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Antibiotic resistance and metabolic profiles
as functional biomarkers that accurately
predict the geographic origin of city
metagenomics samples
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Abstract

Background: The availability of hundreds of city microbiome profiles allows the development of increasingly accurate
predictors of the origin of a sample based on its microbiota composition. Typical microbiome studies involve the analysis
of bacterial abundance profiles.

Results: Here we use a transformation of the conventional bacterial strain or gene abundance profiles to functional
profiles that account for bacterial metabolism and other cell functionalities. These profiles are used as features for city
classification in a machine learning algorithm that allows the extraction of the most relevant features for the
classification.

Conclusions: We demonstrate here that the use of functional profiles not only predict accurately the most likely origin
of a sample but also to provide an interesting functional point of view of the biogeography of the microbiota. Interestingly,
we show how cities can be classified based on the observed profile of antibiotic resistances.

Reviewers: Open peer review: Reviewed by Jin Zhuang Dou, Jing Zhou, Torsten Semmler and Eran Elhaik.
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Background
In recent years there has been an increasing interest in
microbiome research, especially in the context of human
health [1–4]. However, bacteria are ubiquitous and
microbiotas from many different sources have been
object of scrutiny [5]. Specifically, environmental meta-
genomics of soil and oceans is gaining much attention
[6–10]. However, urban environments have compara-
tively received less less and only a few reports on urban
microbial communities have been published [11–13].
The Metagenomics and Metadesign of the Subways and

Urban Biomes (MetaSUB) is an International Consor-
tium with a wide range of aims, currently involved in the
detection, measurement, and design of metagenomics
within urban environments [14]. Typically, microbiomes
have been studied by analyzing microbial abundance
profiles obtained either from 16S RNAs or from whole
genome sequencing (WGS), which can be further related
to specific conditions [15, 16]. More recently, 16sRNA
data has been used as a proxy to derive functional profiles
by assigning to each sample the functional properties
(pathways, resistance or virulence genes, etc.) of the ge-
nomes of reference of each species identified in it [17, 18].
However, 16sRNA data does not allow direct inference of
genes actually present in the bacterial population studied
[19]. Contrarily, metagenomics shotgun sequencing allows
inferring a quite accurate representation of the real gene
composition in the bacterial pool of each sample that can
be used to identify strain-specific genomic traits [20, 21].
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For example, the focused study of specific traits such as
antibiotic resistance or virulence genes has been used to
detect pathogenic species among commensal strains of E.
coli [22]. Also, general descriptive functional profile land-
scapes have been used to understand the contribution of
microbiota to human health and disease [22–24]. More-
over, another aspect of crucial interest is the use of micro-
biota in forensics [25]. Microbial communities differ in
composition and function across different geographical
locations [25], even at the levels of different cities [26–28].
Thus, data on specific microbiomes composition in a host
or environment can help in determining its geographic
location [26]. However, the value of existing functional
profiling tools when applied to environmental microbiota
and, specifically, to urban metagenomes, that can provide
an extra perspective of biological interpretation, remains
to be explored.
Here, we propose a machine learning innovative ap-

proach in which functional profiles of microbiota samples,
obtained from shotgun sequencing, are used as features
for predicting geographic origin. Moreover, in the predic-
tion schema proposed, a feature relevance method allows
extracting the most important functional features that
account for the classification. Thus, any sample is de-
scribed as a collection of functional modules (e.g. KEGG
pathways, resistance genes, etc.) contributed by the differ-
ent bacterial species present in it, which account for
potential metabolic and other functional activities that the
bacterial population, as a whole, can perform. We show
that the functional profiles, obtained from the individual
contribution of each bacterial strain in the sample, not
only display a high level of predictive power to detect the
city of origin of a sample but also provide an interesting
functional perspective of the city analyzed. Interestingly,
relevant features, such as antibiotic resistances, can accur-
ately predict the origin of samples and are compatible with
epidemiological and genetic observations.

Material and methods
Data
Sequence data were downloaded from the CAMDA web
page (http://camda2018.bioinf.jku.at/doku.php/contest_
dataset#metasub_forensics_challenge). There are four
datasets: training dataset composed of 311 samples from
eight cities (Auckland, Hamilton, New York, Ofa, Porto,
Sacramento, Santiago and Tokyo), test dataset 1, contain-
ing 30 samples from New York, Ofa, Porto and Santiago;
test dataset 2 containing 30 samples from three new cities
(Ilorin, Boston and Lisbon) and test dataset 3 containing
16 samples from Ilorin, Boston and Bogota.

Sequence data processing
Local functional profiles were generated from the ori-
ginal sequencing reads by the application MOCAT2 [29]

which uses several applications for the different steps.
FastX toolkit is used for trimming the reads and Solex-
aQA [30] to keep the reads in which all quality scores
are above 20 and with a minimum length of 45. In order
to remove possible contamination with human genomes
we screened the reads against hg19. In this step
MOCAT2 use SOAPaligner v2.21 [31]. High quality
reads were assembled with SOAPdenovo v1.05/v1.06
[31]. Then, genes were detected inside contigs using
Prodigal [32]. Figure 1a outlines the procedure followed.

Functional profiles
CD-HIT software [33] with a 95% identity and a of 90%
overlap with the sorter sequence was used to create a local
gene catalog for each city. Gene catalogs were annotated
using DIAMOND (v0.7.9.58) [34] to align the genes
against the orthologues groups of the database eggNOG
(v4.5) [35]. MOCAT2 pre-computed eggNOG ortholo-
gous groups sequences with annotations from other data-
bases. Then, a functional profile is generated for each
sample by assessing the gene coverage for KEGG (v74/57)
[36] and CARD (August 2015) [37] functional modules.
Finally, each sample is normalized by the number of
mapped reads against local gene catalog.

Machine learning pipeline
The machine learning phase takes the complete KEGG
Module functional profile as the input feature space, i.e.
each training/validation sample is represented as a 1D-
array where the values/features are a one to one map
with the KEGG modules. The machine learning pipeline
has been implemented in python 3.6 by making use of
scikit-learn [38]. The training and validation datasets are
transformed according to a quantile transformation whose
parameters are learned from the training data. Subse-
quently, we apply the learned data representation to each
validation dataset. The quantile preprocessing performs a
feature-wise non-linear transformation which consists on
transforming each variable to follow a normal distribution.
This is a robust preprocessing scheme since the impact of
the outliers is minimized by spreading the most frequent
values.
In order to visualize such a high dimensional dataset

we use the t-distributed Stochastic Neighbor Embedding
(t-SNE) [39] methodology. Due to the fact that the fea-
ture space dimension is much greater than the number
of samples, a principal component analysis (PCA) is per-
formed to reduce the dimensionality of the embedding
process carried out by t-SNE.

Classification pipeline
To classify each sample into one of the known cities a
classification pipeline was developed which mainly con-
sists of: i) A base learner with decision trees, ii) An
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ensemble of base learners via Scalable Tree Boosting
[40] and, iii) A Bayesian optimization framework for
tuning the hyper parameters. The optimization tuning
has been done by following the guidelines provided in
[41]. We chose to use here Scalable Tree Boosting Ma-
chine learning because of its proven performance in
other similar problems involving multi-view scenarios
and because of its easy interpretability [42].
In order to estimate the generalization error of the

underlying model and its hyper-parameter search we have
used a nested/non-nested cross-validation scheme. On the
one hand, the non-nested loop is used to learn an opti-
mized set of hyper-parameters, on the other hand, the
nested loop is used to estimate the generalization error by
averaging test set scores over several dataset splits. The
scoring metric is the accuracy and the hyper-parameter
learning is done on the inner/nested cross validation by
means of Bayesian optimization. Figure 1a contains a
schema of the whole pipeline followed here.

Fusion pipeline
In order to improve the classification accuracy of the
proposed method we can fuse different functional pro-
files by learning an approximation of the latent space by
means of Canonical Correlation Analysis (CCA) and
then applying the machine learning pipeline already pro-
posed. Thus, a multi view classification problem, where
the views are the functional profiles can be constructed.

A quantile transformation is learned for each dataset as
previously described (Fig. 1a) and then, the latent space
between both views is built by making use of CCA as pre-
viously described [43]. Finally, we apply the proposed clas-
sification pipeline (except the quantile transformation).
Given two datasets X1 and X2 that describe the same

samples (two views of the samples), CCA-based feature
fusion consists in concatenating, or adding, the latent
representations of both views in order to build a single
dataset that captures the most relevant patterns. CCA
finds one transformation (Ti) for each view (here we
have two views: KEGG and CARD, although the proced-
ure can be generalized to incorporate more views) in
such a way that the linear correlation between their pro-
jections is maximized in a latent space with less features
that either X1 or X2. Figure 1b shows a diagram that
summarizes the Fusion Pipeline.

Results and discussion
Classification of the cities
The CAMDA challenge test dataset consists of 311 sam-
ples from eight cities: Auckland, Hamilton, New York,
Ofa, Porto, Sacramento, Santiago and Tokyo. The pre-
dictor was trained with this test dataset and then used to
predict new samples.
The sequences from the CAMDA test dataset were

processed as described in methods and a KEGG-based
functional profile was obtained for all the samples of the
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Fig. 1 Schemas of: a The annotation and machine learning procedure and b The fusion pipeline, as explained in Methods
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training datasets. We observed that local catalog size was
highly city-dependent (Auckland: 293,210; Hamilton: 472,
649; NYC: 1,147,284; Ofa: 1,397,333; Porto: 76,083;
Sacramento: 65,120; Santiago: 168,523; Tokyo: 449634).
Also, the degree of contamination by reads identified as
humans fluctuated across cities (Auckland: 278,183;
Hamilton: 340,532; NYC: 227,888,129; Ofa: 410,909; Porto:
107,053,017; Sacramento: 40,028,005; Santiago: 158,313,
417; Tokyo: 515,448,367). The cities display characteristic
functional profiles (see Fig. 2) that clearly differentiate
them. Figure 3 shows how the functional profiles separate
the different cities as result of the application of the cluster-
ing pipeline on the training dataset 1. The results reveal
the strong performance of the suggested pipeline as most
of the classes (i.e. cities) are well separated, with the excep-
tion of Hamilton and Auckland (both New Zealand cities)
which are clearly differentiated from the other cities but
map together, as the train line sampled links both cities.
This functional similarity was expected due to their geo-
graphical closeness and its connection. Table 1 shows the
cross-validation results, where the New Zealand cities could
not be properly resolved as some of the samples were miss
assigned.

Feature extraction and biological relevance in the
classification
An advantage of using functional modules as classification
features is that their biological interpretation is straight-
forward. Here, the most relevant features were extracted
from the classification pipeline from each run of the
experiment, cross referencing the nested loop for the best
set of hyperparameters and a final fit with all training data,
by averaging the feature importance of each base learner
of the ensemble. The features that appeared in all the
experiments were selected. Then, to assure the relevance
of each extracted feature we cross-reference it with those
found by an l1-driven logistic regression model. Finally,
we perform a 10-fold cross-validated prediction in order
to assess that the difference in accuracy is close to that
found with the whole dataset. The total number of
extracted features adds up to 44.
Importantly, the features used for the classification

have a direct biological meaning and account for city-
specific functional properties of the bacterial samples
found in each city. As an example of easy interpretation
is the city of Ofa. Out of the seven most relevant fea-
tures that distinguish this city from the rest of cities (see

Fig. 2 Percentages of 59 high level KEGG modules defining the functional profiles for each city and surface by city are shown (for the sake of the
visualization KEGG modules were collapsed to the corresponding highest-level definitions)
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Fig. 4), three KEGG modules are related with antibiotic
resistances (see Table 2). Interestingly, antibiotic resist-
ance had already been studied in the MetSUB dataset by
directly searching the presence in P. stutzeri mexA strains
(that carry the mexA gene, a component of the MexAB-
OprM efflux system, that confer resistance to antibiotics
[44]) present in samples from some cities [13]. However,
in the approach presented here, that allowed the detection
of the most relevant functional features that characterize
cities, antibiotic resistance arises as a highly discriminative
feature for some of them.
Particularly, the Fluoroquinolone transport system

(M00224) is an ABC-2 type transporter that confers
resistance to fluoroquinolone, a widely used antibiotic
[45, 46]. Similarly, VraS-VraR (M00480) and VanS-VanR

(M00658) are two-component regulatory systems in-
volved in the response to two antibiotics, β-lactam [47]
and glycopeptides [48], respectively. Interestingly,
Fluoroquinolone transport system and VraS-VraR are
known to confer resistance in Staphylococcus aureus, a
pathogen of recognized higher incidence rates in sub
Saharan Africa than those reported from developed
countries [49]. Since Staphylococcus aureus is a skin
pathogen it is easier to find it over-represented in the Afri-
can MetaSUB samples. This observation captured by the
functional analysis of MetaSUB samples proposed here
suggests an excessive use of antibiotics that could eventu-
ally have caused an emergence of resistant strains. Actually,
epidemiologic studies report the prevalence of Staphylococ-
cal disease in sub-Saharan Africa, along with an increase in

Fig. 3 Classification of the cities of the training set based on KEGG-based functional profiles using a(t-SNE) [39] plot. As expected, the New York
cluster shows the highest dispersion. Hamilton and Auckland (both New Zealand cities connected by a train) are separated from the other cities
but are very difficult to distinguish among them

Table 1 Cross validation of the CAMDA training dataset

Truth / Pred Auckland Hamilton NY Ofa Porto Sacramento Santiago Tokyo All

Auckland 9 4 0 1 0 1 0 0 15

Hamilton 3 11 2 0 0 0 0 0 16

NY 1 0 110 1 0 6 2 6 126

Ofa 0 0 3 17 0 0 0 0 20

Porto 0 0 0 0 60 0 0 0 60

Sacramento 0 0 0 0 0 34 0 0 34

Santiago 0 0 1 0 0 0 17 2 20

Tokyo 0 0 0 0 0 0 0 20 20

All 13 15 116 19 60 41 19 28 311
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antibiotic resistance [49]. Moreover, two single-nucleotide
polymorphisms (SNPs) in the human leukocyte antigen
(HLA) class II region on chromosome 6 was demonstrated
to be associated with susceptibility to S. aureus infection at
a genome-wide significant level [50]. Additionally, a recent
admixture mapping study demonstrated that genomic
variations with different frequencies in these SNPs in Euro-
pean and African ancestral genomes influence susceptibility
to S. aureus infection, strongly suggesting a genetic basis
for our observations [51].

Classification of new samples of the cities in the training
set
In order to test the prediction power of the predictor
obtained using the training dataset, we have used the
test dataset 1 composed of 30 samples belonging to the
same cities that are in the training dataset. Table 3
shows the cross validation and the confusion matrix, in
which, the functional heterogeneity of New York clearly
introduces some noise in the classification (probably
with a real biological meaning). The accuracy of the pre-
dictor is of 0.73.

Classification using different functional profiles
KEGG encompasses a global compendium of bacterial
functionalities, providing features with a high discrimin-
atory power. However, many KEGG modules represent
too general functionalities that can be interesting for hy-
pothesis-free discovery studies but they can mask
specific modules which are relevant for more focused
medical, forensic or epidemiological studies. Instead,
other databases that collect specific bacterial activities or
functionalities could be used. Since antibiotic resistance
has emerged among the generic functionalities as a high
relevant feature in the classification, in addition to have
an obvious importance by itself, it seemed worth focus-
ing on features that specifically describe antibiotic resis-
tances. Therefore, a new training process was carried
out using CARD, the database of antibiotic resistances

Fig. 4 The most relevant KEGG features extracted from the classification pipeline by averaging the feature importance of each base learner of the
ensemble in each run of the experiment. In a blue square the features characteristic from Ofa, and listed in Table 2, are shown

Table 2 The most relevant KEGG modules in Ofa

KEGG ID KEGG name

M00090 Phosphatidylcholine (PC) biosynthesis,
choline = > PC

M00092 Phosphatidylethanolamine (PE) biosynthesis,
ethanolamine = > PE

M00224 Fluoroquinolone transport system

M00309 Non-phosphorylative Entner-Doudoroff
pathway, gluconate/galactonate = > glycerate

M00480 VraS-VraR (cell-wall peptidoglycan synthesis)
two-component regulatory system

M00494 NatK-NatR (sodium extrusion) two-component
regulatory system

M00658 VanS-VanR (actinomycete type vancomycin
resistance) two-component regulatory system
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[37]. Again, a set of antibiotic resistance features clearly
distinguishes Ofa from the rest of cities, as previously
observed (Fig. 5a). Table 4 describes the specific resis-
tances distinctive of Ofa which, overall, reinforce our
previous finding with KEGG about transporters [45, 46]
and two-component regulatory systems involved in the
response to antibiotics [47, 48], but providing more de-
tail on specific resistance mechanisms. Interestingly, the
characteristic that distinguishes Porto samples from
those of other cities is the absence of antibiotic resis-
tances (Fig. 5b). Although we do not have a strong epi-
demiological explanation for this, recent studies show
that Portugal is among the countries in Europe with the
highest defined daily antibiotic dose per habitant [52].
Whether the high antibiotic consumption is behind this
observation or not needs of deeper epidemiological stud-
ies but, in any case, this result points to a distinctive
local characteristic of clear epidemiological relevance.

Table 5 shows the cross validation and the confusion
matrix with the CARD functional profiles, in which, the
functional heterogeneity of New York is still introducing
some noise in the classification but the accuracy of the
predictor increased to 0.8.

Classification using mixed functional profiles
In addition to build predictors with a single functional
feature, it is possible to combine different functional
profiles to produce higher accuracy in the classification.
Here, we combined KEGG and CARD profiles using the
Fusion Pipeline (see Methods) and the resulting classifi-
cation accuracy increased to 0.9. Table 6 shows the
cross-validation values obtained with the mixed profiles.
Only New York, which is the most heterogeneous cite
from a functional point of view, shows a couple of bad
predictions (the Ofa misplaced sample was assigned to
New York, probably for the same reason).

Table 3 Cross validation and confusion matrix of KEGG functional profiles obtained from the samples from the test dataset 1,
belonging to the cities from the training dataset

Truth / Preds Auckland Hamilton NY Ofa Porto Sacramento Santiago Tokyo All Accuracy

NY 1 1 8 0 0 0 0 0 10 0.8

Ofa 0 0 2 3 0 0 0 0 5 0.6

Porto 0 0 1 0 8 0 0 1 10 0.8

Santiago 0 0 1 0 0 1 3 0 5 0.6

All 1 1 12 3 8 1 3 1 30 0.73

A B

Fig. 5 The most relevant CARD (antibiotic resistances) features extracted from the classification pipeline by averaging the feature importance of
each base learner of the ensemble in each run of the experiment. a Features characteristic from Ofa. b Features characteristic from Porto
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More functional profiles could be included by using an
extension of the Fusion Pipeline to N datasets as previ-
ously shown [53], coupled with robust Least Squares
techniques [54], to accommodate for the challenging low
sample size high dimensional data scenario.

Classification new samples of with new cities
In order to check the performance of the predictor with
samples from cities that were not used in the initial
training dataset we used the 30 samples from the test
dataset 2, from the cities: Ilorin (close to Ofa), Lisbon
(in Portugal, but not close to Porto) and Boston (in
USA, but not close to New York).
Figure 6 shows the samples clustered in cities, as ex-

pected. Thus, Ilorin and Ofa map together because these
two cities are physically close cities in Nigeria (and con-
nected by a train). As expected, the New York cluster
shows the highest dispersion. However, is does not cluster
together with Boston. The same is observed with Lisbon,
which is not close to Porto and both map in different
places. Interestingly, the Porto “outlier” sample maps on
the Lisbon cluster. Similar to the case of Ofa and Ilorin,
Hamilton and Auckland, both New Zealand cities con-
nected by a train also map together as well.

Machine learning pipeline comparison
Finally, the performance of each machine learning pipeline
was evaluated by joining the samples from the training
and the three validation datasets. For each model a 10-fold
city-wise stratified cross-validation was performed. In
order to provide statistical evidence for the results each

experiment is repeated 10 times with different random
seeds initializations. Figure 7 shows a box plot diagram of
the different experiments grouped by the functional
profile used, namely: kegg for KEGG-Modules, card for
CARD-ARO and fusion for the Multiview case. As ex-
pected, the model performance follows the tendency
already exhibited: the fusion pipeline outperforms the sin-
gle-view case, and the CARD-ARO view provides slightly
better results than KEGG-Modules.

Conclusions
The recodification of metagenomics data from the con-
ventional gene or strain abundance profiles to other types
of profiles with biological meaning offers new avenues for
the analysis of microbiome data. Here we show how the
use of KEGG- and CARD-based functional profiles, de-
rived from the original metagenomics data, not only
provides accurate sample classification but also offers in-
teresting epidemiological and biological interpretations of
the results found. Interestingly, antibiotic resistance arises
as a relevant classification feature, supported by epidemio-
logical [49] and genetic [51] previous observations.

Reviewers’ comments
Reviewer’s report 1: Jin Zhuang Dou
This paper uses transformed functional profiles from meta-
genomics as features for geographic origin prediction, and
also provides interesting epidemiological and biological
interpretations based on these features. They have also
demonstrated that the proposed fusion module outper-
forms the single KEGG/CARD module. I think that this is

Table 4 The most relevant antibiotic resistance modules (CARD) in Ofa

ACCESSION NAME DESCRIPTION

3002940 vanSN vanSN is a vanS variant found in the vanN gene cluster

3000217 blaR1 blaR1 is a transmembrane spanning and signal transducing protein which in response
to interaction with beta-lactam antibiotics results in upregulation of the blaZ/blaR1/blaI operon.

3003069 vanXYG vanXYG is a vanXY variant found in the vanG gene cluster

3000180 tetA(P) TetA(P) is a inner membrane tetracycline efflux protein found on the same operon as the
ribosomal protection protein TetB(P). It is found in Clostridium, a Gram-positive bacterium.

3002541 AAC(3)-VIIa AAC(3)-VIIa is a chromosomal-encoded aminoglycoside acetyltransferase in Streptomyces rimosus

Table 5 Cross validation and confusion matrix of antibiotic
resistances (CARD) functional profiles obtained from the
samples from the test dataset 1, belonging to the cities from
the training dataset

Truth/pred Auckland NY Ofa Porto Santiago All Accuracy

NY 2 8 0 0 0 10 0.8

Ofa 0 1 4 0 0 5 0.8

Porto 0 0 0 10 0 10 1

Santiago 0 2 0 1 2 5 0.4

All 2 11 4 11 2 30 0.8

Table 6 Cross validation and confusion matrix of functional
profiles obtained from the combination of KEGG and CARD
corresponding to samples from the test dataset 1 belonging to
the cities from the training dataset

Truth/pred Auckland NY Ofa Porto Santiago All Accuracy

NY 1 8 1 0 0 10 0.8

Ofa 0 1 4 0 0 5 0.8

Porto 0 0 0 10 0 10 1

Santiago 0 0 0 0 5 5 1

All 1 11 3 10 5 30 0.9
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a worthwhile analysis that provides a new avenue for the
analysis of urban microbiome data. Their findings are just
as important and viewing the purposes of Biology Direct.
However, there are several points that the authors should
at least consider addressing to improve the paper.
Major comments
1) L45–46 in Page3. The authors claim that “little is

known on the value of existing profiling tools when ap-
plied to urban metagenomes [15]”. However, Zolfo et al.

has shown that “strain-level methods developed primar-
ily for the analysis of human microbiomes can be effect-
ive for city-associated microbiomes”. Indeed, Zolfo et al.
are aimed to address the issue by testing the currently
available metagenomic profiling tools on urban metage-
nomics. Therefore, I think the citation here is a little
misleading.
Author’s response: actually, we meant the functional

profiles. We apologize for the way the sentence was written:

A

B

Fig. 6 Classification of all the cities obtained with a KEGG-based functional profiles and b CARD-based functional profiles using a(t-SNE) [39] plot.
Ilorin and Ofa, two physically close cities in Nigeria (connected by a train) map close to each other. New York, not close to Boston, and Lisbon,
not close to Porto cluster apart in the plot. Hamilton and Auckland, both New Zealand cities connected by a train, also map together
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it was a bit ambiguous. We have rewritten the sentence for
clarity. We have cited Zolfo as response to point 2, as part
of the background on the characterization of microbiota in
urban environments.
2) L48 in Page3. The authors do not have any introduc-

tions about the fields of predicting geographic origin from
metagenomics. If no studies have involved in this topic be-
fore, the author should explain why predicting geographic
origin is important for scientific communities. This will
definitely improve the novelty of this work. If there are
previous studies in this topic, the authors should present
basic descriptions to readers who are not familiar with
that. In this case, it would be interesting to see the other
approaches compared/discussed in this study.
Author’s response: we have included some background

on studies of urban metagenomes. But, to our knowledge,
there are no previous reports on the use of microbiota to
detect the origin of a sample. We have included this in-
formation in the text as requested by the referee.
3) L17–18 in Page4. The authors have removed reads

from human genome. It will be appreciated if authors
can list how many reads are from human genome.
Author’s response: We have included in the results sec-

tion, “Classification of the cities” subsection, the details
requested.
4) L24–25 in Page4. After clustering using CD-hit,

how many genes are included in a local gene catalog for
each city? It will be appreciated if authors can provide
these details.
Author’s response: We have included in the results sec-

tion, “Classification of the cities” subsection, the details
requested.

5) L3–13 in Page6. The authors presented an example
of easy interpretation for city of Ofa in Fig. 4. It is not
comprehensive to only show one point here. As for me,
M00496, M00733, M00218, M00694, M00733, M00591,
M00664 could separate OFA and SCL from other loca-
tions. Are there any biological interpretations for this?
Also, why SAC location only has M00342, M00158,
M00183, M00179, M00178, M00501, M00218, and
M00414?
Author’s response: We just wanted to show an ex-

ample of interpretation. Actually, a detailed biological
interpretation of the observations is beyond the scope of
the manuscript, which focuses on the validation of the
use of functional profiles for geographical classification
purposes. In any case, from the figure, the only M00694
(cGMP signaling), is shared between OFA and SLC and
is absent in the rest of cities, and it is a too general mod-
ule to offer an interesting biological interpretation.
Regarding the rest of modules mentioned, these are either
shared by other cities (M00733, M00218, M00591,
M00664) or absent in OFA (M00496). With respect to
the modules that define SAC, these are the ones selected
by relevance in the classification by the algorithm. There
are modules with very general functionalities (Ribosome,
RNA polymerase, etc.), that are shared with many other
cities. Al often happens in classification problems with
some of the entities involved is that, the characteristic of
SAC is the absence of a number of modules that are rele-
vant for other locations.
6) L27–42 in Page7. In Fig. 6, only KEGG-based func-

tional profiles are presented here. In this work, authors
have demonstrated that the fusion pipeline has the best

Fig. 7 Accuracies obtained using the whole dataset (Training dataset and test datasets 1, 2 and 3) with only KEGG profiles, only CARD profiles and
the fusion of both profiles
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performance. It is better to show the predictions from
KEGG profiles, CARD profiles and the fusion of both
profiles separately in Fig. 6. In addition, the embedding
dimension 0 and 2 are shown. I am wondering why au-
thors skip dimension 1? At least for me, this should be
specified.
Author’s response: We have included KEGG and

CARD profiles in Fig. 6. While KEGG and CARD profiles
show the predictive performance of the method, trained
with the training datasets, the fusion has been made
using all the data and obviously will cluster all the cities
better. Therefore, it does not make much sense to show it.
Regarding the numbering of the dimensions it was an
error. There were two dimensions that should be 1 and 2.
We have substituted it by X and Y for the shake of
clarity.
Minor issues
1) L8–9 in Page3. There should be only one dot at the

end of this sentence.
2) L5–7 in Page4. A left parenthesis has been entered

without a closing right parenthesis.
3) L9–10 in Page4. There should be one dot at the end

of this sentence.
Author’s response: All the typos have been corrected.
4) L23–23 in Page5. It is better to add the range of i,

for example, Ti, i = 1,2.
Author’s response: The i makes reference to the num-

ber of views (here KEGG and CART). We have clarified
this in the text.
5) L41–42 in Page5. What do “TBP” mean at the bot-

tom of Fig. 2? There is no any information about this
label. The authors should add more about that in the
figure legend. The current resolution of this figure is
very low for a review.
Author’s response: TBP (to be provided) refers to an

unknown surface whose nature was never provided in the
metadata. In any case, surfaces are irrelevant within the
goal of the manuscript. We have changed TBP by un-
known in the figure. We have increased the resolution of
the figure as well as the size of the labels.

Reviewer’s report 2: Jing Zhou
In this paper, the authors predicted the geographic ori-
gin of samples from the CAMDA challenge using meta-
bolic profiles as training features. It is very interesting
that using antibiotic resistance feature only can distin-
guish cities as well. They also compared three machine
learning pipelines, i.e. using KEGG profile only, using
CARD profile only, and the combination of the two pro-
files. They found out the “fusion” pipeline yielded the
best results among the three. This manuscript is very
clear and well written. It provides both biological and
technical insights into classification cities based on their
metagenomics data. I believe this paper fits the standard

of Biology Direct and should publish with the following
comments addressed.
I wonder if the authors have compared different machine

learning algorithms? Could you explain why choosing deci-
sion tree as the training algorithm?
Author’s response: Actually, we always compare the

performance of the chosen algorithm with respect to gen-
eralized linear models that were clearly outperformed by
xgBoost. Moreover, this ML algorithm is one of the top
winners in Kaggle contests (https://www.kdnuggets.com/2
017/10/xgboost-top-machine-learning-method-kaggle-ex-
plained.html). We have added a sentence justifying the
use of Scalable Tree Boosting Machine learning in this
work.
Minor:
1) Page 7, line 32: misspelling. “Ney York” should be

“New York”.
2) The font for Table 3 looks smaller than Table 5.

Please make sure the fort is consistent throughout the
paper.
3) Fig. 3, the two circles in Fig. 3 are confusing. I

understand the authors wanted to indicate New York
and Auckland/Hamilton data points using the circles.
However, the circles did not include all the data points.
It’s not very accurate. Maybe just delete the circles and
refer them by their colors.
Author’s response: Misspelling has been corrected and

table fonts have been homogenized. As suggested by the
referee, the circles were removed in Fig. 3 and, for homo-
geneity, also in Fig. 6.

Reviewer’s report 3: Torsten Semmler
In their manuscript entitled “Antibiotic resistance and
metabolic profiles as functional biomarkers that accurately
predict the geographic origin of city metagenomics sam-
ples” Casimiro-Soriguer et al. compare the composition of
metagenomics samples from different cities based on
specific functional profiles obtained by matching against
KEGG and CARD databases. The results gained here were
then used to classify unknown samples regarding their city
of origin by a machine learning approach. It is interesting
to see that the markers that are more involved in the bio-
logical processes, especially those related to antimicrobial
resistances are specific enough in their composition to
clearly distinguish their city of origin.
Reviewer recommendations to authors:
The analyses and conclusions are sound but there are

several grammar and spelling mistakes. If these would be
corrected I recommend this manuscript without any
doubts for publication in Biology Direct.
Author’s response: We appreciate very much the

positive comments of the referee. We have reviewed
carefully the text and corrected grammar and spelling
mistakes.
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Reviewer’s report 4: Eran Elhaik
Casimiro-Soriguer and colleagues proposed to use the
functional profiles that account for bacterial metabolism
and other cell functionalities to classify bacteria, sampled
as part of the MetaSUB consortium and made available
as part of the CAMDA challenge, into the cities from
which they were collected from using a machine learning
algorithm. They claim that their method accurately pre-
dicts the sampling site and provides insights about the re-
lationships of geography and function. This is an
interesting approach, but much more clarity and valid-
ation are necessary. I found the manuscript quite confus-
ing, the analyses incoherent, incomplete, and misleading
and the English poor.
Author’s response: We regret that the referee has found

the “manuscript confusing, the analysis incoherent, incom-
plete and misleading”. It sounds a quite radical comment
when the other three referees saw no major issues with the
manuscript and this referee do not seem to be very familiar
with ML and with the methods used here, given that he
describes some terms of common use in ML as buzzwords.
Moreover, a more careful reading of the manuscript can
directly solve a number of issues he raised. Fortunately, the
referee finds the method “interesting” as well, and we will
focus on this positive impression.
Major comments
• The “Machine learning pipeline” section is unclear.

How do you make geographical predictions? It seems that
the ML can only classify samples to cities. So, classifica-
tion to new cities would be impossible. Is this correct? If
so, this is a classification, not prediction algorithm, in
which case you should not make claims about predictions
and be very clear about the limitation of your approach.
Author’s response: This is a matter of semantics. Pre-

diction is more generic than classification. Classification
of new cities is impossible without a highly detailed geo-
graphic sampling. The predictor can only give a probabil-
ity of class membership for known classes. However, what
is obvious from our results is that unknown cities close to
known cities actually cluster together, while distant new
cities appear as independent groups in the plot. More-
over, Fig. 7 suggests that, the more geographical points
are added the better is the classification, which supports
that a detailed geographical sampling would actually
convert the predictor into a city classifier.
• Figure 2, did you use the sampling material for the al-

gorithm? If so, why present it? If you don’t even discuss it.
Either discuss the materials or removed this figure.
Author’s response: This figure is mentioned in results

as a visual differentiation among cities based on average
functional profiles. Should it be removed because it is not
mentioned in materials?
• Include a figure, like Fig. 2, with functional profiles

per sample for the entire dataset.

Author’s response: This would result in a very big fig-
ure with very low detail on individual samples, which
would be a version of the Figure the referee wanted us to
remove in the previous comment. We do not understand
why this figure is needed. We are a bit puzzled with the
referee’s comments.
• “the most relevant features were extracted from the

classification pipeline from each run of the experiment
by averaging the feature importance of each base learner
of the ensemble (an easily computable scores since we
use decision trees)” so you used a threshold of a kind?
Why is this not in the methods?.
Author’s response: There is not a threshold for extract-

ing relevant features. If you continue reading the text, the
next sentence reads “The features that appeared in all
the experiments were selected”. To make the text clearer
we have changed the previous sentence for this one: “the
most relevant features were extracted from the classifica-
tion pipeline from each run of the experiment, cross refer-
encing the nested loop for the best set of hyperparameters
and a final fit with all training data, by averaging the
feature importance of each base learner of the ensemble”.
• You highlight the case of Ofa, but we don’t see the

results for all other cities, so this is not useful. Just look-
ing at NY tells us that there is much heterogeneity.
Author’s response: As explained in the text, we commen-

ted only these results having a clear interpretation. The
systematic interpretation of the results of all the cities is
beyond the scope of a paper that just aim to demonstrate
that functional profiles can be used for classification.
• Section “Classification new samples of with new cities”

– where are the results? The challenge was to predict
cities from data, not to show PCA.
Author’s response: CAMDA is an open-ended contest

and, as we previously mentioned, we wanted to demon-
strate that the functional profiles actually classify very
well cities. We are not strictly following the challenge,
which do not subtract novelty to our manuscript.
• “Machine Learning Pipeline Comparison” – you

don’t compare “pipelines” just the 3rd party tool that
does the annotation. You have one pipeline. Revise.
Author’s response: We have described three pipelines

using KEGG, CARD and both (fusion) functional profiles
in the text. We are comparing the classification accuracy
in this section. Of course the functional annotation and
the classification algorithms are 3rd party code: we do
not want to reinvent the wheel. What is new here, as the
title of the manuscript states, is the use of functional pro-
files for sample classification.
• The goal of the challenge was to predict the mystery

cities from the known cities, not use them as part of the
training dataset. You can either do this and report the
results, or do a “drop-one-city” analysis, where you cal-
culate the prediction accuracy of predicting a certain city
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(you can calculate the average geographical distance of
your predictor to that city) for all the samples in that
city and repeat for all cities. These are your only predict-
ive results. If you cannot do that then you have a classifi-
cation algorithm and this should be made very clear.
Author’s response: If the referee mean predict the

name of an unseen mystery city, obviously neither our
proposal nor other current algorithms with the samples
given can predict the name of the city (maybe guessing
that one of the mystery cities was Ilorin, close to Ofa.
What we demonstrated is that new cities cluster apart,
except in special cases such as Ofa-Ilorin or Auckland-
Hamilton. What we also demonstrated by adding later
the mystery cities samples and demonstrating the im-
provement of the predictor is that probably, the idea of
the challenge of identifying new cities would become pos-
sible if the geography is more systematically sampled. We
think the title of the manuscript and the text clarifies
what we are proposing here.
Minor issues
• From the abstract: “most likely origin of a sample” –

what does that mean? You mean sampling site.
Author’s response: Yes, it can be written in many dif-

ferent ways.
• From the abstract: “provide an interesting functional

point of view of the biogeography of the microbiota.” –
most of the results were pretty similar, I fail to see a
demonstration of any relationship. The case of Ofa is pre-
sented as an interesting point, but I cannot see how it can
be generalized provided the diversity in NY, for example,
Author’s response: We do not understand why the ref-

eree says that the results were pretty similar. Cities are
separated by different sets of functional features (other-
wise, they could have not been separated). In the case of
Ofa the interpretation was easy, in the rest of cases it is
beyond our skills and the scope of the manuscript. We
only wanted to demonstrate that biologically relevant
features can be used for the classification.
• “we propose a machine learning innovative ap-

proach” -> “we propose an innovative machine learning
approach”.
Author’s response: Done.
• Need more explanation on the KEGG/CARD. Was

any threshold use? Each one offer multiple classifications
for each gene, were they all used?.
Author’s response: We have used here the MOCAT

pipeline of the EMBL, one of the most widely used, which
take all the functional labels for each gene.
• Line 35, what is “CD-hit”?.
Author’s response: The text reads “CD-hit [33]...” And,

as the reference states, it is a computer application. We
have clarified this in the text anyway.
• Line 39, “a functional profile is generated for each

sample by assessing the gene coverage” what does it mean

“for each sample”? you wrote in line 37 that it is “for each
city”? is the city-based classification used as a reference?.
Author’s response: Each sample means exactly that:

each sample is represented by a functional profile. In the
text we explain that a gene catalog is created for each
city. This is how functional annotation pipelines work.
• The “Fusion pipeline” section is very unclear. How

do you fuse the functional profiles? What latent space?
A lot of buzzwords that tell me nothing on how this
works and what you did. What do you mean “same re-
sponse?” this is not a clinical database.
Author’s response: As we explain in the text “feature

fusion consists in concatenating, or adding, the latent
representations of both views”.
Buzzwords? Canonical Correlation Analysis is a known

technique that reduces the space -latent space- (like, for
example, PCA) and is described in the corresponding
reference. The rest of words look quite extensively used
(quantile, concatenating, features …). In addition to the
explanation in the text, there is a reference to Fig. 1.
Same response = same result, output, tec. It is a com-

mon nomenclature. The word “response” is used in
more domains than in clinic. Anyway, we have rephrased
the sentence to “Given two datasets X1 and X2 that de-
scribe the same samples”.
• Figure 1B, doesn’t mention city profile and sample

profile, at odds with what has been written above.
Author’s response: As we mentioned before there are

no city, but sample profiles. Cities are used to create gene
catalogs.
• Figure 1 is very helpful, but it should be clear form it

how do we start with a sample and get a classification
into a city (not prediction, as is currently stated).
Author’s response: Figure 1 explains the procedure

used for training the predictor. Once the predictor is
trained its use is obvious: it returns for a given func-
tional profile the probability of belonging to a given city.
As we have already commented, this is a predictor (gen-
eric) that classifies into city origins (specific task). See
the functionality of the scikit-learn API used here:
https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html#sklearn.
ensemble.RandomForestClassifier.predict
• In the results section, “The CAMDA challenge” sec-

tion is not a result, why does it need a separate section?
You should embed it in the next section.
Author’s response: Done
• “in order to assert that the difference” – that’s not an

assertion.
Author’s response: It was a typo. We meant “assess”.
• “The total number of extracted features adds up to

44.” – what features? Do you mean the functional
profiles/categories? Why do you keep changing the
terminology?
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Author’s response: We do not change the terminology.
Actually, the title of the section is “Feature extraction and
biological relevance in the classification”. In ML the vari-
ables, here the functional categories composing the profiles,
are known as features. It is a well-known terminology.
• “Importantly, the features used for the classification

have a direct biological meaning and account” – repetitive.
Author’s response: Why repetitive? We mentioned in

the previous paragraph how to extract relevant features
and here we state that the relevant features have a direct
biological meaning.
• I don’t understand the difference between Figs. 2 and

4. How did you convert the functional categories to a
scale? Why Ofa, which in Fig. 2 looks like other cities,
look different in Fig. 4.
Author’s response: Figure legends explain what each fig-

ure is. There is no scale in Fig. 2: there are percentages of
KEGG terms (collapsed to their highest-level category)
found in the individual profiles of each population. This is
not a peculiarity of Ofa. Ofa, like other cities, shows a dis-
tribution of high level KEGG terms relatively equivalent,
but the predictor learns to distinguish among cities.
• “Out of the seven most relevant features” – which 7

features? Where do I see them in Fig. 4?
Author’s response: There is a blue square in the figure

that clearly delimits 7 features (M0480 to M0257 from
left to right in the X axis).
• “Particularly, the Fluoroquinolone transport system

(M00224) is” this should be in the discussion, it’s not a
result.
Author’s response: Please, note that the section is

called “Results and discussion”.
• “test the generalization power” there is no such thing

generalization power." “obtained with the training dataset”
– poor English. This whole paragraph is poorly written.
Author’s response: OK, we have changed this for pre-

diction power and rephrased the sentence.
• “The accuracy of the predictor is of 0.73” – it is in-

appropriate to report accuracy in such manner. You
should report the results in terms of specificity and
sensitivity https://en.wikipedia.org/wiki/Sensitivity_and_
specificity.
Author’s response: We thank the wikipedia reference to

specificity and sensitivity, we have learnt a lot. In any
case, the idea here was to provide a general idea on the
accuracy of the prediction. Since this is not the case of an
unbalanced dataset or any anomalous scenario accuracy
does the job very well. In any case, the confusion matrices
in the Tables 3 and 5 provide specificity and sensitivity
information.
• “with no much biological interest” – poor English.
Author’s response: Rephrased.
• “Classification using different functional profiles” –

move parts to the methods. Results section should consists

of only/mainly results. “Although we do not have a strong”
why here? This should be in the discussion.
Author’s response: The subsection “Classification using

different functional profiles” contains a discussion on why
other profiles are interesting and results on the use of
these profiles. It makes no sense moving it to Methods.
Actually, in Methods, the functional profiles used are de-
scribed in the subsection “Functional profiles”. And,
please, note that the section is called “results and discus-
sion” this is the reason why chunks of discussion follow to
results.
• “Since antibiotic resistance has emerged among the

generic functionalities as a high relevant feature in the
classification, in addition to have an obvious importance
by itself, it seemed worth focusing on features that spe-
cifically describe antibiotic resistances.” I don’t see it.
Author’s response: Well, there is a whole subsection

called “Classification using different functional profiles” in
which precisely we focus of antibiotic resistance profiles.
• Consider merging Tables 5 and 3, graphically, not by

content to reduce the number of tables.
Author’s response: Mixing two confusion matrices would

result into a confusing table. I have never seen this.
• “Figure 6 shows the cities clustered as expected” –

what was expected?
Author’s response: It is expected that samples from the

same city cluster together. We rephrased the sentence for
better understanding.
• “Thus, Ilorin and Ofa map together because these two

cities are physically close cities in Nigeria (and connected
by a train).” Really? they map together because they are
physically close??? are you plotting them by distance?
Author’s response: According to google maps only a

train line links both cities and this line seem to have been
sampled at both ends.
• “As expected, the New York cluster shows the high-

est dispersion, although is not similar to Boston” – poor
English.
Author’s response: Rephrased.
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