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The Nitrogen Balancing Act: Tracking 
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Farmers, food supply-chain entities, and policymakers need a simple but robust indicator to demonstrate progress toward reducing nitrogen 
pollution associated with food production. We show that nitrogen balance—the difference between nitrogen inputs and nitrogen outputs 
in an agricultural production system—is a robust measure of nitrogen losses that is simple to calculate, easily understood, and based on 
readily available farm data. Nitrogen balance provides farmers with a means of demonstrating to an increasingly concerned public that they 
are succeeding in reducing nitrogen losses while also improving the overall sustainability of their farming operation. Likewise, supply-chain 
companies and policymakers can use nitrogen balance to track progress toward sustainability goals. We describe the value of nitrogen balance 
in translating environmental targets into actionable goals for farmers and illustrate the potential roles of science, policy, and agricultural support 
networks in helping farmers achieve them.
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Nitrogen fertilizer poses a huge challenge for    
modern agriculture (figure 1). Although essential for 

achieving high crop yields, its abundant use makes fertil-
izer the dominant contributor to global nitrogen pollution, 
which poses substantial risks to climate, human health, and 
ecosystems (Erisman et al. 2013). Nitrogen (N) fertilizer is 
the dominant source of new anthropogenic N in US land-
scapes, resulting in estimated ecosystem and health damages 
of US$157 billion per year (Sobota et al. 2015). At a global 
scale, anthropogenic contributions to N flows have driven us 
beyond the “safe operating space” for human development 
(Steffen et al. 2015). As a result, there is growing interest in 
N-related indicators that can track progress in reducing N 
losses to the environment while maintaining or increasing 
food production (Zhang et al. 2015).

In the United States, small profit margins and increasing 
public concern about the environmental impacts of food 
production have driven substantial efficiency improvements 
in agricultural production (Thomson et al. 2017). Despite 
these efficiency gains, water quality problems related to N 
loss from agricultural systems continue and may be worsen-
ing. For example, in 2017, the Gulf of Mexico hypoxic zone, 
which is caused in large part by N losses from crop produc-
tion upstream, reached the greatest extent ever recorded. 

This is perhaps not surprising given that, despite significant 
government payments to upstream farmers, agricultural N 
loads to the Gulf of Mexico have not declined significantly 
(Scavia et al. 2017). Consequently, some have concluded that 
current (voluntary) efforts to improve agricultural sustain-
ability have failed (Ribaudo 2015), and there are increasing 
calls for regulation. Separately, a growing number of inter-
national food retailers and manufacturers have committed 
to improving the sustainability of their food supply chains. 
Recognizing that N-fertilizer use dominates the nitrogen 
footprint of food (Goucher et al. 2017), these industry initia-
tives seek to improve on-farm environmental performance.

Across multiple scales—farm, watershed, and food supply 
chain—there is a clear need for environmental performance 
indicators that are scientifically sound, responsive in the 
near term to changes in farm management, and credible to 
broader audiences. Here, we show that the N-balance indica-
tor (the difference between N inputs to and N outputs from a 
field or farm, sometimes referred to as N surplus) is a robust 
gauge of potential N losses from agricultural systems, and 
we describe how it will allow farmers, food supply-chain 
companies, and policymakers to track and report progress 
in reducing the environmental footprint of food. In addi-
tion, heeding calls for quantitative targets for the sustainable 
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intensification of agriculture (Hunter et al. 2017), we sug-
gest how environmental thresholds can be translated into 
N-balance targets and propose a framework to help farmers 
achieve those targets. We focus primarily on N balance in 
cropping systems, recognizing that farm-scale N balances 
are already broadly accepted as a sustainability indicator for 
animal production systems (e.g., de Klein et al. 2017) and 
that feed (grain) is a major component of the US livestock 
production footprint.

Current approaches to quantifying environmental 
progress
Assessing the effectiveness of attempts to reduce N losses 
from agriculture is challenging for several reasons (Cherry 
et al. 2008). Most assessments track the adoption of specific 
practices, such as improved fertilizer management or use of 
cover crops. Although these practices effectively reduce some 
types of N losses in research plots under specific agricultural 
or environmental conditions, performance at this spatial 
scale does not necessarily translate to the farm or watershed 
level. This disconnect occurs because larger spatial scales 
encompass differences in temperature, precipitation, soil 
texture, soil organic matter, landscape position, and man-
agement history, all of which influence soil N pools and N 
cycling and therefore the impact of a given practice on N 
losses. Thus, the impact of a specific practice can vary greatly 

within a watershed, even to the point of having opposite 
effects on N losses in different places. Furthermore, prac-
tices that reduce N losses to the atmosphere may increase N 
discharges to surface- and groundwater and vice versa (i.e., 
pollution swapping; Stevens and Quinton 2009). The only 
practice that will consistently decrease N losses at all loca-
tions, by all pathways and for all forms of N, is reduction in 
N input rates, which risks compromising crop yields.

Given the challenges of a practice-based assessment 
approach, some have attempted to evaluate environmental 
progress directly by measuring changes in greenhouse gas 
emissions or water quality. However, this is difficult and 
costly because of multiple loss pathways, rapid transforma-
tions among different forms of N (e.g., ammonia, NH3; 
nitrate, NO3

–; nitrous oxide, N2O; and dinitrogen gas, N2), 
and high spatial and temporal variability (especially for N2O 
emissions). Likewise, inferring progress from water-quality 
data is complicated by possible impacts of legacy N sources 
in soil and subsurface water (Van Meter et al. 2016), as well 
as the potential for climate-change-related impacts—such 
as increased runoff—to obscure the immediate benefits of 
practice change (Bosch et al. 2014).

As an alternative to direct measurement, environmental 
models attempt to determine the fate of agricultural nutrients 
by using a variety of equations to represent the biophysical 
system. Models range from relatively simple empirical mod-
els based on field measurements to very complex  models 
that attempt to simulate biophysical processes in detail 
within the soil–crop–air–water system. The comprehensive 
nature of these process-based models makes them appealing 
for application to a wide array of crops, geographies, and 
agricultural management practices. However, they perform 
poorly when used beyond the applications and conditions 
for which they are calibrated (Baffaut et al. 2017), and the 
lack of transparency into model inputs and processes can 
lead to a credibility challenge for model outputs.

Nitrogen balance as a measure of nitrogen losses to 
the environment
Although there is value to both modeling and environ-
mental monitoring, we believe a simple field- and farm-
level indicator of N loss, responsive to changes in farm 
management practices, is likely to be both more credible 
and more useful to an individual farmer. Such an indicator 
will better help her or him understand the direct impact of 
farm management changes on environmental outcomes. 
We propose that N balance, which has been widely used 
in the EU and elsewhere (OECD 2013), is an appropriate 
indicator for this purpose. Nitrogen balance is defined 
as the difference between N inputs to, and N removed in 
products from, an agricultural system. At the spatial scale 
of a single production field, for example, N balance can be 
calculated from records of inorganic and organic nutrient 
applications and crop yield. More sophisticated balances 
can account for additional N inputs, such as atmospheric 
deposition and net N inputs from legume fixation, as well 
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Figure 1. A conceptual diagram illustrating the alternative 
fates of nitrogen from fertilizer applied to crops. Nitrogen 
not captured in the food supply chain is likely to be lost to the 
environment, with impacts on the atmosphere (stratospheric 
ozone depletion, global warming, and the formation of 
ground-level ozone, particulate matter, and smog), on land 
(soil acidification, foliar damage, forest decline, biodiversity 
loss, and terrestrial eutrophication), and on water (coastal 
dead zones, freshwater eutrophication, nitrates in drinking 
water, and biodiversity loss). The most desirable outcome 
is that as much nitrogen as possible enters the food supply 
chain and is made available to consumers. The less desirable 
outcome is that nitrogen is lost to the environment, where it 
damages human health and ecosystems, and contributes to 
climate change.
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as variations in the N content of harvested crop materials 
and changes in soil organic matter content. At the farm 
scale, the definition of N balance expands to include inputs 
and outputs associated with integrated crop–livestock 
production systems (Soberon et al. 2015). Nitrogen bal-
ance can be scaled up to large watersheds (Thorburn and 
Wilkinson 2013, Cela et al. 2017) and countries (Zhang 
et al. 2015) and aggregated across industry sectors (Stott 
and Gourley 2016).

Nitrogen balance for a field, as defined above, is a  measure 
of the extent to which anthropogenic N supply exceeds crop 
needs. Although modest excess may be required (e.g., to 
support growth of unharvested plant parts and maintain soil 
organic matter), a large excess creates a pool of reactive N 
in soil that is extremely vulnerable to loss and is therefore a 
potential source of pollution. Assuming steady-state condi-
tions with little or no change in soil organic N stocks, N bal-
ance represents a robust estimate of the soil N pool at risk of 
loss to the environment. To test this hypothesis, we evaluated 
relationships between N balance and environmental N losses 
through two complementary approaches, one based on anal-
ysis of published field data and the other based on a simula-
tion model (figure 2). We focus primarily on N2O emissions 
and NO3

– leaching, because these have been the subject of 
supply-chain sustainability initiatives in the United States. 
To ensure that reductions in N losses are not achieved at 
the expense of crop yields, we express N loss relationships 
as yield-scaled N2O and NO3

– losses (kilograms N lost per 
megagram of grain; van Groenigen et al. 2010); the relation-
ship between N balance and area-scaled losses is presented 
in supplemental figure S2.

The first approach used published field-scale studies of 
rain-fed maize systems in the north-central United States 
and southeast Canada from which N balance and yield-
adjusted N losses could be calculated, as we detail in the 
supplemental materials. The resulting empirical relation-
ship between N balance and yield-scaled losses is shown 
in figure 2a (for N2O) and 2b (for NO3

–), together with 
the 95% confidence interval of the mean response (see the 
supplemental materials for details). The shape of the best-
fit curves in figure 2a and 2b is consistent with biophysical 
understanding of the fate of N in cropping systems: When 
N supply exceeds crop uptake requirements, the excess N 
becomes vulnerable to loss, and N loss rates increase with 
higher amounts of excess fertilizer. The scatter of individual 
data points around the best-fit curves reflects variations in 
weather, soil, and field management that influence N cycling 
and crop yield in the crop–soil system.

The second approach used a simulation model to estimate 
the effect of N-fertilizer management practices on N losses 
at 18 locations in the Corn Belt. We used a research version 
of Adapt-N, a field-level model that simulates changes in 
soil N pools, crop N uptake, and losses of N to air and water 
(Sela et al. 2016; see the supplemental materials for details of 
model validation). Using this model provides an assessment 
of the relationship between N balance and environmental 

Figure 2. The relationship between nitrogen (N) balance 
[(N fertilizer)–(N removed in harvested grain)] and (a) 
yield-scaled N2O emissions and (b) yield-scaled NO3

– 
leaching, derived from published maize cropping system 
field studies on silt loam and closely related soils in North 
America. Panel (c) shows the relationship between yield-
scaled total N losses and N balance, based on simulations 
with the Adapt-N model; total losses exceed the sum of 
N2O and NO3

– losses because the total also includes losses 
in the forms of NOx, NH3, and N2. Note that each panel 
has a different range of values on the y-axis. Details of the 
analysis and curve-fitting are provided in the supplemental 
materials.
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N losses across a wider range of N balance and environ-
mental conditions than can be found in published data 
from field experiments. In addition, the model simulates 
all transformation pathways, providing an estimate of total 
losses to the environment from all forms of N, including 
gaseous losses (NH3, N2, N2O, and NOx) and NO3

– leaching. 
Inclusion of all major N species, together with the ability 
to simulate losses over an entire year rather than a growing 
season, leads to much larger estimates of N loss from model 
simulations (figure 2c) than from field experiments that only 
measure one form (figure 2a, 2b). Despite these differences, 
the results from our model simulations (figure 2c) define 
a relationship between N balance and yield-scaled total N 
losses that is both strong and consistent with the analysis of 
the field-measured N2O and NO3

– loss data (figure 2a, 2b).
Together, the analyses of field data and simulation results 

provide compelling evidence that a robust relationship exists 
between N balance and environmental N losses. Therefore, 
N balance is a robust predictor of field-scale N losses when 
aggregated over multiple sites and years. Relationships of 
similar form have been noted recently for N2O and NO3

– 
losses separately in North American maize systems, varying 
slightly depending on soil type, crop rotation, and nutrient 
management (Zhao et al. 2016, Omonode et al. 2017). Here, 
the comparable response of both N2O and NO3

– to N balance 
means that management of N balance to mitigate high losses 
of one form of N is synergistic for the other, thus minimizing 
the pollution-trade-off risks that exist with some management 
practices (e.g., drainage water management that reduces NO3

– 
losses but could increase N2O emissions). Relationships similar 
to those in figure 2 also exist for other crops and regions (e.g., 
van Groenigen et al. 2010, Cui et al. 2013). Therefore, it is clear 
that N balance is a robust indicator of potential environmental 
N losses associated with N inputs applied in crop production.

Entities interested in translating changes in N balance 
into changes in greenhouse gas emissions and water quality 
could potentially use empirical relationships such as those 
shown in figure 2a and 2b. For example, on the basis of 
figure 2a, a reduction in N balance from 150 kilograms N 
per ha to 100 kilograms N per ha (at constant yield) would 
correspond to a decrease in N2O emissions of 45%. Similar 
empirical models could be developed for maize grown with 
manure, for other crops, and for other regions. Likewise, a 
well-validated empirical model for water quality (similar to 
figure 2b) could estimate field-scale changes in NO3

– leach-
ing below the root zone resulting from a specific N balance 
change. Transport factors such as those included in the 
SPARROW water quality models (Robertson et al. 2014) 
could upscale this field-level NO3

–
 leaching reduction to 

NO3
–

 load changes in the nearest stream or the outlet of a 
larger river basin (Woodbury et al. 2017).

Using nitrogen balance to track environmental 
progress
Given public concern about environmental N losses and 
the strong relationship between N balance and N losses 

described above, we anticipate that both individual farmers 
and the broader agricultural community would be interested 
in using the N-balance indicator to track N losses from crop 
production systems as a way of demonstrating a reduced 
environmental footprint of farming. For example, commod-
ity groups might see value in using aggregated N-balance 
data to demonstrate industry-wide improvement in mitigat-
ing N losses. Supply-chain companies, such as food proces-
sors and retailers, might be interested in using N balance 
to document the impact of their sustainability initiatives. 
As an example, Unilever has previously reported on total 
reductions in N pollution along its international supply 
chain for specialty crops, using aggregated N-balance data 
obtained from its suppliers under its Sustainable Agriculture 
Code (Unilever 2010). Likewise, the Stewardship Index for 
Specialty Crops has adopted a “Nitrogen Use” metric that is 
related to N balance (SISC 2013) to help track improved N 
management by its suppliers. Field to Market, a multistake-
holder initiative to improve supply-chain sustainability for 
commodity crops, is in the process of adopting a new metric 
for cropland N2O emissions that relies on the relationship 
between these emissions and N balance. Once adopted, this 
N-balance-based metric will help track the environmental 
benefits of various supply-chain sustainability projects.

Policymakers outside the United States have used N 
balance as an indicator to track progress in reducing the 
environmental impacts of food production. For example, it 
has been used across Europe (EEA 2017), where a variety 
of national policies have been adopted to decrease regional 
and national N balances. The success of these policies is 
illustrated by Denmark, which has reduced its country-level 
N balance by 40% (Dalgaard et al. 2014), with the result 
that NO3

– leaching has been reduced by 50% and ammonia 
emissions have also declined. Other OECD countries also 
use N balance (OECD 2013) as an indicator of sustainable 
intensification. In the United States, California (where in 
some counties over 40% of wells exceed safe drinking-water 
standards for nitrate) will soon require farmers to track 
and report nutrient budgets (essentially N balances; Harter 
2015).

Setting nitrogen-balance goals: Carrying capacity, 
thresholds, and safe operating spaces
Hunter and colleagues (2017) noted that the discourse 
around sustainable intensification has primarily focused on 
food production goals and that corresponding environmental 
goals are largely lacking. Nitrogen balance offers an oppor-
tunity to set environmental goals that are also connected to 
farm productivity levels. Zhang and colleagues (2015) trans-
lated the “safe” planetary boundary for N (Steffen et al. 2015) 
into a globally averaged N balance compatible with that 
boundary of 39–78 kilograms N per ha per year. To mitigate 
the impacts of N-related air and water pollution at airshed 
or river-basin scales, however, will require the establish-
ment of safe N boundaries and corresponding N balances 
at those scales, as well as disaggregation of those N balances 
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across different agricultural systems within those airsheds or 
watersheds. In Europe, for example, where ammonia-related 
air pollution is a big concern, regional reductions in N bal-
ance have been correlated with reductions in atmospheric 
N deposition (Dalgaard et al. 2014) but have not yet been 
related to critical loads for specific ecosystems (e.g., national 
parks or estuaries). More progress has been made on water 
quality. For example, in parts of New Zealand, where tour-
ism is threatened by degraded water quality, the N-load 
carrying capacity of lakes and streams has been quantified 
and translated into “nitrogen discharge allocations”—based 
on N balance—at the watershed and farm level (Duhon et al. 
2015). In the United States, efforts to restore the Chesapeake 
Bay have likewise led to identification of ecosystem carrying 
capacity and the N-load reductions needed to reach it. Cela 
and colleagues (2017) have described how improvements 
in N balance on New York State dairies can track progress 
toward these N-load reduction targets.

The shape of the N-balance to N-loss relationships in 
figure 2 suggests a possible alternative approach to setting 
N-balance goals. Figure 2 illustrates dramatically increasing 
environmental losses above a threshold value of N balance. 
If further work verifies the N-balance-threshold concept, 
threshold values of N balance will represent useful targets 
for environmental performance, and the greatest reductions 
in N pollution could be achieved by incentivizing produc-
ers to reduce their N-balance values to the threshold level. 
Obviously, different cropping systems, climates, and soils 
would need appropriately adapted thresholds to account for 
other major factors governing N losses.

Nitrogen-balance targets must also be supportive of other 
sustainability goals, especially those related to maintain-
ing soil organic N stocks, a critical factor in long-term soil 
fertility. Likewise, it will be important to relate N balance 
to other aspects of farm-level sustainability, such as overall 
productivity (yield) and profitability. The European Union 
Nitrogen Expert Panel (EU-NEP), a science advisory group 
convened by the European fertilizer industry, has introduced 
the concept of a safe operating space for crop production 
(EU-NEP 2015; see figure 3). The safe operating space is 
defined by a minimum acceptable level of productivity (to 
meet food needs), a maximum acceptable level of N bal-
ance (to minimize N pollution), and an acceptable range 
of nitrogen use efficiency (NUE; the ratio of N inputs to 
outputs). Excessively high NUE risks mining soil organic 
matter, whereas excessively low NUE wastes fertilizer and 
other resources.

Modeled after this safe operating space for fertilizer-
based European agriculture, similar limits could be defined 
for other agricultural systems. Such guidelines could also 
incorporate broader approaches to nutrient management, 
such as using manure and legumes for N sources, extend-
ing crop rotations with winter cover crops, or other options 
(figure 3). These management practices can promote N 
retention in long-term soil N pools and enhance internal 
N cycling, thereby offering significant opportunities to 

reduce N balances (Gardner and Drinkwater 2009, Zhou et 
al. 2016). In addition, they recouple carbon and N cycling, 
mitigating the risk of achieving a small N balance simply by 
mining soil organic matter. Brentrup and Lammel (2016) 
showed how coupling extended rotations with improved 
fertilizer management moved wheat systems into the safe 
operating space, whereas de Klein and colleagues (2017) 
attempted to map safe operating spaces for dairy systems. 
These sustainability targets must be developed for specific 
agroecological regions and farming systems; one size does 
not fit all (Gourley et al. 2007, de Klein et al. 2017).

Nitrogen balance: The view from the farm
Our analyses above establish a robust relationship between 
N balance and N losses. From the perspective of a farmer 
seeking to reduce N losses, the challenge is identifying what 
changes can be made to their operation to reduce N balance 
while maintaining productivity and profitability.

In general, N-balance reductions can be achieved by 
better matching N inputs and N outputs in time and space 
while maintaining or increasing yields (Cassman et al. 
2002, Snyder et al. 2014). This relationship creates a win–
win opportunity for farmers to achieve high productivity 
levels while reducing environmental impact. For example, 
Adapt-N simulations (detailed in the supplemental materi-
als) suggest that delaying most fertilizer N application to 
the maize growing season leads to smaller N balances, with 
less total N loss, while maintaining crop yields (figure 4). 
Because delaying fertilizer application usually enables lower 
N application rates, such improvements in fertilizer man-
agement can reduce costs and increase overall profitability 
(Sela et al. 2016). More broadly, Soberon and colleagues 
(2015) and Buckley and colleagues (2016) have shown that 
improved environmental performance (reduced N bal-
ance) can go hand in hand with improved production and 
increased profitability.

For any crop field, the size of the N balance is a function of 
the local biophysical setting (including factors influencing N 
losses, such as climate and soil type, that are not controllable 
by the farmer), the cropping system, and farmer manage-
ment practices that affect the fate of applied N and determine 
actual crop yield. This suggests that across a cohort of farms 
with similar climate, soil type, and cropping system, and with 
comparable yield levels, N balance is a measure of the effec-
tiveness of farm management practices in tightening the N 
cycle. As such, comparison of N balance values across cohort 
farms can be used to identify those farm management prac-
tices that best reduce N balance (Dalgaard et al. 2012, Blesh 
and Drinkwater 2013) and therefore N losses to the envi-
ronment. Such benchmarking approaches have identified 
opportunities to improve water and N use efficiency for irri-
gated maize in Nebraska (Grassini and Cassman 2012) and 
to improve dairy-farm nutrient management in Australia 
and New York State (Gourley et al. 2007, Cela et al. 2014).

As an example of how such an approach could help farm-
ers improve N balance, we show data on N balance, fertilizer 
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N rate, and yield for maize production on 66 farms in the 
Corn Belt (figure 5; details in the supplemental materials). 
The farms are typical of the region in terms of cropping 
system (corn–soybean) and the types of crop and soil man-
agement practices used. Highlighted in figure 5 is a subset of 
farms that are in close geographic proximity and share simi-
lar soil and climate characteristics, such that variations in N 
balance most likely reflect different farm management prac-
tices. Even within this subset of similar farms, the range in 
yield and N balance approximates that at the other 49 sites. 
So for the sake of illustrating the benchmarking process, we 
assume that N-balance variations among all farms reflect the 
influence of farm management practices.

Figure 5 shows that for any given fertilizer-N rate or 
yield, there is a range of N-balance values indicating that 
farms with a large N balance (in orange) could improve 
environmental performance by following the practices of 
small-N-balance farms (in blue). A cooperative data-sharing 
approach, using anonymized and aggregated N-balance 
data, could help farmers and their advisors benchmark 
their N management performance and learn about the best 
practices of others (Wood et al. 2014). Sewell and colleagues 
(2017) described the factors that are crucial to the success 
of such efforts, including the collaborative learning among 
farmers and advisors that builds the trust essential to data 
sharing.

Figure 3. An illustration of the safe operating space concept (inner diagram) in the broad context of nutrient management 
(outer diagram). The inner diagram (modified from EU-NEP 2015) shows the relationship between total nitrogen (N) 
input (from fertilizer, manure, and biological N fixation), N outputs (N removed in harvested grain), N use efficiency 
(NUE), and N balance. A safe operating space requires that NUE is sustained within an accepted range; values that are too 
low (blue shaded area) are inadequate to meet food production goals and are inefficient for resource use, whereas values 
that are too high (gold shaded area) risk mining soil organic matter. Likewise, we assume that there is some minimum 
productivity (yield) goal, shown here by the horizontal dashed line, and some acceptable maximum level of N balance, 
shown here by the diagonal dashed line. Expert judgment is needed to define appropriate values of N balance, NUE, and 
yield for a given cropping system and ecoregion. The intersection of these criteria (the white space in the inner diagram) 
represents the safe operating space for that cropping system and ecoregion. The outer diagram shows the broad suite of 
approaches to nutrient management (from top left: improved fertilizer management; substitution of manure for synthetic 
fertilizer; use of legumes as an alternative nitrogen source; use of cover crops to tighten internal nutrient cycling), which 
can help move a cropping system into the safe operating space.
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A nitrogen-balance framework for sustainable 
intensification
An N-balance approach to agricultural N management can 
help society meet the twin challenges of increasing food pro-
duction while reducing N pollution. For such an approach 
to be successful, policymakers, scientists, private industry, 
public agency staff, extension agents, crop consultants, 
and—most importantly—farmers will need to collaborate in 
developing an implementation framework that both estab-
lishes N-balance goals and provides the political, economic, 
and social support to help farmers achieve those goals.

Historically, policies to manage N-related pollution from 
agriculture have focused on incentivizing or mandating 
reduced fertilizer inputs, an approach that is often incom-
patible with food production goals and that ignores the risks 
and uncertainties that motivate farmers to apply excess N 
(van Es et al. 2007). Likewise, promoting particular practices 
overlooks the highly variable impacts such practices may 
have on N-loss reductions (including the risk that under 
some circumstances, a practice may even increase some 
forms of N loss), as well as potential economic and practi-
cal barriers to on-farm implementation. We believe that 
policies focused on improving N-balance outcomes will be 
more effective than such approaches. Focusing on outcomes 
ensures that environmental benefits are achieved while 
stimulating innovation by individual farmers to develop 
approaches that work in the context of their farming opera-
tion. In addition, because N-balance improvements cor-
respond to improvements in other sustainability indicators 
that can potentially increase farmer profits, farmers may be 
motivated to make operational changes that benefit their 
self-interest.

Polices based on N-balance outcomes 
could create incentives for farmers to 
adopt measures that move them toward 
or into the appropriate safe operat-
ing space for their farming system and 
ecoregion or reward them for meeting 
other environmental performance tar-
gets. Likewise, the shape of the curves in 
figure 2 suggests that focusing public and 
private stewardship efforts on regions 
(or specific farms) with large N balances 
will increase the efficiency (in terms of 
pollution reduced per dollar spent) and 
effectiveness of those efforts. The map-
ping of N balance at a regional scale 
can serve to identify “hotspots” of large 
N balance, which are opportunities for 
such high-impact focus.

Outcome-oriented policies need not 
be regulatory to be successful; voluntary 
efforts to improve N balance offer an 
opportunity for leadership by the US 
agricultural community. For inspiration 
on how to structure such efforts, they 

might look to New Zealand, which is experimenting with a 
community-based, collaborative “audited self-management” 
approach to mitigate N pollution at the watershed scale 
(Holley 2015). Groups of farmers and other local stake-
holders collaboratively manage watershed-level N carrying 
capacity, determining together how to achieve a specified 
environmental goal, with auditing by governmental agen-
cies or independent third parties to verify that the goal 
is met. This approach combines meaningful goal setting 
and accountability for progress with local self-determi-
nation and flexibility in meeting the goal, including the 
development of highly innovative and verifiable farm-to-
farm trading schemes based on N balance. In the United 
States, Nebraska’s Natural Resource Districts already use an 
audited self- management approach to groundwater alloca-
tion (Stephenson 1996), which could be expanded to address 
broader water-quality goals and replicated elsewhere.

To support such efforts, a cohesive and coordinated 
research initiative will be needed to refine potential thresh-
old values of N balance, such as those illustrated in figure 
2, or other targets for environmental performance. Science 
must also inform any efforts to identify safe operating spaces 
for various cropping systems and ecoregions. Science-based 
recommendations on region- and cropping-system-specific 
management practices for achieving those targets are also 
needed. A useful starting point for such efforts is the work of 
Snyder (2016) in identifying suites of best practices for fertil-
izer management in specific crops and regions, which could 
be expanded to consider broader (including landscape-
scale) approaches to mitigating nutrient losses such as cover 
crops, drainage water management, restored or constructed 
wetlands, or re-integration of livestock into crop production 

Figure 4. The relationship between nitrogen (N) balance and total yield-scaled 
total N losses (NH3, N2, N2O, NOx, and NO3

–) in Adapt-N simulations of rain-
fed maize systems on silt loam soils in the US Corn Belt. Simulations were split 
into three groups based on the timing of primary N fertilizer application (fall, 
spring, or split), with side-dress application rates during the growing season 
adjusted on the basis of Adapt-N predictions of plant N needs.
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systems (Billen et al. 2013, McLellan et al. 2015). Research 
will also be needed to reduce the uncertainty of N-balance 
calculations at the field and farm scale by better quantifying 
N inputs (and losses) from manure and biological N fixation, 
improving estimates of the N content of harvested crops, and 
estimating changes in soil organic N stocks.

Private industry investment in innovations and ser-
vices (e.g., new fertilizer formulations, precision fertilizer 
application equipment, and sophisticated decision-support 
tools) can help farmers achieve the needed improvements 
in N balance. Increased technical assistance will be needed 
to help farmers incorporate these technologies into their 
operations. As was noted by Ketterings (2014), outcome-
based approaches to farm management are most effective 
in an adaptive management setting that combines on-farm 
research, extension, and collaboration with farmers to help 
them achieve their goals. The US Department of Agriculture’s 
Natural Resources Conservation Service (USDA-NRCS) has 
introduced a practice standard for nutrient management 
that incentivizes farmers to use an adaptive management 

approach. One possible model for doing this effectively is 
Sweden’s “Focus on Nutrients” program (Olofsson 2017), 
which pairs farmers with advisors who meet regularly to 
help them calculate, manage, track, and understand their 
farm nutrient balance and how it relates to farm productivity 
and profitability. USDA-NRCS staff, extension agents, crop 
consultants, and others will be crucial in helping farmers 
achieve their and society’s sustainability goals.

Success will depend on the willing engagement of farmers. 
Although we believe that farmers’ innate desire to improve 
their operations and be good stewards of the land will help 
motivate improvements in N balance, incentives will be 
important for recognizing progress and encouraging con-
tinuous improvement. Such incentives could be provided 
through public or private funding and acknowledgment. We 
believe that the value of such incentives—avoiding the cost 
of N-pollution damage—will far exceed their cost now and 
in the future.

Conclusions
Given the legacy effects of N use in crop production on water 
quality and the intensification of N pollution anticipated to 
result from future climate change (Suddick et al. 2013), we 
foresee increasing public demand for evidence that agricul-
ture is reducing N losses. Reconciling further intensification 
of agricultural production with protection and restoration 
of the planet is possible with an N-balance framework. Data 
currently collected by producers on N applications and crop 
yields, suitably aggregated and anonymized, could be used 
to begin benchmarking efforts, to develop a baseline of cur-
rent N-balance status, and to identify regional N-balance 
hotspots that might receive increased attention and funding 
from the USDA or other public- or private-sector funders. 
Proactive development of an N-balance framework—led by 
farmers and supply-chain entities and in partnership with 
scientists, private industry, and extension agents—can begin 
now, drawing on lessons learned elsewhere and laying the 
groundwork for policy innovations that reward synergistic 
outcomes of improved food production and environmental 
performance.
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Figure 5. The relationship of nitrogen (N) fertilizer 
application rate, maize crop yield, and N balance from 
maize fields on 66 farms in five US midwestern states in 
2015. The subset of highlighted farms shown in darker 
outline is in close geographic proximity, and these farms 
are assumed to share a similar production environment 
in terms of soils and climate. The farms are typical of the 
region in terms of cropping system (corn–soybean) and 
the types of crop and soil management practices used, 
although the specific practices differ from farm to farm 
leading to differences in N balance. Note that at any given 
fertilizer rate (or yield), there is a range of values of N 
balance, suggesting that producers could improve both 
agronomic and environmental outcomes by improving 
yield (or lowering fertilizer rate), as is shown by the 
vertical (and horizontal) arrows. More generally, lower-
performing producers (those with large N balances) could 
improve N management and environmental outcomes by 
adopting some of the practices used by higher-performing 
producers (with small N balances), as is shown by the 
diagonal arrow.
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