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Abstract: Alzheimer’s disease (AD) is one of the looming health crises of the near future. Increasing
lifespans and better medical treatment for other conditions mean that the prevalence of this disease
is expected to triple by 2050. The impact of AD includes both the large toll on individuals and their
families as well as a large financial cost to society. So far, we have no way to prevent, slow, or cure
the disease. Current medications can only alleviate some of the symptoms temporarily. Many animal
models of AD have been created, with the first transgenic mouse model in 1995. Mouse models have
been beset by challenges, and no mouse model fully captures the symptomatology of AD without
multiple genetic mutations and/or transgenes, some of which have never been implicated in human
AD. Over 25 years later, many mouse models have been given an AD-like disease and then ‘cured’ in
the lab, only for the treatments to fail in clinical trials. This review argues that small animal models
are insufficient for modelling complex disorders such as AD. In order to find effective treatments for
AD, we need to create large animal models with brains and lifespan that are closer to humans, and
underlying genetics that already predispose them to AD-like phenotypes.

Keywords: Alzheimer’s disease; animal model; transgenesis; gene editing; large animal model;
plaques; tangles; predictive validity; construct validity

1. Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative disease, behaviourally
characterised by memory loss and cognitive decline, generally in later life, which is ulti-
mately fatal [1]. The prevalence of AD is rapidly increasing due to an ageing population
worldwide, and expected to triple between the years 2000 and 2050 [2,3]. Besides those
affected, AD places a severe burden on families, carers, and the economy [4,5]. Alois
Alzheimer discovered the neuropathological hallmarks of AD in 1906 [6]. Despite many
decades of research since the 1900s, a cure has remained elusive with current therapies
only offering temporary symptomatic relief.

Classically, AD is characterised by plaques and tangles, both of which contain insoluble
protein deposits that progressively accumulate in the brain [7–9]. These pathological
features develop over decades, and considerable effort has been devoted to their replication
in short lived models. Implicit in these modelling efforts is that the relatively rare dominant
genetic forms of AD represent the condition as a whole, and that the accelerated processes
artificially engineered into these models accurately represents the mechanisms of a slow
disease process in humans. Most models have been constructed to recapitulate the end
stage pathological features, assuming that they represent the cause of the condition rather
than the consequence. To a large extent, this pathology attainment strategy for AD animal
model construction has driven the preclinical selection of compounds going through to
human clinical trials. Well over 200 compounds have now failed to prevent, slow, or

Int. J. Mol. Sci. 2021, 22, 13168. https://doi.org/10.3390/ijms222313168 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-8166-4014
https://doi.org/10.3390/ijms222313168
https://doi.org/10.3390/ijms222313168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222313168
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222313168?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 13168 2 of 24

cure the disease, despite most being effective at ‘curing’ mouse models of AD [10–12].
This review summarises the modelling efforts up to November 2021. It briefly covers the
extensive work undertaken to capture AD symptomatology predominantly in the mouse,
and summarises the key factors that still need to be obtained. Finally, suggestions are given
for an alternative modelling strategy through the use of large animals.

2. The Defining Pathological Features of AD; Plaques and Tangles

Plaques are extracellular deposits formed from the amyloid-beta (Aβ) peptide; cleav-
age products of the transmembrane amyloid precursor protein (APP) [7,13–16]. APP is
cleaved in two regions, releasing peptide fragments (Figure 1). It is cleaved by either an
alpha or beta secretase enzyme in the lumen closer to the C terminus. It is cleaved nearer
the N-terminus by the gamma secretase complex in a membrane domain. The gamma
secretase complex can cleave at multiple sites within its target region of the APP protein,
creating different sized products [17]. If APP is cleaved by alpha secretase, the peptides
released are shorter and appear to be harmless. When APP is cleaved by a beta secretase
instead, usually the BACE1 enzyme, longer (Aβ) peptides are released. Amyloid beta has
the potential to aggregate into plaques. Aβ1-–40 and Aβ1–42 are the longest peptides and
have the strongest association with AD, with Aβ1–42 deemed to have a causal role [18].
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quently been modified to suggest that an increase in the soluble toxic forms of amyloid 
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a familial early onset group (FAD) caused by single genetic mutations, typically inherited 
in an autosomal dominant fashion [27]. LOAD is the most prevalent form of AD and is 
more complex, influenced by both genetic and environmental risk factors. The FAD pa-
tients (<5%) are of particular interest because the clear genetic aetiology offers an oppor-
tunity to understand the molecular mechanisms involved. It also allows the disease to be 
predicted before the onset of symptoms, and therefore mutation carriers are an ideal co-
hort for clinical testing [28]. Aside from age at onset, these two forms of AD (FAD and 
LOAD) are typically indistinguishable [29]. 
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Tangles are dead or dying neurons containing intracellular aggregated hyper-phosphorylated
TAU protein and other aggregated proteins [20]. In its native state, TAU is a structural com-
ponent of axons within neurons, and it is unclear why it becomes hyper-phosphorylated [21].
The accumulation and density of tangles correlates better with neurological symptoms
than plaques [22,23]. However, plaques begin forming before tangles, which led to the
‘amyloid cascade hypothesis’. The original amyloid cascade hypothesis proposed that
the formation of Aβ plaques initiates the disease process and eventually leads to tangle
formation, cognitive symptoms, and neurodegeneration [24]. It has subsequently been
modified to suggest that an increase in the soluble toxic forms of amyloid beta, which
precede plaque formation, initiates the disease process [25,26].

Cases of AD are broadly classified as early-onset Alzheimer’s disease (EOAD) or
sporadic late-onset AD (LOAD). Some of the early onset cases can be further subdivided
into a familial early onset group (FAD) caused by single genetic mutations, typically
inherited in an autosomal dominant fashion [27]. LOAD is the most prevalent form of
AD and is more complex, influenced by both genetic and environmental risk factors. The
FAD patients (<5%) are of particular interest because the clear genetic aetiology offers an
opportunity to understand the molecular mechanisms involved. It also allows the disease
to be predicted before the onset of symptoms, and therefore mutation carriers are an ideal
cohort for clinical testing [28]. Aside from age at onset, these two forms of AD (FAD and
LOAD) are typically indistinguishable [29].
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Over 200 mutations have been identified as responsible for FAD, all clustered into
three genes; APP, Presenilin 1 (PSEN1), and Presenilin 2 (PSEN2). As already introduced,
the APP protein is cleaved to form Aβ. The APP gene is found on chromosome 21 and
Trisomy 21 carriers (Down’s syndrome) have a high frequency of early onset AD, presumably
caused by an increased dosage of APP [13]. The PSEN1 and PSEN2 proteins form part of the
gamma secretase complex that cleaves the APP protein [30]. Mutations in PSEN1 are the most
common cause of FAD. Mutations in PSEN2 are relatively infrequent and generally result in
a later onset and slower disease course that those in PSEN1 (see review [31]). In summary,
mechanistically it is thought that mutations in APP, PSEN1, and PSEN2 favour the production
of the more amyloidogenic, Aβ1–42 form of amyloid (reviewed elsewhere [32,33]).

Briefly, the risk of developing LOAD has been associated with variations in an in-
creasing number of genes as the power of the genome wide association studies (GWAS)
increases. Over 75 risk loci have now been detected [34], with twin studies revealing
that up to 79% of the risk for LOAD is genetic [35]. The gene with the largest effect is
Apolipoprotein E (APOE). The APOE gene has three variants (APOE2, 3, and 4). Inheri-
tance of the APOE2 allele is protective, the APOE3 allele is a neutral effect on risk, and the
APOE4 allele confers a very significant risk for LOAD in a dose-dependent manner. APOE4
heterozygotes have AD susceptibility an odds ratio of 3.5–4 and homozygotes 12–15 [36].
All of the genes that have so far been implicated in AD can be functionally linked to Aβ

peptide homeostasis [37–39], implying a common mechanism that could shed light on the
aetiology of the disease.

3. Modelling AD in Animals

One of the most effective ways of investigating the pathogenic process of a disease
is via animal models. Animal models can also be used for biomarker discovery, which
can allow for early detection of disease, and for screening and safety tolerance testing
of therapeutic agents. There are three main aspects of animal modelling that need to be
considered: the resulting face, construct, and predictive validities [40]. These relate to
how well the model replicates symptoms, the biological causes, and responds to clinically
effective therapeutics, respectively.

The earliest animal models of AD were created by disrupting the cholinergic system
in various mammalian species using surgical methods, neurotoxins, immunotoxins, or
pharmacological methods. The species targeted included mice and rats [41], rabbits [42],
and monkeys such as the marmoset and crab eating macaque [43,44]. The cholinergic
system in the basal forebrain degenerates early in the course of AD [45,46]. These models
replicated some of the symptoms of AD such as memory impairments, and were helpful
for testing the efficacy of cholinesterase inhibitors, which can offer some symptomatic relief
early in the course of AD [41]. These models, of course, did not develop plaques or tangles,
nor did they represent the progression of the complex biochemical and cellular-level
changes in AD [47].

The rapid development of genetic technology and engineering from the 1980s to the
present has enabled the construction of animal models that can theoretically recapitulate
diseases from their underlying causes, thus increasing the construct validity of the model.

4. Small Animal Models of AD
4.1. Mouse Models
4.1.1. Plaque Pathology in Mouse Models

As a mammalian model system, mice have the advantages of a short lifespan and rapid
reproduction, which facilitates timely completion of experimental protocols. They are also
comparatively easy to maintain and breed in a laboratory environment. Numerous tools,
data, and standardised behavioural tests have been established for assessing phenotypes
in mice. The development of embryonal stem cells and targeted mutagenesis has enabled
the production of models that more accurately recapitulate the aetiology of human disease
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state. These factors combined has resulted in mice being the most common animal models
of AD.

There have been a large number of mouse models constructed in various ways, far
too many to include here. We have selected a representative group of models that were
either notable because they were novel at the time or have been widely used in the field.
Table 1 lists these selected mouse models.

Table 1. Selected key mouse models of AD and their major phenotypes.

Name Type of
Modification FAD Mutations MAPT

Mutations Plaques Tangles Neurodegeneration Reference

PDAPP Transgenesis Indiana in APP X [48]
Tg2576 Transgenesis Swedish in APP X [49]

TgCRND8 Transgenesis Swedish and Indiana
in APP X [50]

PSAPP Transgenesis Swedish in APP,
M146L in PSEN1 X [51]

BRI-Aβ40 Transgenesis Aβ1–40 peptide [52]
BRI-Aβ42 Transgenesis Aβ1–42 peptide X [52]

5XFAD Transgenesis
Swedish, Florida,

London in APP. M146L
and L286V in PSEN1

X X [53]

JNPL3 Transgenesis P301L in MAPT X X [54]
rTg4510 Transgenesis P301L in MAPT X X [55]

3xTg Transgenesis Swedish in APP,
M146L in PSEN1 P301L in MAPT X X X [56]

TAPP Transgenesis Swedish in APP P301L in MAPT X X X [57]

Plaques and tangles are the two main pathological hallmarks of AD, followed by
neurodegeneration. In order to create models with high face validity, these phenotypes
have been highly sought after. The first reported mouse models that developed plaque
pathology were created via transgenesis (TG). Researchers introduced the human APP gene
(hAPP) containing mutations known to cause FAD. The first mouse model, the PDAPP
line created in 1995, overexpressed the V717F Indiana mutation hAPP with the Platelet-
Derived Growth Factor (PDGF) promoter via a minigene construct. Around 40 copies of
the transgene were randomly inserted in this line at a single site, and all three major splice
variants of hAPP (695, 751, and 770) were expressed. These mice developed both dense
and diffuse plaque pathology by eight months of age in the entorhinal cortex, cingulate
cortex, and hippocampus. By 18 months, the amyloid burden in these brain regions
was thought to be greater than that seen in end stage human disease. This model also
showed signs of synaptic loss, microgliosis, and astrocytosis, but no tau/tangle pathology
or neurodegeneration [48,58].

The next, and still commonly used mouse model, was the Tg2576 line, which overex-
pressed the K670M/N671L Swedish mutation in a transgene containing the 695 isoform of
human hAPP transgene driven by the Prion Protein (PrP) promoter. Tg2576 mice develop
plaques and memory deficits in a progressive manner. Similar to the PDAPP mice, they
do not show the tangles or neurodegeneration [58,59]. These mouse models developed
memory deficits and synaptic loss preceding the accumulation of insoluble plaques, provid-
ing evidence for the hypothesis that it is the smaller soluble forms of Aβ that cause these
symptoms [60,61]. Several further mouse lines were also created by introducing the hAPP
gene with various FAD causing mutations; most exhibited plaques and memory deficits in
an age-dependant manner as well as some level of synaptotoxicity (reviewed in [62]).

Some of these mouse lines were subsequently crossed to produce mouse lines with
multiple APP transgenes; the result was usually a similar phenotype that appeared at an
earlier age, which shows that these mutations have cumulative phenotypic effects. One
example is the TgCRND8 line, engineered with a single transgene to contain the hAPP
isoform 695 with both the Swedish and Indiana mutations under the control of the Prp
promoter. These mice develop plaque pathology by three months of age, with earlier
signs of cognitive impairment relative to the models with a transgene carrying a single
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AD mutation. The brain concentration of Aβ1–42 in this compound model at six months
was equivalent to the original PDAPP mouse line at 16 months. This compound model
also showed an increase in Aβ1–42 to Aβ1–40 ratio (now considered to be an important
indication of amyloidogenesis) [50]. However, these mice still did not exhibit the other
major neuropathological hallmarks of AD such as the tangles and neurodegeneration.

Some of the APP overexpression mouse lines were later crossed with mice carrying a
human PSEN1 transgene (hPSEN1) with various mutations responsible for FAD. Interest-
ingly, mice overexpressing hPSEN1 mutations do not develop plaques or other symptoms,
but do exhibit an increased ratio of the more amyloidogenic Aβ1–42 relative to Aβ1–40 in
the brain [63–65]. Crossing transgenic mice that overexpressed APP with PSEN1 transgenic
mice greatly increased amyloid pathology. An example is the crossing of Tg2576 mice
(APP Swedish mutation) with both the PS-1 line (PSEN1 M146L mutation) [51,65] and the
PSEN1 A246E line [63,66]. Taken together, this animal model work helped confirm that
APP metabolism, and in particular, the production of the Aβ1–42 peptide, was affected
by mutations in APP and PSEN1, and that these mutations are likely acting on a single
pathway. This work also provided supporting evidence for the hypothesis that the Aβ1–42
fragment is more toxic than Aβ1–40.

Attempts to confirm the role of individual Aβ peptides led to the creation of transgenic
mouse lines that selectively expressed either the Aβ1–40 or Aβ1–42 amyloid fragment in
the absence of the hAPP transgene (BRI-Aβ40 and BRI-Aβ42) [52]. These models showed
that high expression of Aβ1–40 caused no overt plaque pathology, but even low expression
levels of Aβ1–42 was sufficient to cause plaque formation in both parenchymal brain tissue
and blood vessels (cerebral amyloid angiopathy).

Attempts to capture a more complete AD phenotype led to crossing transgenic mice or
creating constructs to overexpress multiple transgenes and mutations within these genes.
Cell loss and neurodegeneration was ultimately achieved in the 5XFAD mouse model
that expressed three APP (Swedish K670M/N671L, Florida I716V, and London V717I) and
two PSEN1 (M146L and L286V) mutations under the murine Thy-1 promoter [53,67]. The
severe phenotype again supported the hypothesis that FAD mutations have an additive
effect. However tangles, which are the other main hallmark of AD, were absent in these mice.

4.1.2. Replicating AD Tau Pathology

Interestingly, unlike other mammalian species (see below), wild type mice do not
develop tangles as they age [68]. Mutations in the human MAPT gene (microtubule associ-
ated protein tau), which codes for the human TAU (hTAU) protein, cause frontotemporal
dementia (FTD), but not AD [69]. However tangle pathology, neurodegeneration, and
memory loss were seen in transgenic mice models expressing human MAPT (hMAPT)
with FTD causing mutations. The first mouse model with this phenotype was the JNPL3
line, which expressed the 4R0N isoform of hMAPT with the P301L mutation [54]. Subse-
quently, a hTAU expression tetracycline repressible mouse line (rTg4510) demonstrated
that the smaller soluble forms of oligomeric TAU caused memory loss and neurodegen-
eration [70,71]. Many overexpression hMAPT transgenic lines have been produced and
some have been crossed with transgenic mouse lines overexpressing FAD mutations in
APP and/or PSEN1. The resulting lines demonstrated that the mechanisms leading to
amyloid and TAU pathology interact. The 3xTg mice (Swedish mutation in APP, M146V in
PSEN1, and P301L in MAPT) develop plaques before tangles [71,72], as observed in AD
patients. A line developed by crossing the aforementioned APP mutant mice Tg2576 with
the MAPT JNPL3 mice (called the TAPP line) altered the spatial distribution of tangles in
the brain relative to original TAU expressing strain, with TAPP mice exhibiting tangles in
the subiculum, hippocampus, and isocortex that were not present in JNPL3 mice. TAPP
mice also had greatly increased numbers of tangles in the olfactory cortex, entorhinal
cortex, and amygdala. This suggests that Aβ fibril deposition can alter the amount and
distribution of insoluble TAU as tangles [57].
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4.1.3. Construct Validity of Transgenic Mouse Models of AD

Although mice expressing a transgene with a single FAD mutation display some
symptoms of the disease, it is evident from the literature that three or more AD and FTD
associated mutations are required to replicate the majority of the human pathology. In
contrast, multiple mutations have not been reported in humans with AD, and in nearly all
cases of FAD, only a single mutation is required to develop the entire phenotype.

There are good reasons for the requirement of a compound approach to create equiva-
lent AD pathology. Unlike human hAPP, the proteolytic cleavage products of murine App
(mApp) do not naturally form plaques. This is due to three amino acid substitutions in the
amyloid beta sequence compared to human (Figure 2), which reduces the ability of murine
Aβ peptides to aggregate [72]. In addition, murine β-secretase enzymes typically cleave
mApp to form Aβ11-x, even though it cleaves hAPP to form Aβ1-x [73,74]. Deposition of
cleavage products from mApp is only apparent in models with high expression levels of
mApp and only after an extended period. This is one of the reasons why hAPP is typically
used instead [75].
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acid substitutions responsible for the functional difference between the two.

The ratio of hAPP isoforms differs within brain regions and also in other organs. The
ratio also changes during the course of development and ageing [76,77]. The two longer
isoforms of hAPP, 751 and 770, are more prevalent in the AD brain relative to healthy
controls [78]. Overexpressing the hAPP 751 isoform also causes more obvious amyloid
pathology in mice than overexpressing the short (APP695) isoform [79]. The pathology
generated in a mouse model therefore depends on which of the three isoforms of hAPP is
overexpressed, or whether the full hAPP gene sequence is used.

Several different promoters have been used to drive overexpression of hAPP in mouse
models of AD including the promoters for PDGF-B (platelet derived growth factor B-chain)
and the PrP (prion protein gene motifs). Different promoters drive different levels and
spatial patterns of expression including outside the brain. For example, the PDGF-B and
Thy-1 (thymocyte differentiation antigen 1) promoters are neuron-specific [80,81], while
the PrP promoter has less specificity, also driving expression in glial cells and other non-
brain tissue [82]. The Thy-1 promoter included in the construct to make the APP23 model
(Swedish mutation in APP) is active only after birth, preventing potential developmental
effects [83]. Various Tet-controlled lines have been created that allow for more control
over the timing and location of transgene expression, but have the added complication of
requiring an extra transgene [84–86]. All of these promoters are selected for ease of use or
particular benefits, but because none of them are the endogenous promoter, the natural
expression pattern of APP is not replicated in any of the models.

4.1.4. Murine APP Knock in Models

In an attempt to overcome the limitations of APP TG models, a small number of
knock in (KI) App models have been created with targeted gene editing. Inserting selected
mutations in the endogenous genes should mean expression is quantitatively, spatially,
and temporally appropriate. Mouse App was ‘humanised’ in these models by converting
the codons for the three amino acids that differ between human and mice in the Aβ coding
portion of mApp. This allows murine BACE1 to cleave mAPP at the human equivalent
position [87–90]. These mice did not develop overt phenotypes such as memory deficits,
synaptic loss, and/or plaque pathology. These phenotypes only became evident after the
insertion of multiple APP mutations (combinations of Swedish, London, Dutch, Iberian, and
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Artic) [91], and usually only after breeding to homozygosity in concert with homozygous
FAD PSEN1 mutations [90,92].

The necessity of including multiple mutations to induce human equivalent disease
confounds the use of these models, but they have helped differentiate between phenotypes
due to the TG process, and those that represent the disease in a mouse. Consistent phe-
notypes observed in TG and KI models include plaque formation, changes to glial cells
and astrocytes, and lowered rates of hippocampal neurogenesis, although some artifacts
such as transgene calpain activation have been noted [93–95]. The presence of cognitive
impairment appears to vary more between KI models than TG models. The KI models
with cognitive impairment have plaque pathology prior to memory impairment, unlike the
commonly used TG mice models [89,96]. Memory impairment following plaque formation
is the order of events seen in patients [97], so KI models do appear to more faithfully
replicate symptom clusters. Despite this, the higher variability of phenotypes in KI models,
along with their milder symptom profile, means that transgenic models are still widely used.

4.1.5. Murine PSEN1 Knock in Models

Murine Psen1 (mPsen1) does not require ‘humanising’ like the mApp and (mPsen1)
models made with targeted gene editing by introducing FAD mutations, which show
similar phenotypes to TG hPSEN1 mouse lines [98,99]. Whether they are created by trans-
genesis or targeted gene editing, in the absence of hAPP or humanised mApp, all modelled
PSEN1 mutations only increased the level of murine Aβ1–42 in mice, had little or no effect
on murine Aβ1–40 levels, and did not result in AD equivalent symptoms [65,100–102]. For
this reason, more recently generated KI mouse models carrying a PSEN1 mutation usually
incorporate a transgene overexpressing mutant hAPP. The resulting animals have a more
acute phenotype than APP mutations alone [103–105].

4.1.6. Construct Validity of MAPT Mouse Models

Compared to hTAU with six isoforms (named 4R2N, 4R1N, 4R0N, 3R2N, 3R1N, and
3R0N) [106–108] murine TAU (mTAU) only has three of the human equivalent isoforms
(4R0N, 4R1N, 4R2N). There is also variability in TAU protein conservation. Some regions
of mTAU tau are very similar to hTAU, while other regions differ greatly. There are species-
specific differences in the presence of different isoforms during development, and spatially
across the brain [108,109]. In TG models, the presence of endogenous mouse Mapt (mMapt)
can alter the splicing ratios of introduced hMAPT [110,111].

As stated above, unlike in humans, tangles do not form naturally with age in the mouse
brain. Indeed, it appears that replacing the mMapt gene with the human equivalent, and in
some lines with a FTD mutation, is necessary to create a TAU dysfunction phenotype in
mice [112]. The inclusion of FTD mutations to ensure a tangle phenotype in murine models
is a major issue for construct validity. There are probably better models of frontotemporal
dementia and other tauopathies than AD, even though they have provided insights about
TAU toxicity [56,57]. Unexpected non-disease associated deficits have been found in some
models, for example, the commonly used JNPL3 line (P103L mutation in MAPT) has motor
impairments and develops eye irritations [54,113]. Further the Tau P301S line develops
severe paraparesis at 5–6 months [114]. However severe motor impairment is not usually
observed in AD until late in the disease course [115].

4.1.7. Predictive Validity of Murine Models

Almost no mouse model of AD has shown predictive validity in human clinical trials
to date, despite many therapeutic agents ‘curing’ a mouse of AD symptoms (for reviews,
see [112,113]). Those that have been successful were based on the cholinergic system or
NMDA receptors and only provide temporary symptomatic relief. While symptomatic
relief is important, the predicted increase in the prevalence of AD means that finding a
method to prevent or cure the disease is now becoming an urgent priority.
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In addition to drug failures, there is the issue of differences in drug metabolism
between species; something well tolerated in mice may not be so in humans [116,117].
Many clinical trials have failed to make it to later stages due to adverse side effects,
which were not present in mice. For example, immunisation of mice with Aβ1–42 (named
AN1792 in the clinical trial) was able to lower the volume of plaque material in the brain
and preserve cognitive function. Unfortunately, this approach failed to show benefits in
clinical trials and 6% of the immunised patients developed meningoencephalitis [118,119].
The adverse effects were thought to be due to a T-cell response in humans against the
large Aβ1–42 fragment. Subsequent immunisation trials with smaller epitopes that were
beneficial in mice including the drugs Bapineuzumab [120] and Solanezumab [121] showed
a similar lack of efficacy and/or adverse side effects [122–124].

To date, well over 200 compounds have failed to affect the disease course [10], and
this appears to have led to some controversial decisions. Recently, the drug aducanumab
(sold as Aduhelm) was approved by the FDA through an accelerated approval pathway, on
the condition that follow-up trials are performed to determine efficacy. This drug showed
mixed results in clinical trials, with a benefit seen at the highest dose, but only in one of the
two trials. Given that 35% of patients developed brain swelling (cerebral adema) and 19%
brain bleeds (intracerebral haemorrhage), there are serious safety considerations [125]. It is
clear that models of AD with higher predictive validity are desperately needed.

4.1.8. Murine Model Summary

In summary, while successive generations of mouse models come closer to attaining
the desired symptom clusters, this has created a trade-off between face and construct
validity. The drive to replicated AD’s defining features of both plaques and tangles in
a model is understandable. However, the inclusion of multiple mutations, with some
from a different condition altogether, brings the construct validity of these models into
question. Do they represent the disease process or a derived phenocopy? Discovering the
mechanism by which amyloid pathology triggers TAU dysfunction would be invaluable
for understanding the disease. Unfortunately, it appears that the mouse is too genetically
and physiologically dissimilar to be able to capture this transition, even with genetic
modification. The lack of translatability of treatments developed using these models is
suggestive that they may not adequately represent AD. Work to understand the mechanistic
nature of various FAD and MAPT mutations continues, and many of the aforementioned
models are still utilized. Mouse models of LOAD variants have also been made including
APOE and TREM2 [126–128]. It is likely that mechanistic work via mouse models will
continue as more LOAD disease related genetic or environmental risk factors are discovered.
However, over the last ten years, there have been repeated calls for new models of AD that
can show predictive validity, causing researchers to look outside mice. Figure 3 summarises
the desired qualities of an AD model, showing how improved construct validity could lead
to higher translatability in clinical trials.

4.2. Rat Models of AD

Rats are an attractive model system because they are genetically and physiologi-
cally more similar to humans than mice. They display more complex behaviour, and
numerous assessment methods have been developed for mood and cognition for this
species [47,129–131]. The first rat models of AD were based on knowledge from mouse
models, designed to express hAPP with FAD mutations such as the UKUR25 line (with
the Swedish and Indiana APP mutations, with the M146L PSEN1 mutation [132]) or the
McGill-R-Thy1-APP line (with the Swedish and Indiana hAPP mutations, expressed under
the murine Thy1.2 promoter [133,134]). Interestingly, these models failed to develop the
plaques seen in mice, but did accumulate intracellular Aβ and developed memory deficits
seen in the equivalent mouse models. Rat models that exhibited plaque pathology were
finally created in the mid 2000s, sometimes with differing phenotypes from their murine
genetic equivalents. The rat TgF344-AD line carries both Swedish hAPP and PSEN1 ∆E9



Int. J. Mol. Sci. 2021, 22, 13168 9 of 24

mutations, driven by the same murine PrP promoter [135]. This line develops both plaque
and tangle-like pathology with loss of neurons. Interestingly the tangle-like structures
appear despite the non-inclusion of a hMAPT transgene, even though tangles are not
naturally seen in aged rats. This may be because unlike mTau, rat Tau (rTau) is spliced to
create all six human equivalent isoforms [136,137]. Rat models expressing hMAPT with
FTD mutations have also been developed, some of which exhibit tangles, while all show
increased phospho-TAU in the brain and develop cognitive symptoms [138–140]. The
development of Tau pathology, along with their larger brain and more complex behaviours,
may confer on these models the potential to improve our understanding of AD.
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5. Large Animal Models in AD Research

In pursuit of more translatable results across the medical sciences, researchers are
more frequently turning to large animal models, particularly those that are evolutionarily
closer to humans and have longer lifespans, thus making them better suited to recapitulate
complex human diseases, especially late onset disorders [141–143]. Massively overex-
pressing transgenes speeds up the development of a phenotype, but also leads to acute
inflammatory processes not present in human AD. Small mammals also have a smooth
(lissencephalic) brain, while most larger mammals including humans have a more com-
plex convoluted (gyrencephalic) brain. This makes larger mammals ideal for studying
neurological disorders.

Many large animals naturally develop plaques and/or tangles as they age, and these
features may be the norm in larger animals. They have been found in many primate
species, and across a range of large herbivorous and carnivorous animals (summarised
in Table 2). This propensity to develop plaques appears to be due, at least in part, to
conservation of the amyloid beta peptide sequence in most mammals [144]. Of note is
that in some large animals (e.g., dogs, sheep), only one of either plaques or tangles were
originally identified, but later research revealed both [145,146]. They are typically found
in aged animals, and vary widely in density between individuals of a species, so it is
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entirely possible that both hallmarks of AD will eventually be found in most large animals.
Age related neurodegeneration has not been extensively studied in most species (Table 2),
however, many are known to develop cognitive decline with age. Cognitive decline has
rarely been studied in detail outside of humans, dogs, cats, and some primates.

Table 2. A summary of the large animals in which plaque, tangle pathology, or neurodegeneration with older age has been identified.

Species Scientific Name Plaques Tangles Neurodegeneration References

Chimpanzee Pan troglodytes X X [147,148]
Orang-Utan Pongo spp. X [149]

Western Gorilla Gorilla X X [150,151]
Eastern Gorilla Gorilla beringei X X [152]

Cynomolgus Monkey Macaca fascicularis X X [153–156]
Rhesus Macaque Macaca mulattas X X [157,158]

Stump Tailed macaque Macaca arctoides X X [159]
Vervet Monkey Chlorocebus aethiops X X [160]

Baboon Papio hamadryas X X [161–163]
Cotton Topped Tamarin Saguinus oedipus X [164]

Mouse Lemur Microcebus murinus X X X [165–167]
Common Marmoset Callithrix jacchus X X [168,169]

Squirrel Monkey Saimiri sciureus X [170,171]
Pigs Sus domesticus X * X * [172]

Domestic Sheep Ovis aries X X [145,173–175]
Domestic Goat Capra hircus X [173]
Bactrian Camel Camelus bactrianus X [176]

Reindeer Rangifer tarandus X [177]
American Bison Bison X [177]
Domestic Dog Canis familiaris X X X [178–183]
Domestic Cat Felis catus X X X [184,185]
Leopard Cat Prionailurus bengalensis X X [186]
Polar Bear Ursus maritimus X [187]

Brown Bear Ursus arctos X [187]
Black Bear Ursus americanus X [188]
Wolverine Gulo X X [189]

Harbor Seal species Phoca largha, Phoca vitulina X X [190]

Sea Lion species
Eumetopias jubatus,

Zalophus californianus,
Neophoca cinerea

X X [190]

Walrus Odobenus rosmarus X X [190]

* Found after traumatic brain injury.

Humans are fairly unique in outliving our reproductive lifespan, which no doubt
contributes to the presence of AD and other dementias [191]. However, if other animals
with medium to long lifespans can develop the hallmarks of AD, it is likely that the
development can be accelerated with mutations from FAD. Large animals have long enough
lifespans that introducing a single FAD mutation via KI methods will likely accelerate the
disease in line with natural human forms of AD. This would remove the need for artificial
promoters to massively overexpress transgenes to generate a robust phenotype within the
1–2 year lifespan of a mouse. If a large animal can develop all of the hallmarks of AD with
the introduction of a single FAD mutation, this will represent a major step forward for
construct validity. It would also be the first model to fully recapitulate a form of AD from
its underlying cause.

5.1. Primate Models of AD

Being our closest relatives, primates show great promise for accurately representing
human disease. Evidence of age related plaques, tangles, or both have been found across a
range of primate species (see Table 2). Like humans, the pathological hallmark are only seen
in some individuals, and is more likely with age, suggesting biological or environmental
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triggers that make certain individuals more prone to these precursors of dementia [147].
The great apes (bonobo, chimpanzee, orang-utan, and gorilla) have the highest genetic
similarity to humans. Ethical concerns combined with slow reproduction make these
animals relatively impractical models of AD [192–194]. Efforts have instead focussed on
smaller primates already utilised to model human behaviour and disease.

Macaques are a promising species for modelling AD with a lifespan of 30 to 40 years,
reaching old age around 20–25 years [183,195,196]. Elements of AD have been identified in
multiple macaque species (Table 2). In particular, the rhesus monkey is a relevant model
based on extensive data collected on the ageing process in these animals, and the similarity
of their plaque morphology and staging to human [158,197,198].

Two smaller monkey species, the mouse lemur and the common marmoset, have
also been considered for AD modelling because of their small size and lifespan. The
mouse lemur has high rates of cognitive decline associated with plaque formation and
neurodegeneration including loss of cholinergic neurons in old age [165,168,199–203].
They live 8–14 years in captivity, but are considered elderly after five [204]. The common
marmoset (Callithrix jacchus) with a lifespan of 7–17 years, is another smaller primate that
has shown promise as a monkey model of AD [168,169,205,206]. Perhaps surprisingly,
most primates studied so far have shown a higher level of Aβ1–40 in plaques than Aβ1-42,
whereas the common marmoset has a higher level of Aβ1-42, similar to human [207].

There is some debate about the usefulness of monkeys as natural models of AD due
to the time taken to reach old age and the sporadic nature of naturally occurring AD.
At present, monkeys are more often used in AD research for toxicology screening [208],
screening of brain imaging compounds [209–211]. Some ongoing research involves the
seeding of amyloid beta or tau in the monkey brain to investigate the proposed spread via
a prion-like mechanism [212,213]. Seeding amyloid beta substantially increases the level of
amyloid in the marmoset [214], rhesus macaque, and cynomolgus macaques [215], with
the latter developing tau pathology and neurodegeneration [216]. This provides a useful
tool to investigate the mechanism via which amyloid dysfunction leads to tau dysfunction.
TAU injected/seeded rhesus monkeys have also exhibited neurodegeneration after three
months [217]. While these models have utility in showing how the disease progresses, they
do not capture the underlying mechanism that initiates AD.

The introduction of FAD mutations could solve this problem. Very recently, genetically
modified monkey models have begun to be reported. A transgenic cynomolgus monkey
model was made by introducing hAPP with the Swedish, Arctic, and Iberian mutations
under a CAG promoter. Plasma Aβ1–40 levels were double that of wild type monkeys at
birth, while Aβ1–42 levels were increased 50-fold, increasing the ratio of Aβ1–42 to Aβ1–40
approximately 20-fold [218]. As this is a TG rather than a KI model, the expression of
mutant APP is not tissue specific, which may complicate interpretation. Nonetheless, it
is a promising development. Around the same time, a KI marmoset model of AD was
reported in bioRxiv, carrying the PSEN1 delta E9 mutation [219]. The ratio of Aβ1–42 to
Aβ1–40 production in fibroblasts was double that of the controls in the juvenile monkeys,
indicating an early pathological change. Both of these potential monkey models are still
juveniles, so time will be needed to see what phenotypes arise. However, these are the
first reports on the genetically modified monkey model of AD, and they represent exciting
developments for the field.

5.2. Larger Non-Primate Mammalian Models

Larger mammals outside the primate group present a compromise between the limits
of small animal models and the difficulties of working with primates. While primate
models have great potential, they are also very expensive and most laboratories do not
have the required facilities to house and maintain large numbers for experimental trials.
The two most commonly suggested groups are larger companion animals and farm animals.
They have a lifespan that is typically 10–15 years and have the advantage of a larger body
and more human-like brain than a mouse.
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5.2.1. Larger Companion Animals

The domestic dog has been suggested a number of times as a suitable model of AD,
both in natural and genetically modified form [220–223]. Aged dogs develop a dementia-
like syndrome called canine cognitive dysfunction (CCD), which has been suggested to be
the canine counterpart to AD [180,224,225]. The presence of CCD symptoms has been in
more than a quarter of dogs in the 11–12 age range, and nearly 70% in dogs 15–16 [226].
Dogs are the only animal outside humans where cognitive impairment in older age has
been reasonably well characterised, and at least three standardised tests exist for assessing
CCD [227–229]. Dogs naturally develop plaque pathology and cerebral amyloid angiopathy
(CAA) [179,230], although it is as still unclear whether this correlates with the symptoms
of cognitive decline [178,181,231]. Tau dysfunction and tangles have been reported and
associated with cognitive decline [179,182,183]. Aged dogs have occasionally been used as a
natural model of AD for therapeutic testing, with aged beagles being used to test the effects
of the statin drug Atorvastatin on physiological and behavioural measures of cognitive
decline. The research revealed a positive effect on a number of markers for enhanced
cognitive function such as biliverdin reductase-A, heme oxygenase-1, and nitric oxide
synthase in the brain as well as being significantly correlated with lower discrimination
learning error scores [232–234]. An immunotherapy effective in mice was once trialled in
dogs, with positive results [235].

Domestic cats also develop plaques, tangles, and brain atrophy along with cognitive
decline with age [184,236,237]. Research into age-related cognitive dysfunction in cats is not
as well developed as that of dogs, but there is increasing interest in this area [185,238–240].

5.2.2. Farm Animals

Mammalian farm animals have significant advantages over the aforementioned mod-
els in terms of cost and maintenance. Well refined animal husbandry and accelerated
reproductive methods means that farm animals can be kept in large numbers at low cost.
They can be kept in large groups outdoors, enabling low stress, and natural behaviour. In
particular cows, pigs, goats and sheep have been suggested as AD models [144,145,173].
TAU pathology including tangles develop in aged sheep and goats [173–175], and plaques
have recently been identified in sheep [145]. Plaque and tangle like pathology has also
been seen after traumatic brain injury (TBI) in pigs [173]. Pigs and sheep are already in use
as models of neurodegenerative disorders, so these will be covered here.

5.2.3. Pigs

With a high degree of genetic similarity, brain structure, and weight, pigs have been
selected as a model system for a number of human disorders so there is a growing body of
resources for working with this species (see reviews [241–244]).

Two TG pig models of AD has been reported using minipigs. The first reported model
carries a hAPP transgene with the Swedish mutation driven by the human BDGFβ pro-
moter, resulting in high levels of brain-specific expression [245]. A subsequent publication
reported that the animals did not have memory deficits [246]. The most recent report
identified the altered activity of APP and TAU in astrocytes derived from embryonic stem
cells isolated from these TG pigs [247]. No behavioural phenotype has yet been reported.

The second minipig model was reported in 2016. This model carries three copies of a
transgene expressing the 695 variant of hAPP with the Swedish mutation, and a human
PSEN1 transgene with the M146L mutation. Both transgenes were expressed in the brain
with normal processing of their protein products. Intraneuronal accumulation of Aβ1–42
was detected in two pigs: one at 10 months, and one at 18 months [248]. This may represent
the early stages of AD, so it will be interesting to see if a more overt pathology is reported
in future. Given the rapid development in targeted gene editing technology since these
models were made, it should be possible to generate pig models utilising KI methods in
the future to enhance construct validity.
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5.2.4. Sheep

As above-mentioned, sheep appear to develop plaques and tangles as a natural part
of the ageing process [145]. There are many anecdotal reports of age-related cognitive
decline in sheep, although this has not been researched and the rate of naturally occurring
AD-like dementia is unknown. However, Batten’s disease, a neurodegenerative disease
of childhood, has been extensively investigated in sheep due to four models based on
naturally occurring genetic mutations [249–252].

Our lab group has successfully made a transgenic model of the neurodegenerative
disorder Huntington’s disease (HD) in sheep [253]. These sheep show early pathological
markers of HD, and were used to show urea dysfunction in HD, opening up new avenues
of research that are ongoing [254,255]. This line is also being used to test potential thera-
pies [256]. Due to the existence of these sheep models, a number of genetic, physiological
and behavioural tools are becoming available. Importantly, the sheep genome has recently
been published and annotated [257], and thus the genome of the sheep can now be precisely
manipulated for human disease research. In addition, JIVET (juvenile in vitro embryo
transfer) technology developed specifically for sheep means that genetically modified ewe
lambs can produce viable oocytes at six weeks of age [253]. These oocytes can be fertilized
in vitro and implanted into adult recipient ewes, drastically shortening generation times.
This can potentially reduce the total time from the implantation of the edited founder
embryo, to its offspring being born, to less than one year. This can result in a flock large
enough for research use.

Despite their reputation, sheep are reasonably intelligent, and have face recognition
systems comparable to humans [258]. This higher cognitive ability makes sheep readily
trainable for tests of cognitive function [259]. As in pigs, brain activity in sheep can be
monitored longitudinally using EEG [260] and MRI [261]. Our lab group has shown that
wild-type sheep amyloid is processed in the same manner as humans, with comparable
levels of the disease-related Aβ1–40 and Aβ1–42 forms in cerebrospinal fluid (CSF). Similar
levels of CSF total-Tau have been found, suggesting that the CSF profile of sheep could be
an indicator of disease state.

6. Conclusions

Understandably, in a condition defined by pathological features, considerable effort
has been expended on deriving models that represent the definition of the disease. This,
combined with the time imperative to develop models presenting with plaques and tangles,
has resulted in murine models that are a phenocopy of end stage disease but potentially do
not represent the natural disease process in humans. Unarguably, the murine models of
AD have greatly added to our mechanistic understanding of AD, but they have potentially
reached the limits of their utility. There have been widespread calls for more valid models
of AD over the last several years, and this has prompted a number of lab groups to turn to
large animals. There are a number of potentially suitable large mammals, which can be
broadly split into non-human primates and larger companion or farm animals. Primates’
close evolutionary relationship to humans means that discoveries based on them should
have high translatability. However the cost and practicalities including breeding and
housing sufficient numbers considerably limits their utility, especially for pharmaceutical
testing. Larger companion or farm animal models represent a trade-off between primates
with their high similarity to humans, and rodents with their ease of use in a laboratory
setting. There is considerable potential, especially in farm animals, to produce models
that have both high face and construct validity. Regardless, it is clear that to produce an
effective treatment for AD, and to avoid the expensive failures at late stage human testing,
new preclinical pharmaceutical testing models are required.
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