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Poor short-term glycemic control in
patients with type 2 diabetes impairs the
intestinal mucosal barrier: a prospective,
single-center, observational study
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Abstract

Background: To determine the relation between daily glycemic fluturation and the intestinal mucosal barrier
dysfunction in type 2 diabetes mellitus (T2DM).

Methods: Totally 66 patients with T2DM were enrolled, 33 healthy volunteers were also recruited according to the
enrolled patients’ gender and age in a ratio of 2: 1. Patients were bisected by the median of endotoxins level into
low(< 12.31 μ/l, n = 33) and high(≥12.31 μ/l, n = 33) blood endotoxin groups. Clinical data and blood glucose
fluctuations were compared between groups. Multivariate regression analysis was used to determine the
independent factors affecting the intestinal mucosal barrier.

Results: Serum endotoxin [12.1 (4.2~22.0) vs 3.2 (1.3~6.0), P < 0.001] and fasting blood glucose levels [9.8 ± 3.6 vs
5.4 ± 0.7, P < 0.001] were significantly higher in patients with T2DM than the control group. The standard
deviation of blood glucose (SDBG) within 1 day [2.9 (2.0~3.3) vs. 2.1 (1.6~2.5), P = 0.012] and the largest amplitude
of glycemic excursions (LAGE) [7.5 (5.4~8.9) vs. 5.9 (4.3~7.4), P = 0.034] were higher in the high endotoxin group
than in the low endotoxin group. A multiple linear stepwise regression revealed a positive correlation between
SDBG with endotoxin (standard partial regression coefficient = 0.255, P = 0.039).

Conclusions: T2DM patients who incapable of maintaining stable blood glucose level are at a higher risk to
associated with intestinal mucosal barrier injury.

Keywords: Type 2 diabetes mellitus, Intestinal mucosal barrier, Endotoxin, Blood glucose volatility, Intestinal
permeability

Background
Type 2 diabetes mellitus (T2DM) is a long-term meta-
bolic disorder caused by both genetic and environmental
factors. The defects in insulin secretion or function (or
both) can cause disorder in carbohydrates, proteins, fats,
electrolytes, and water metabolism [1–3]. It is clinically

characterized by chronic persistent hyperglycemia and
high volatility. T2DM patients also tend to be associated
with a series of chronic complications, such as nerve,
blood vessel and gastrointestinal tract defects including
intestinal mucosal barrier damage, seriously affecting the
life quality [4, 5]. According to the latest statistics from
the National Vital Statistics System, diabetes is the sev-
enth of the top ten causes of death in the United States
in 2016 [6].
The intestine is an important organ that should not be

omitted during the treatment of DM [7–9]. The intes-
tinal mucosal barrier prevents the translocation of bacteria
and endotoxins into blood and lymph circulatory systems
under normal physiological conditions. Dysregulation of
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intestinal mucosal barrier function would increase the per-
meability to the intestinal pathogens and endotoxins, which
cause infection or inflammation [10, 11]. Previous studies
suggested that the low-grade inflammatory state of patients
with T2DM was possibily related to intestinal endotoxin
[12, 13]. On the other hand, disorder of intestinal micro-
flora composition is associated with the intestinal mucosal
barrier damages [14, 15], which leads to nonspecific inflam-
matory, and in turn aggravates insulin resistance and
T2DM metabolism disorders through the NF-κB pathway
and JNK signal transduction pathway [16–18]. Therefore,
the intestinal mucosal barrier function of patients with
T2DM should be carefully monitored.
Currently, levels of the serum D-lactic acid, diamine oxi-

dase (DAO), and endotoxin, which reflect the permeability
of intestinal mucosa and bacterial translocation, are used to
determine the intestinal mucosal barrier function in clinical
practice [19, 20]. For patients with T2DM, glycemic moni-
toring (including short- and long-term blood glucose level
fluctuations, as well as average blood glucose levels) is sub-
stantial. Studies have shown that persistent hyperglycemia
can lead to intestinal mucosal barrier damage [5], however,
the relationship between fluctuation of blood glucose level
and intestinal mucosal barrier damage remains unclear.
Therefore, this study aimed to investigate the relationship
between glycemic control and intestinal mucosal barrier
dysfunction in patients with T2DM.

Methods
Subjects
We recruited 66 patients diagnosed with T2DM from
September 2017 to June 2018. All patients included in
the study met the diagnostic criteria of the 2018 AACE/
ACE Consensus Statement: Comprehensive Manage-
ment of T2DM [21]. And their eating pattern were con-
trolled according to the suggestion of ‘Standards of
Medical Care in Diabetes’ in 2014 [22]. The control
group was composed of 33 healthy volunteers who were
recruited in a 2:1 ratio according to the patients’ sex and
age. All subjects with digestive diseases, chronic malnu-
trition, malignant tumors, and intestinal infections
which can inhibit the intestinal mucosal barrier function
within 2 weeks were excluded.
The study protocol was approved by the Ethics Review

Board of Jiading District Central Hospital (2017-ZD-03).
All subjects were anonymized. All subjects signed in-
formed consent form.

Study methods
For all subjects included, the fasting venous blood sam-
ple was collected, the fasting blood glucose was exam-
ined, and the functionality of intestinal mucosal barrier
of subjects were determined by the serum D-lactic acid,
DAO, and endotoxin. Patients with T2DM were further

divided into the low-value group (< 12.31u/l, n = 33) and
high-value group (≥12.31u/l, n = 33) based on the median
endotoxin levels. For the patients with T2DM, clinical
characteristic were collected [DM duration, body mass
index (BMI), history of hypertension, use of drugs (such
as insulin and metformin etc.), smoking history, and fam-
ily history of DM]. The abnormal fasting blood glucose, 2
h blood glucose level after breakfast, glycated hemoglobin
(HbA1c), and glycated albumin (GA) of patients were also
examined at the first day of enrollment. The daily blood
glucose level (before breakfast (A), 2 h after breakfast (B),
before lunch (C), 2 h after lunch (D), before dinner (E), 2 h
after dinner (F), and before sleep (G)) was monitered by
active blood glucose meter (Accu-Chek®, Germany) using
the finger capillary blood samples. Short-term glycemic
excursions, including the magnitude of postprandial glu-
cose excursion (PPGE), the largest amplitude of glycemic
excursions (LAGE), and the standard deviation of blood
glucose (SDBG) within 1 day were calculated by:

PPGE = ðB−AÞþðD−CÞþðF−EÞ
3 ;

LAGE = D (maximum glycemic value) - A (minimum
glycemic value);

SDBG =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA−XÞ2þðB−XÞ2þðC−XÞ2þðD−XÞ2þðE−XÞ2þðF−XÞ2þðG−XÞ2
7−1

q

;

X (glycemic average within 1 day) = ðAþBþCþDþEþFþGÞ
7 .

Functionality of the intestinal mucosal barrier
The functionality of the intestinal mucosal barrier was de-
termined using the DAO/lactic acid/bacterial endotoxin
combined test kit (enzymatic method; Beijing Zhongsheng
Jinyu Diagnostic Technology Co., Ltd.), supporting by the
JY-DLT intestinal barrier function biochemical indicator
analysis system. The experiments were undergone accord-
ing to the protocols suggested by the manufacturer and
conducted within 4 h after serum extraction.

Statistical analysis
Statistical analysis was done using the SPSS 19.0 software
(SPSS Inc., Chicago, IL, USA). Normally distributed data
were expressed in mean ± standard deviations (SD) and
compared using Student’s t test; otherwise was indicated as
Median (Q1~Q3) and compared using the non-parametric
Mann-Whitney test. Numerical data were expressed in fre-
quency and compared using χ2 test. Multiple logistic re-
gression was conducted to identify the factors that
influenced the functionality of intestinal mucosal bar-
rier. P < 0.05 was considered statistically significant.

Results
Baseline characteristics
The serum endotoxin [12.1(4.2~22.0) vs 3.2(1.3~6.0),
P < 0.001] and FPG [(9.8 ± 3.6) vs (5.4 ± 0.7), P < 0.001]
in patients with T2DM were significantly higher than
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those in the control group. No significant difference
was observed in DAO and D-lactic acid (Table 1).

Clinical charateristics comparation between high- and
low-endotoxin groups
The SDBG [2.9(2.0~3.3) vs 2.1(1.6~2.5), P = 0.012] and
LAGE [7.5(5.4~8.9) vs 5.9(4.3~7.4), P = 0.034] in the
high endotoxin group were higher than those in the low
endotoxin group. No significant difference was observed
in the other indicators (all P > 0.05) (Table 2).

Regression analysis
Multivariable linear regression analysis showed that after
adjusting for gender, age, and LAGE, SDBG was posi-
tively correlated with endotoxin independently (standard
partial regression coefficient = 0.255, P = 0.039). The
scatter-plot is shown in Fig. 1.

Discussion
Previous reports exhibited that patients with T2DM are
more susceptible to intestinal mucosal barrier dysfunc-
tion [23, 24], however factors remains to be investigated.
In this study, T2DM patients with higher daily blood
glucose fluctuation tended to have a higher serum endo-
toxin level, which indicates the function of the intestinal
mucosal barrier was possibly compromised.
In this study patients with T2DM and high SDBG were

associated with higher serum endotoxin level; meanwhile
there was no significant change in serum DAO and
D-lactic acid levels. Diamine oxidase (DAO) is an en-
zyme mainly produced in the small intestine involved in
the histamine metabolism [25, 26]. Recent studies
showed that a established first-line treatment for pa-
tients in T2DM, metformin, inhibits DAO activity [27].
Such inhabitation possibly compensate the increased
DAO due to the dysfunction of intestinal mucosal bar-
rier. D-lactate is a bydroxycarboxylic acid produced by

Table 1 Background characteristics of particippants

Control groups (n = 33) T2DM (n = 66) Statistics P

Male [n(%)] 19 (57.6) 38 (57.6) – 1.000

Age [(Mean ± SD), years] 61.2 ± 9.6 60.9 ± 11.8 t = 0.121 0.904

BMI [(Mean ± SD), Kg/M2] 26.5 ± 5.8 25.1 ± 3.9 t = 1.417 0.160

Smoking [n(%)] 13 (39.4) 16 (24.2) x2 = 2.438 0.118

Hypertension [n(%)] 16 (48.5) 40 (60.6) x2 = 1.316 0.251

Diabetes history [(Mean ± SD), years] NA 6.0 (1–14) – –

Diabetic complication [n(%)] NA 31 (46.9) – –

Medications [n(%)]

Insulin NA 21 (31.8) – –

Metformin NA 32 (48.5) – –

α-glucosidase inhibitor NA 29 (43.9) – –

sulfonylureas NA 9 (13.6) – –

glinide NA 5 (7.6) – –

DPP-4 inhibitor NA 1 (1.5) – –

Laboratory data

HbAlc [M(Q1~Q3), %] 5.2 (4.9~5.6) 9.3 (7.4~11.0) z = −7.340 < 0.001

GA [M(Q1~Q3), %] 14.1 (13.3~14.8) 23.5 (19.4~28.5) z = −6.751 < 0.001

Creatinine [M(Q1~Q3), μmol/L] 76 (64.5~83) 65 (54.5~80) z = −1.620 0.105

GFR [M(Q1~Q3), ml/min] 90.3 (83.7~98.8) 94.9 (78.1~104.1) z = − 0.672 0.502

hs-CRP [M(Q1~Q3), ng/L] 3 (1.5~6.7) 3.5 (1.2~18.9) z = −0.801 0.423

Index of the intestinal mucosal barrier

DAO [M(Q1~Q3), u/l] 6.7 (5.4~9.3) 5.9 (4.1~9.6) z = −1.413 0.158

D-lactic acid [M(Q1~Q3), mg/l] 49.0 (43.1~53.3) 47.0 (37.2~54.8) z = −0.572 0.567

Endotoxins [M(Q1~Q3), μ/l] 3.2 (1.3~6.0) 12.1 (4.2~22.0) z = −4.315 < 0.001

FPG[(Mean ± SD), mmol/l] 5.4 ± 0.7 9.8 ± 3.6 t = −9.070 < 0.001

HbAlc Glycosylated hemoglobin, GA glycated albumin, GFR Glomerular filtration rate, DAO diamine oxidase, hs-CRP high-sensitivity C-reactive protein, FPG:Fasting
Plasma Glucose
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bacterial fermentation [28, 29]. Studies revealed that the
gut microbiome composition is altered for T2DM pa-
tients treated with metformin [30], in which possibly ex-
plain the inconsistent result in serum D-lactate and
endotoxin level.
Endotoxins, also known as Lipopolysaccharides (LPS),

are large molecules found in the outer membrane of
Gram-negative bacteria. The increase in LPS is associ-
ated with bacterial translocation due to the impairment
of intestinal epithelial cell [31]. The increase in endo-
toxins of T2DM patients are probably result from the
change in gut microbial composition, epithelial cell im-
pairment, responses to inflammatory mediators or sec-
ondary action of endotoxins [31–34]. A resent study on
mice suggested that fluctuant hyperglycemia had more
potential to cause oxidative stress and inflammation, and

eventually endothelial dysfunction [35]. In this study, al-
though the amplitude of blood glucose fluctuation of pa-
tients are much less than that of mouse model (2.1/2.9
mmol/l vs ~ 15mmol/l), the SDBG is still an independ-
ent factor positively correlated to the serum LPS level.
In addition, blood glucose fluctuations are associated
with ketoacidosis in patients with DM, and also an inde-
pendent risk factors for the progression of atheroscler-
osis [4, 36]. These pevious reports, combined with this
study, further indicate the importance of blood glucose
stabilization to health.
Previous studies revealed that T2DM patients are

more probably associated with higher LPS, in which
long-term hyperglycemia in these patients is one of the
causes of intestinal mucosal barrier damage [37]. The
compromised mucosal barrier could be a potential cause

Table 2 Between the two groups of clinical data and glucose control comparison

Low groups (< 12.31u/l, n = 33) High groups (12.31≥ u/l, n = 33) Statistics P

Male [n(%)] 16 (48.5) 22 (66.7) x2 = 2.233 0.135

Age [(Mean ± SD), years] 62.3 ± 11.1 59.5 ± 12.5 t = 0.990 0.326

Hypertension [n(%)] 21 (63.6) 19 (57.6) x2 = 0.254 0.614

Smoking [n(%)] 5 (15.2) 11 (33.3) x2 = 2.970 0.085

Positive family history [n(%)] 7 (21.2) 7 (21.2) – 1.000

BMI [(Mean ± SD), Kg/M2] 25.0 ± 4.4 25.2 ± 3.4 t = − 0.176 0.861

Diabetes history [(Mean ± SD), mouth] 9.0 (2~15.5) 5.0 (1.0~10.0) z = −1.649 0.099

hs-CRP [M(Q1~Q3), mmol/l] 2.1 (0.5~6.6) 1.8 (0.5~6.7) z = −0.250 0.802

Medications [n(%)]

Insulin 11.0 (33.3) 10.0 (30.3) x2 = 0.070 0.792

Metformin 17.0 (51.5) 15.0 (45.5) x2 = 0.243 0.622

α-glucosidase inhibitor 12.0 (36.4) 17.0 (51.5) x2 = 1.538 0.215

Sulfonylureas 2.0 (6.1) 7.0 (21.2) – 0.149

Glinide 1.0 (3.0) 4.0 (12.1) – 0.355

DPP-4 inhibitor 0 (0.0) 1 (3.0) – 1.000

Glucose control data

FPG [M(Q1~Q3), mmol/l] 8.6 (6.8~12.9) 8.8 (7.5~11.1) z = − 0.023 0.982

2h PBG [M(Q1~Q3), mmol/l] 12.8 (10.6~18.1) 17.0 (15.2~20.8) z = − 1.858 0.063

DGA [M(Q1~Q3), mmol/l] 11.0 (9.0~15.0) 11.9 (10.1~13.7) z = − 0.301 0.763

HbAlc [M(Q1~Q3), %] 9.2 (8.2~10.5) 8.2 (8.2~9.4) z = − 1.320 0.187

GA [M(Q1~Q3), %] 23.3 (19.3~27.2) 25.8 (20.0~36.3) z = − 1.247 0.212

Glucose fluctuations of Short-term

SDBG [M(Q1~Q3), mmol/l] 2.1 (1.6~2.5) 2.9 (2.0~3.3) z = − 2.520 0.012

PPGE [M(Q1~Q3), mmol/l] 2.8 (1.8~3.1) 2.2 (1.9~3.8) z = − 0.917 0.359

LAGE [M(Q1~Q3), mmol/l] 5.9 (4.3~7.4) 7.5 (5.4~8.9) z = − 2.123 0.034

SDBG < 2.0 mmol/l [n(%)] 15.0 (45.5) 9.0 (27.3) x2 = 2.357 0.125

PPGE < 2.2 mmol/l [n(%)] 15.0 (45.5) 11.0 (33.3) x2 = 1.015 0.314

LAGE< 4.4 mmol/l [n(%)] 9.0 (27.3) 4.0 (12.1) x2 = 2.395 0.122

DGA Daily glucose average,FPG:Fasting Plasma Glucose, PBG:Postprandial Blood Glucose, SDBG Standard Deviation Of Blood Glucose, PPGE Postprandial Glucose
Excursion, LAGE Largest amplitude of glycemic excursions, BMI Body Mass Index, HbAlc Glycosylated hemoglobin, GA glycated albumin, hs-CRP high-sensitivity
C-reactive protein
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of the large blood glucose fluctuartion. In this study,
however, no sign of inflammatory damage of intestinal
mucosa was observed as the CRP level of patients are at
normal level.
Multivariable linear regression analysis revealed that

the amplitude of blood glucose fluctuations was an inde-
pendent risk factor of increased intestinal permeability.
The blood glucose fluctuation compromise the intestinal
permeability in several possible ways: (1) Increased
blood glucose fluctuations affect the integrity of the in-
testinal epithelial cells and the contact structure between
cells [38]. (2) Abnormal metabolic pathways caused by
fluctuations in blood glucose lead to increased inflam-
matory factors and stimulate intestinal mucosa [38]. (3)
Function of liver is compromised due to the flucturation,
thereby preventing timely and effective removal of
endotoxins.
The positively correlation between intestinal mucosal

barrier damage and SDBG indicates that clinicans/
T2DM patients should carefully maintain stable blood
glucose level. Subsequent studies should be done to con-
firm our findings by increasing the sample size. Al-
though DAO, D-lactic acid, and endotoxin can be used
as indicators of the intestinal mucosal barrier status, the
impairment mechanism of intestinal mucosal barrier re-
mains to be clearly elucidated. Factors such as intestinal
microenvironment affected by medication and immunity
of patients should be further investigated.

Conclusions
In summary, impairment of the intestinal mucosal bar-
rier function, characterized by impaired intestinal per-
meability, may occur in patients with T2DM with large
SDBG. Clinical attention should be focused on monitor-
ing and controlling blood glucose fluctuations in pa-
tients with T2DM.
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