and evolution. The composite model not only

contributes to the PFGE-based characterization and surveillance

of Salmonella isolates in outbreak investigations, also provides a

better understanding of Salmonella genetic diversity and epide-

miology.

Discussion

Cluster analysis has been the primary data mining technique for

dividing samples into disjoint subgroups where the samples in a

cluster contain all attributes that characterize the cluster. Bicluster

analysis techniques are being developed to identify which subsets

of attributes are associated with which subsets of samples [34–39].

A bicluster analysis divides the samples into disjoint subgroups,

where each sample in the subgroup corresponds to one or more

subsets of attributes; and where there may be one additional

subgroup formed by the samples not in any biclusters which are

not associated with any subset of attributes. Both cluster analysis

and bicluster analysis are powerful techniques for classifying

samples into subgroups, but they are inefficient for prediction

purpose. Either method can predict new samples by pooling the

current samples with new samples then performing the same

analysis. However, the subgroup membership of a current sample

before and after the pooling may be different. Alternatively, either

method may also assign the new sample using a classification

algorithm such as k-NN (k-Nearest Neighbors) to develop a

prediction model; note that k-NN requires specification of k and a

distance measure between the new samples and the subgroups.

In the analysis of the lung cancer and PFGE datasets, Tables 4

and 5 show that k-means can outperform the proposed procedure

when the number of clusters are correctly specified; however, it is

often difficult to determine k when the sample size or the number

of subgroups is large such as the PFGE data. Clustering analysis

does not perform well if there is a subgroup of samples that are

made of diverse subtypes, e.g., Decoy subgroup. The major

advantages of the proposed procedure over k-means are: 1) it does

not require pre-specifying the number of clusters, and 2) it uses a

subset of attributes for each bicluster, instead of entire set of

attributes, to develop a binary classifier. The composite model

further identifies the relationships among subgroups based on their

patterns of partition. Figure 6 clearly shows six distinct classes

representing five serotypes and their sub-serotypes, and an

unknown serotypes group. Finally, the hierarchical clustering tree

can provide relationships among the clusters by a cutoff however,

there seems to have no standard criterion or algorithm for

choosing a cutoff; the cutoff is often made by visual inspection.

When the number of samples and/or the number of clusters is

large, such as the PFGE data, the visual inspection becomes

infeasible.

Biclustering algorithms have been extended to supervised

biclustering classification for labelled sampled data [43–46]. There

are the CCC-biclustering algorithm to classify good versus poor

responders [43], the co-clustering algorithm to discriminate

between two sample classes (Class A versus Class B) [44], the

Subgroup Identification and Prediction via Bicluster Analysis
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subspace co-expression analysis to discover differential co-expres-

sion patterns to classify normal versus cancer samples [45], and the

LAS (large average submatrix) to classify five breast cancer

subtypes [46]. These methods are supervised biclustering-based

classifiers (or class-discriminant biclusters) [43], classification

algorithms which were developed while optimizing the class

discriminative ability from the label information. A two-class

supervised biclustering algorithm can be extended to a multiclass

classification algorithm. However, classification algorithms are

unable to characterize the subgroup relationships without further

analysis. The composite model considers unlabeled data; the

objectives are not only to classify samples into subgroups and

predict new samples but also to characterize the relationships

among subgroups. Recently, Geraci et al. [53] proposed ‘‘Butter-

fly’’, a discrete dynamic system, for visualization, clustering, and

classification of unlabeled data. Butterfly provided a 2D repre-

sentation of the relationship between samples according to a set of

variables. The system first generated a set of 2D cluster models,

after performing a feature reduction step, and evaluated by binary

classifiers, and finally showed the visual representation of the top

classification models On the other hand, the composite model is a

general procedure applicable for two-class or multiclass prediction

using biclusters with or without feature reduction.

In the proposed approach, a binary classifier is developed to

predict whether or not a sample is in the associated bicluster. For

the samples that are assigned into two or more biclusters, the

composite model will separate those samples into a new subgroup.

Some classifiers, either by itself or in combination with other

classifiers, may assign only a small number samples, or none, into a

subgroup. The PFGE analysis appeared to support some

comments of Odibat and Reddy [44] that the biclustering

approach itself is inadequate for subgroup discrimination. The

Oranienburg serotype consisted of at least 5 subtypes (Table 5). It

would need three biclusters, C4, C5, and C6, to identify

(discriminate between) these subtypes. For example, the two

biclusters C5 and C6 in combination identified seven Oranienburg

isolates. In addition, the bicluster C9 and C10 were not shown in

any of the 14 patterns.

The composite model uses k biclusters as a basis to generate up

to 2k disjoint subgroups. Those small biclusters are too small to be

considered as representative subgroups for further partition. The

composite model assigns each sample to one and only one

subgroup, including those samples in the small biclusters. In the

lung cancer example, the composite model was composed of three

binary classifiers from three ‘‘large’’ biclusters of at least ten

samples, out of the 32 biclusters identified. These three binary

classifiers could generate up to 8 subgroups. However, only three

subgroup patterns were identified. The smallest subgroup (0,1,0)

contained only two samples (Table 2). Similarly, in the breast

cancer example, two ‘‘large’’ biclusters were used. There were two

small subgroups containing three and six samples. In the PFGE

example, the composite model identified 16 subgroups based on

10 biclusters in the training dataset (Table 4). The numbers of the

samples in the three smallest subgroups were 2, 2, and 3. The

model identified 24 patterns in the training dataset (Table 5). The

total number of samples for 10 smallest subgroups combined was

15, less than 2 on the average. The composite model is capable of

identifying small subgroups.

Specification of the threshold n* can be based on the sample size

and study objectives. For example, in personal medicine applica-

tions, patients are typically classified as high-risk versus low-risk or

responders versus non-responders. The subgroups are identified

for treatment recommendation. Different cancer subtypes or risk

groups are subjected to different treatments. In the lung cancer

example, the treatments for the two subtypes are different. In the

breast cancer example, patients in the high risk group would be

recommended to more aggressive treatment. In both examples, n*

was set at ten. In the PFGE example, the primary objective was to

develop a model to identify/predict serotypes/subtypes of

unknown isolates. Knowing that there were many subtypes, n*

was set at five. Ten biclusters were used to develop ten classifiers.

The three small ‘‘subgroups’’ with sizes 2, 2, and 3 can be further

investigated, if necessary.

In this paper, a minimum of five samples is recommended,

n* = 5. In the lung cancer example, three biclusters with sample

sizes of 40, 22, and 10 were used to generate subgroups. Cluster C3

consisted of 10 samples. As discussed, the prediction results by m3

were that all 10 samples were outside the C3 bicluster. These 10

samples were assigned primarily based on the classifiers m1 and

m2. In other words, biclusters C1 and C2 were sufficient to develop

the composite model in the sample assignment. In general, the

samples from small biclusters are likely to be assigned to some

larger biclusters. An explanation is that there are much more

samples outside the bicluster region than the samples inside; a

binary classifier tends to favor the majority class prediction in

order to maximize total accuracy. Smaller biclusters (n,5) can be

used to develop a composite model. However, classifier developed

by a small bicluster is likely to predict that the samples are outside

the bicluster. This problem is known as class-imbalanced

classification [54]. Furthermore, for large binary data matrix,

there may be hundreds of 262, 263, 362, and 363 biclusters.

The notion of the composite modeling approach via biclusters

for class prediction is intuitive and straightforward. For a given

bicluster, a sample is either inside or outside the bicluster. There

are k predicted outcomes for each sample. Each predicted pattern

represents a subgroup. In the simulation experiment, four

biclusters C1–C4 were identified. The sizes of C1–C4 were

100616, 50651, 50658, and 100615, respectively. Samples 1–

50 and samples 41–90 were in biclusters C3 and C2, respectively;

and samples 41–50 appeared in all four biclusters C1–C4. Table 1

shows that the composite model performed well in classification of

the sample 1–90 since the four binary classifiers were developed

based on the four biclusters. Samples 91–100 were not in any of

the four biclusters, these samples are not associated with any

subsets of attributes. In the PFGE data, there were 10 biclusters

with the sizes: 861097, 136813, 96938, 106596, 56787,

106938, 56175, 36178, 36468, and 26109. There were many

overlapping biclusters. These biclusters represented relative large

numbers of samples with small numbers of attributes. On the other

hand, in the lung data, the three biclusters with the sizes of 55640,

18622, and 4610 were smaller biclusters relatively. In the

simulation, lung cancer and PFGE examples, where the subgroups

were known, the SVD-based biclustering algorithm was able to

capture the critical subgroup structures. The composite model

appeared to perform reasonable well. In the proposed approach,

any types of bicluster patterns and any biclustering methods can be

used to develop a composite model. However, the performance of

a composite model highly depends on the biclusters used to

generate binary classifiers. A good biclustering method is essential

for the next step of subgroup classification and prediction.

The three classification algorithms, SVM, RF, and DLDA, are

considered for the development of a composite prediction model.

The SVM and RF have been the most popular and successful

classification algorithms and applied to numerous areas of

applications. These two algorithms can be applied to high

dimensional data without feature selection. DLDA is a variant of

the Fisher’s linear discriminant analysis. DLDA has been shown to

be robust against imbalanced class size data [54], where the
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numbers of samples in the bicluster and outside differs substan-

tially. When the class sizes are imbalanced, the standard

classification algorithms, such as SVM and RF, will favor majority

class prediction resulting in poor performance. Among the three

algorithms, SVM appears to perform consistently well.

Personalized medicine is the goal of much current research. A

general aim is to identify a set of molecular biomarkers that can

match disease of an individual patient with an optimal therapy.

Several procedures have been proposed utilizing the classification

and regression tress [19] for subgroup identification. These

procedures partitioned the entire covariate space into subsets of

patients that are homogeneous with respect to the set of covariates

[55–58]. This paper proposes a composite prediction model as an

alternative procedure to classify samples into subgroups according

their associated attributes. Unlike the supervised classification tree

approach, the proposed procedure is an unsupervised approach.

The procedure provides an approach to classifying patients into

subgroups of having different outcomes of interest, such as

genotypic factors, phenotypic outcomes, efficacy/safety measures,

or responses to treatments; the relationships among the subgroups

identified can be further examined [59,60]. However, the

approach presented does not consider outcome measures that

are associated with specific drug treatment. In other words, the

applications focus on the prognostic model, not predictive model,

in the context of personalized medicine [48].

Supporting Information

Figure S1 The prediction model divided the 97 patients into

four subgroups using RF. The logrank test for differences among

the four subgroups (0,0), (0,1), (1,0), and (1,1) was 0.717.

(TIF)

Figure S2 The prediction model divided the 97 patients into

four subgroups using DLDA. The logrank test for differences

among the four subgroups (0,0), (0,1), (1,0), and (1,1) was 0.186.

(TIF)

Table S1 Upper panel. Frequency distributions of classification

patterns identified by the RF composite model (m1, m2, m3, m4)

for the synthetic training dataset consisting of 4 subgroups, S1, S2,

S3, and S4. Lower panel. Performance of the RF composite

prediction model for the test dataset of 1,000 simulated samples.

Table values are the averages over 1,000 repetitions.

(DOC)

Table S2 Upper panel. Frequency distributions of classification

patterns identified by the DLDA composite model (m1, m2, m3,

m4) for the synthetic training dataset consisting of 4 subgroups, S1,

S2, S3, and S4. Lower panel. Performance of the DLDA

composite prediction model for the test dataset of 1,000 simulated

samples. Table values are the averages over 1,000 repetitions.

(DOC)

Table S3 Frequency distributions of classification patterns

identified by the RF composite model (m1–m10) for the Salmonella
PFGE training dataset consisting of five serotypes. Sixteen

classification patterns are identified; 13 of the 16 have frequencies

of at least 5 (last column). The last two rows show the sensitivity

and specificity of the model performance.

(DOC)

Table S4 Frequency distributions of subgroup patterns identi-

fied by the RF composite model for the Salmonella PFGE test

dataset, which consisted of 5,055 isolates from five training

serotypes and 1,000 additional ‘‘Decoy’’ isolates. The serotypes

I4,[5],12:i-, Hadar, Oranienburg, Thompson, Typhimurium, and

Decoy were labeled as A, B, C, D, E, and F, respectively. n is the

number of isolates in the serotypes. Fourteen of 24 identified

classification patterns had frequencies at least 5. The last two rows

show the sensitivity and specificity of the model performance.

(DOC)
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