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Studies of the regulation of nucleolar function are critical for ascertaining
clearer insights into the basic biological underpinnings of ribosome biogen-
esis (RB), and for future development of therapeutics to treat cancer and
ribosomopathies. A number of high-throughput primary assays based on
morphological alterations of the nucleolus can indirectly identify hits affect-
ing RB. However, there is a need for a more direct high-throughput assay
for a nucleolar function to further evaluate hits. Previous reports have
monitored nucleolar rRNA biogenesis using 5-ethynyl uridine (5-EU) in
low-throughput. We report a miniaturized, high-throughput 5-EU assay
that enables specific calculation of nucleolar rRNA biogenesis inhibition,
based on co-staining of the nucleolar protein fibrillarin (FBL). The assay
uses two siRNA controls: a negative non-targeting siRNA control and a
positive siRNA control targeting RNA Polymerase 1 (RNAP1; POLR1A),
and specifically quantifies median 5-EU signal within nucleoli. Maximum
nuclear 5-EU signal can also be used to monitor the effects of putative
small-molecule inhibitors of RNAP1, like BMH-21, or other treatment
conditions that cause FBL dispersion. We validate the 5-EU assay on 68 pre-
dominately nucleolar hits from a high-throughput primary screen, showing
that 58/68 hits significantly inhibit nucleolar rRNA biogenesis. Our
new method establishes direct quantification of nucleolar function in
high-throughput, facilitating closer study of RB in health and disease.

1. Introduction
Cells of all organisms manufacture mature ribosomes, the core machinery of
protein translation, through a process known as ribosome biogenesis (RB)
(reviewed in [1,2]). In eukaryotic cells, the first steps of RB occur in the nucleo-
lus, a membraneless nuclear organelle discovered in the 1830s (reviewed
in [3–5]), where RNA Polymerase 1 (RNAP1) transcribes the primary pre-
ribosomal RNA (pre-rRNA) precursor (reviewed in [6–8]). Subsequently, a
series of RNA processing and modification steps transpire, largely within the
nucleolus, to create the mature cytoplasmic 18S, 5.8S, and 28S rRNA molecules
in human cells [9,10]. Ribosomal proteins (RPs) bind (pre-)rRNA substrates in a
hierarchical progression throughout this maturation process, bolstering the
stability of the nascent transcript by chaperoning its folding away from incor-
rect energetically minimized conformations [11,12]. Dysregulation of RB, and
particularly of RNAP1 transcription, is a causative factor in a myriad of
human disease states, including cancer [13–18], ageing [7,19] and rare diseases
called ribosomopathies [20–22].

Given the importance of nucleolar function in human health and disease,
the creation of more robust tools for measuring rRNA biogenesis within the
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nucleolus is essential for understanding the basic biological
mechanisms through which RB can be regulated, as well as
for developing next-generation small-molecule or biologic
therapeutics. In the past decade, a cadre of studies using
high-throughput screening (HTS) has elucidated novel
mechanisms through which human RB is regulated [23–26];
several candidate therapeutics targeting the nucleolus have
also been discovered with HTS chemical library or natural
product campaigns [27–31]. While several HTS modalities
for monitoring nucleolar form and morphology have been
described [25,32,33], none of these platforms directly measure
nucleolar rRNA biogenesis, or the synthesis and accumu-
lation of nascent pre-rRNA within the nucleolus. To date,
the lack of a direct high-throughput assay for nucleolar
rRNA biogenesis constrains researchers’ ability to select
for and validate the most promising candidate regulators
of RB.

To monitor nucleolar function in a high-throughput
manner, we sought to adapt a 5-ethynyl uridine (5-EU)
assay for nucleolar rRNA biogenesis to an accessible, minia-
turized format. The 5-EU assay has been successfully used
to quantify changes in nucleolar transcriptional activity by
several other groups in a variety of systems including
human tissue culture cells [32,34–41], primary neurons [42],
porcine fetal fibroblasts [43], Drosophila melanogaster ovarian
stem cells [44], and plant seedlings [45,46]. A key limitation
in almost all of these studies is that total cellular or total
nuclear 5-EU is quantified, rather than solely nucleolar
5-EU. Because only nucleolar signal corresponds to bio-
genesis of the primary pre-rRNA, quantifying total 5-EU
leads to an increased background from nascent transcription
by RNAPs besides RNAP1. Additionally, the computational
methods used for image segmentation and quantification
have varied widely and include custom MATLAB scripts,
manual definition of regions-of-interest in ImageJ, and
image multiplication in Adobe Photoshop, further limiting
assay accessibility and reproducibility across research groups.

To improve upon these limitations, we present a miniatur-
ized, high-throughput-ready 5-EU assay that selectively
measures nucleolar rRNA biogenesis by co-staining for the
nucleolar protein fibrillarin (FBL). In addition, we provide
an analysis pipeline for the open-source image analysis soft-
ware CellProfiler [47] that provides a facile and reproducible
framework for quantifying nucleolar 5-EU levels. We validate
our assay by depleting 68 known RB factors including core
RNAP1 machinery, assembly factors, and RPs, demonstrating
robust and reproducible results for specifically measuring
nucleolar rRNA biogenesis. Strikingly, we find that nucleolar
5-EU incorporation is sensitive to defects not only in RNAP1
transcription (producing strong percentage inhibition), but
also to aberrant pre-rRNA processing and ribosome assembly
(producing milder percentage inhibition). We underscore
that changes in pre-rRNA synthesis or in pre-rRNA stability
can affect nucleolar pre-rRNA accumulation, and therefore
nucleolar rRNA biogenesis is sensitive to alterations in funda-
mental RB subprocesses. Our results prompt an expansion of
the field’s conceptualization of nucleolar 5-EU incorporation
experiments in general, which, at measurable time points,
report not only on RNAP1 transcription, but more broadly
on nucleolar rRNA biogenesis. Overall, our miniaturized
5-EU assay expands the dimensionality of HTS experiments
studying the nucleolus and will accelerate the discovery of
novel RB regulators and targeted therapeutics.
2. Results
2.1. A high-content assay to quantify nucleolar rRNA

biogenesis
In order to achieve specific quantification of nucleolar rRNA
biogenesis, we introduced a 5-EU labelling step into our
previously established screening platform for counting
nucleolar number [25], which uses CellProfiler [47] to
segment nuclei and nucleoli in images of cells immunofluor-
escently stained for DNA and the nucleolar protein FBL
(figure 1a). In our new protocol, MCF10A breast epithelial
cells are reverse-transfected with siRNA duplexes for 72 h.
For 1 h following the transfection period, the cells are treated
with 1 mM 5-EU, which is incorporated into nascent tran-
scripts. Since the bulk of cellular transcription occurs in
the nucleolus, most of the 5-EU label is incorporated into
nucleolar nascent pre-rRNA (figure 1a). The cells are fixed
and immunofluorescently stained for DNA and FBL, after
which nascent RNA is visualized in situ by performing a
bio-orthogonal click reaction to covalently label the 5-EU
alkyne moiety with an azide fluorophore (AF488 azide)
(figure 1a). The cells are then imaged and analysed with
CellProfiler to specifically quantify nucleolar rRNA biogen-
esis across all control and unknown wells. CellProfiler is
known for its ease-of-use and modular adaptability [48,49],
making it suitable for inclusion in a standardized, broadly
accessible protocol.

We optimized our 5-EU assay to use a non-targeting siRNA
as a negative control (siNT), and a siRNA targeting POLR1A,
the largest subunit of RNAP1 also known as RPA194, as a posi-
tive control (siPOLR1A) (figure 1b). RNAP1 inhibition by
POLR1A depletion strongly reduces the nucleolar 5-EU signal
to a degree consistent with acute treatment with BMH-21, a
potent small-molecule inhibitor of RNAP1 [27,50] (figure 1b,c,
compare siNT to siNT+ BMH and siPOLR1A). However, it is
clear that residual nucleoplasmic 5-EU signal remains even
after RNAP1 inhibition (figure 1b, siNT + BMH and
siPOLR1A), emphasizing the importance of only quantifying
5-EU staining within the nucleolus via FBL co-staining.

To achieve nucleolar 5-EU quantification during analysis,
images of DNA and FBL staining (figure 1c, panels 1 and 2)
were first used to segment nuclei and nucleoli by CellProfiler
(figure 1c, panels 3 and 4), respectively. Then, the median
5-EU signal within each nucleolus was measured (figure 1c,
panel 5), enabling aggregate quantification analysis per
treatment condition across every nucleolus within each well
(figure 1c, panel 6). Final calculationofmean signals, percentage
inhibitions (by normalization to the negative and positive con-
trols), and screening statistics including signal-to-background
(S/B) andZ’ factorcanbecarriedout inanystandarddataanaly-
sis software that can import the CellProfiler output CSV files,
such as Microsoft Excel, JMP, R or Python pandas.
2.2. Optimization of the 5-EU assay for a miniaturized
384-well plate format

To adapt the 5-EU assay for use in high-throughput, we
developed and optimized an optional 5-EU module that inte-
grates into our existing nucleolar number screening platform
[25]. We first investigated the assay in MCF10A cells in the
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Figure 1. A high-throughput assay for nucleolar rRNA biogenesis using 5-ethynyl uridine (5-EU). (a) Schematic of the 5-EU assay protocol. MCF10A cells are reverse-
transfected in 384-well imaging plates with control or unknown siRNAs for 72 h. Following target depletion, 5-EU is incorporated into nascent RNA transcripts for
1 h, with the majority of label incorporated into nascent pre-ribosomal RNA (pre-rRNA). Treated cells are fixed and stained for DNA (Hoechst 33342, DAPI channel)
and the nucleolar protein FBL (Cy5 channel). 5-EU in nascent transcripts is conjugated to an azide fluorophore (AF488 azide, FITC channel) via a copper-catalysed
click reaction. After fluorescent imaging, cell nuclei and nucleoli are segmented in silico with CellProfiler, and nucleolar-specific 5-EU signal is quantified for each
nucleolus object identified. (b) RNAP1 inhibition specifically inhibits nucleolar 5-EU incorporation. No 5-EU, experiment without 1 h 5-EU incorporation. Treatment
with a non-targeting siRNA (siNT) leads to a high 5-EU signal within the nucleolus and moderate nucleoplasmic background signal. Acute treatment with BMH-21
(siNT + BMH) or siRNA-mediated depletion of POLR1A (siPOLR1A) decreases nucleolar 5-EU signal, although nucleoplasmic background remains. DNA (Hoechst
staining), FBL (staining), 5-EU (5-EU staining) and DNA/5-EU (combined Hoechst and EU staining). Scale bars, 10 µm. (c) Schematic of CellProfiler segmentation
and nucleolar 5-EU quantification. Panels 1 and 2, raw images of DNA and FBL staining. Panels 3 and 4, nuclei or nucleoli segmented by CellProfiler from DNA or
FBL staining, respectively. Rainbow colouring identifies object number. Panel 5, overlay of segmented nucleoli (green) on top of 5-EU staining (magenta). Panel 6,
quantification of median nucleolar 5-EU signal for nucleoli in cells treated with siNT, siNT and BMH-21, or siPOLR1A. n = 24, 8 or 16 wells, respectively. Scale bars,
10 µm.
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absence of siRNA knockdown or FBL co-staining, using
the potent RNAP1 inhibitor BMH-21 or DMSO vehicle as
positive or negative controls, respectively. For the first optim-
ization experiments without FBL co-staining, median or
maximum nuclear 5-EU signal was measured. We hypoth-
esized that maximum nuclear 5-EU signal should track
nucleolar function more accurately than the median, since a
larger difference in the maximum value should be observed
after RNAP1 inhibition. However, both metrics should
decrease significantly upon BMH-21 treatment. Based on
the original 5-EU method publication [51], we chose to
label cells with 5-EU for 1 h, striking a balance between
signal levels and incorporation time. By varying the 5-EU
treatment concentration and click reaction time in wells trea-
ted without or with BMH-21, we discovered that treatment
with 1 mM 5-EU for 1 h, followed by a 30 min click reaction
was optimal (figure 2a). Specifically, these conditions
achieved the highest S/B ratio for the controls for each
metric (figure 2b).

Next, we introduced steps to enable nucleolar segmenta-
tion including blocking with a 10% (volume-per-volume, or
v/v) FBS/PBS solution and immunofluorescent staining for
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Figure 2. Optimization of the miniaturized 5-EU assay for nucleolar rRNA biogenesis. (a) Median (blue) or maximum (red) nuclear 5-EU signal for cells treated across
a range of 5-EU concentrations and click reaction times, without or with BMH-21 treatment at 1 µM. n≥ 20 000 cells per condition. (b) Control signal-to-background
(S/B) ratios for treatment conditions in (a). Control S/B is calculated as the ratio of mean DMSO-treated nuclear 5-EU signal divided by mean BMH-21-treated nuclear
5-EU signal, for each combination of 5-EU concentration and click reaction time. Median nuclear 5-EU signal (blue), maximum nuclear 5-EU signal (red). (c) Control
S/B and Z’ factor values for nuclei or nucleoli objects with only 5-EU visualization, 5-EU plus blocking with 10% (v/v) FBS/PBS, or 5-EU plus blocking and FBL co-
staining. Median 5-EU signal (blue), maximum 5-EU signal (red). (d ) Maximum nuclear 5-EU signal (red) or median nucleolar 5-EU signal (blue) for cells treated
with siNT, siNOL11 or siPOLR1A. n≥ 130 000 cells per siRNA. (e) Control S/B and Z’ factor values for cells ( from (d )) treated with siNOL11 or siPOLR1A as the
positive control. Control S/B is calculated as the ratio of mean siNT-treated 5-EU signal divided by mean siNOL11- or siPOLR1A-treated 5-EU signal. Maximum nuclear
5-EU signal (red), median nucleolar 5-EU signal (blue).
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FBL. We used blocking and staining parameters that were pre-
viously optimized for our original screening platform [25].
Using BMH-21, we found the highest control S/B and Z0

factor occurred when measuring maximum 5-EU signal in
nuclei that had been blocked but not stained for FBL
(figure 2c, second group). To specifically quantify nucleolar
5-EU incorporation, we also measured median nucleolar
5-EU signal.We selected themedianmetric because, compared
to the maximum, it is more robust to outliers that may occur
from staining artefacts or other abnormalities. When segment-
ing nucleoli, a comparable Z0 factor was achieved when
measuring median 5-EU signal in nucleoli (figure 2c, fourth
group).

Interestingly, we also noted that acute treatment with 1 µM
BMH-21 during our 1 h 15 min treatment period caused
increased nucleoplasmic FBL staining, presumably from FBL
dispersion following RNAP1 inhibition (figure 1b, siNT +
BMH, FBL panel). We hypothesized that there may be a
more optimal BMH-21 concentration where nucleolar FBL
localization remains intact, but nucleolar rRNA biogenesis is
still significantly inhibited.

To pursue the effects of acute BMH-21 treatment on 5-EU
incorporation and FBL dispersion in more detail, we per-
formed dose–response experiments with our optimized
protocol (electronic supplementary material, figure S1). We
used fourteen BMH-21 concentrations ranging from 2 nM to
20 µM to ensure sufficient capture of response dynamics. We
probed BMH-21’s ability to inhibit nucleolar rRNA biogenesis
by quantifying both median nucleolar 5-EU signal and maxi-
mum nuclear 5-EU signal (electronic supplementary material,
figure S1A,B). For these measurement schemes, we discovered
an IC50 value of 300 ± 30 nM or 350 ± 30 nM, respectively, fol-
lowing BMH-21 action upon nucleolar rRNA biogenesis
(electronic supplementary material, figure S1B and table S3).

We next investigated the extent to which BMH-21 decreases
nucleolar-specific FBL localization (electronic supplementary
material, figure S1C,D). To quantify FBL dispersion, we calcu-
lated the ratio of total area segmented as nucleoli (using FBL
staining) to total area segmented as nucleus (using Hoechst
staining), on a per-nucleus basis. In other words, this nucleo-
lar/nuclear area ratio represents the percentage of each
nucleus that is segmented as nucleolar by CellProfiler. We
hypothesized that, as BMH-21 concentration increases and
FBL disperses into the nucleoplasm, the nucleolar/nuclear
area ratiowould increase relative to vehicle or low concentration
treatment conditions. Consistent with our hypothesis, we
observed an increase in the nucleolar/nuclear area ratio from
approximately 23% at low BMH-21 concentrations to approxi-
mately 41% at high BMH-21 concentrations, with an EC50

value of 320 ± 20 nM (electronic supplementary material,
figure S1D and table S3). We find that in response to increasing
BMH-21 concentration, nucleolar rRNA biogenesis is inhibited
in concert with FBL dispersion, and that BMH-21’s potency in
both processes is approximately equivalent (electronic sup-
plementary material, figure S1B,D,E and table S3). Thus, in our
system, there is not a concentration of BMH-21 where nucleolar
rRNA biogenesis is strongly inhibited that retains normal
nucleolar localization of FBL. This is consistent with reports of
RNAP1 inhibition resulting in nucleolar disintegration, includ-
ing FBL dispersion, following acute BMH-21 treatment [27].

Duringourdose–response experiments,we also investigated
how DMSO treatment affects nucleolar rRNA biogenesis and
FBL localization. Importantly, we find that treatment with 1 µl
of DMSO vehicle (approximately 2% [v/v]) decreases median
nucleolar 5-EU signal and maximum nuclear 5-EU signal by
10–15% (electronic supplementary material, figure S1F). This
inhibitory effect of DMSO is not unexpected, as low-dose
DMSO treatment has been shown to alter RNA structure
in vitro [52] and to reduce viability and induce apoptosis after
24 h in vivo [53]. Following DMSO treatment, we did not notice
an effect on FBL localization as reported by nucleolar/nuclear
area ratio (electronic supplementary material, figure S1G).

We caution that the accuracy of nucleolar segmentation
should be closely monitored by calculating nucleolar/nuclear
area ratio, if using BMH-21 or another potent RNAP1 inhibitor
that causes FBL dispersion. Aberrancies in FBL staining could
lead to inaccurate segmentation, affecting results obtained by
calculating median nucleolar 5-EU signal. In these situations,
maximum nuclear 5-EU signal can be monitored in addition
to or in place of median nucleolar 5-EU signal. If using the
assay to study the effects of DMSO-solubilized small mol-
ecules, care should also be taken to treat all wells with equal
volumes of vehicle, as DMSO treatment does slightly affect
5-EU incorporation.

In the final phase of optimization, we studied how siRNA
knockdown of knownRB factors affected nuclear and nucleolar
5-EU signal. We chose to deplete NOL11, a small subunit pro-
cessome factor critical for pre-rRNA transcription [54], or
POLR1A, the largest subunit of theRNAP1 complex, as positive
controls. We verified robust knockdown of NOL11 or POLR1A
mRNA transcripts using RT-qPCR (electronic supplementary
material, figure S2). Compared to treatment with siNT, the
depletion of NOL11 or POLR1A decreased maximum nuclear
signal and median nucleolar signal by roughly 50% in each
case (figure 2d), corresponding to control S/B values of
1.9–2.0 for each control (figure 2e, top). However, measuring
median nucleolar signal had lower object-to-object variability,
resulting in more favourable Z’ factors than when measuring
maximum nuclear signal (figure 2e, bottom). Thus, both
NOL11 and POLR1A are excellent positive controls for inhibit-
ing nucleolar rRNA biogenesis in the 5-EU assay, when
median nucleolar signal is measured. In follow-up validation
studies (see below), we confirmed that measuring the median
nucleolar 5-EU signal provides the most robust Z0 factors,
despite the nucleolar 5-EU standard deviation metric having a
higher control S/B ratio (electronic supplementary material,
figure S3). From these results, we recommendmeasuring maxi-
mum nuclear 5-EU when using treatments that cause FBL
dispersion, such as BMH-21. We also conclude that measuring
median nucleolar 5-EU signal, which corresponds only to
nucleolar rRNA biogenesis, is the optimal 5-EU assay endpoint
under conditions where FBL has sufficiently specific nucleolar
localization, as optimized by the assay user for a given combi-
nation of experimental variables including cell line and
treatment conditions.
2.3. Validation of the high-throughput 5-EU assay on
68 known ribosome biogenesis factors

After optimization, we validated the high-throughput 5-EU
assay using a subset of 68 previously studied RB factors,
including RPs and assembly factors for both ribosomal sub-
units, as well as core RNAP1 machinery and drivers of
transcription such as MYC (figure 3a; electronic supplemen-
tary material, table S1). We depleted each RB factor over 72 h
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Figure 3. Validation of the 5-EU assay for nucleolar rRNA biogenesis on 68 known RB factors. (a). Outline of assay validation experiments. Sixty-eight proteins
known to regulate RB subprocesses, including RNAP1 transcription and pre-rRNA processing, modification or stability, were selected for assay validation. The 5-EU
assay was performed on cells depleted of these factors in biological triplicate, as described. (b). Representative images of FBL staining and 5-EU visualization for cells
treated with siNT (negative control), siPOLR1A (positive control, orange), or a subset of siRNAs targeting known RB factors. (c) Nucleolar rRNA biogenesis percentage
inhibition values for cells depleted of each known RB factor. Black dots, individual percentage inhibition values for one biological replicate. Solid bars, mean per-
centage inhibition (n = 3). Orange bar, POLR1A positive control ( percentage inhibition = 100%). Blue bars, RB factors illustrated in (b). Letters to right indicate
factors involved in RNAP1 transcription (T), pre-rRNA processing (P), or transcription repression (R).
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using siRNA pools in accordance with our protocol,
performing the assay in biological triplicate to ensure
reproducibility. Strikingly, we found that depletion of 58/68
biogenesis factors led to a significant (greater than or equal
to 50%) inhibition of nucleolar 5-EU signal after standardiz-
ation to the controls (figure 3a). Images of the assay controls
illustrate typical signal levels observed for the negative control
siNT, set at 0% inhibition, and the positive control siPOLR1A,
set at 100% inhibition (figure 3b, siNTand siPOLR1A). Further-
more, images from the RB factors tested demonstrate the
sensitivity of the assay to RNAP1 inhibition, from extreme
effects above 100% inhibition (e.g. siMYC) to more moderate
inhibitory effects (e.g. siTRMT112) (figure 3b). Full results
from the assay validation are presented in figure 3c and elec-
tronic supplementary material, table S1.
Strikingly, we observed 11 targets that resulted in stronger
nucleolar rRNA biogenesis inhibition than the positive con-
trol, POLR1A; consistent with a mean percentage inhibition
greater than 100%, 7/11 of these targets are implicated in
control of pre-rRNA transcription, including MYC [55],
HEATR1/UTP10 [56–58], DNTTIP2/TdIF2 [59], SUPT6H
[60], SUPT5H [25], EIF4A3/DDX48 [61] and POLR2E [62].
Overall, 12/58 factors with a significant inhibition of nucleo-
lar rRNA biogenesis have been implicated in transcription,
also including the RNAP1 initiation factor RRN3 [63–65],
two other t-UTPs, NOL11/UTP8 [54] and UTP4 [66], and
the proteins MDN1, a pre-60S assembly factor, and KIF11, a
mitotic kinesin essential for RB [24].

Pre-rRNA processing and modification factors comprised
a sizeable subset of factors with significant nucleolar rRNA
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biogenesis mean percentage inhibition. In total, 19/58 factors
that inhibited nucleolar rRNA biogenesis were critical for
processing, including the t-UTPs HEATR1/UTP10, NOL11/
UTP8 and UTP4 [54,56–58,66], the C/D box snoRNP scaf-
folds NOP56 and NOP58 [67], as well as other processing
factors including DNTTIP2 [23], WBP11 [68], MDN1 [69],
ESF1 [23,70], BCCIP [71], RPP30 [23,72], EXOSC9 [73],
NUMA1 [25], MPHOSPH10 [74], TRMT112 [75], UTP20 [76]
and NUDT16 [77]. In addition, nucleolar rRNA biogenesis
was moderately inhibited for the pre-rRNA modification
factors TRMT112 [75], RPUSD2 [68] and NOLC1 [78,79].
Notably, factors involved in transcription had a higher
mean percentage inhibition than factors involved in proces-
sing (83.1% inhibition versus 74.9% inhibition, n = 15
versus n = 22); factors involved in both transcription and pro-
cessing had a mean percentage inhibition of 99.0% (n = 6).

We also noted significant percentage inhibition averages
for 28 RPs from both the 40S and 60S subunits. Almost all
RPs are essential for pre-rRNA biogenesis in the yeast
Saccharomyces cerevisiae [80,81] and in human cells [12,82],
compatible with a concomitant observed decrease in nucleo-
lar rRNA biogenesis following their depletion.

Furthermore, of the 10 factors that had a mean percentage
inhibition value under 50%, five factors were either inhibitors
of pre-rRNA transcription, including SUV39H1 [83] and
MAF1 [84,85], mitochondrial RB factors, including METTL15
[86,87] and MPV17L2 [88], or ribosome recycling factors
involved in translation, namely ABCE1 [89].

Surprisingly, the other five RB factors with a mean percen-
tage inhibition less than 50% are well-appreciated for playing
roles in pre-rRNA transcription, including POLR1D [90],
TAF1D [91] and TTF1 [92], and in pre-rRNAprocessing, includ-
ing NOL8 [93] and XRCC5/Ku86, which also aids TTF1 during
RNAP1 termination [94,95]. It is possible that these factors were
not significantly depleted following transfection, or that, within
our timeframe, the 5-EU assay cannot detect a significant
change in nucleolar RNA levels as a result of non-concordant
changes in both pre-rRNA transcription and stability.
3. Discussion
More precise, accessible methods for the study of nucleolar
function are critical for illuminating novel RB regulators
and next-generation therapeutics for human disease states
including cancer, ageing, and rare ribosomopathies. Here, we
developed an HT-ready, image-based assay that selectively
measures nucleolar rRNA biogenesis in MCF10A breast epi-
thelial cells. Building upon previous HTS techniques, we
combined FBL staining of nucleoli and 5-EU incorporation
into nascent RNA tomeasure only the 5-EU signal correspond-
ing to nucleoli. We optimized the parameters of this assay
using both small-molecule inhibition (BMH-21) and acute
siRNA depletion of the essential RNAP1 transcriptionmachin-
ery (POLR1A and NOL11). Our detailed assay framework can
be applied to studies of novel RNAP1 drug inhibitors and cel-
lular regulators of nucleolar rRNA biogenesis, with the
potential for adaptation to a variety of cell types. Our assay
will increase the dimensionality and efficiency of future HTS
campaigns focused on the nucleolus, accelerating the discovery
of novel modulators of nucleolar function,

After optimizing the 5-EU assay for a miniaturized format,
we validated its utility on 68 known RB factors including core
RNAP1 components, small (pre-40S) or large (pre-60S) riboso-
mal subunit-specific processing and assembly factors, pre-
rRNAmodification factors and RPs. As expected, all RB factors
had a percentage inhibition value greater than 0%. While a
wide range of percentage inhibition values was observed,
58/68 factors (85.5%) had a mean percentage inhibition of at
least 50%, signalling that the 5-EU assay robustly reports
depletion conditions that interrupt nucleolar rRNA biogenesis.

Although our nucleolar 5-EU assay accurately reported the
interruption of nucleolar rRNAbiogenesis for the vastmajority
of RB factors studied, we note the following considerations and
caveats regarding our method and results. First, nucleolar
rRNA biogenesis can be affected by changes in one or more
RB subprocesses including pre-rRNA transcription, proces-
sing, modification, and binding by RPs, which all occur co-
geographically within the nucleolus. Since kinetic studies
have defined the rates of human pre-rRNA transcription [96]
and initial pre-rRNA processing steps [97] to be on the order
of minutes, 5-EU label will be distributed across a population
of partially processed or folded nucleolar pre-rRNA intermedi-
ates at the end of the assay’s 1 h labelling period. Therefore,
nucleolar 5-EU incorporation over the course of 1 h cannot
report solely on RNAP1 transcriptional activity, and additional
mechanistic assays may be necessary to precisely define how
an experimental treatment alters RB following the observation
of a 5-EU defect. We highlight the importance of our discovery
of the expanded ability of the 5-EU assay to report on defects
in multiple RB steps in addition to RNAP1 transcription,
which to our knowledge has not been previously considered.
Second, a treatment, like 72 h siRNA-mediated depletion of
cultured human cells as we have done here, may also have
opposing, compensatory effects on multiple RB subprocesses,
leading to an artificially low percentage inhibition and a
false-negative result. More broadly, as with any HTS study
using RNAi-mediated target depletion, off-target effects or
inefficient on-target depletion could lead to false positive
or false-negative results, respectively [98,99]. Second, we
have empirically defined a percentage inhibition significance
cutoff of 50% inhibition because it minimizes the number of
incorrectly classified RB factors. However, it is still unclear if
there is a more stringent percentage inhibition cutoff that
would correspond strictly to RB factors regulating RNAP1
transcriptional activity, or cutoffs for other RB subprocesses.
Future studies may elucidate the relationship between the
roles of a given RB factor and the nucleolar rRNA biogenesis
percentage inhibition value observed upon its depletion.
Finally, close attention must be paid to the accuracy of nucleo-
lar segmentation if median nucleolar 5-EU signal is being
quantified; the maximum nuclear 5-EU signal metric can be
used if treatment causes significant FBL dispersion, as we
have observed with BMH-21 at 1 µM.

Our miniaturized 5-EU assay enables direct quantification
of nucleolar rRNA biogenesis in high-throughput, providing
clearer insight into how targets modulate RB and improving
upon previous HTS techniques for studying nucleolar func-
tion. The 5-EU assay is also compatible with our previously
published assay for a nucleolar number [25] and is likely to
be compatiblewith other high-content assays for RB that moni-
tor nucleolar architecture by co-staining for nucleolar proteins
[32,33]. By extending the dimensionality and specificity of cur-
rent state-of-the-art assays which indirectly track nucleolar
function, our 5-EU assay will permit researchers to focus on
the most promising screen candidates earlier, thereby
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increasing the efficiency of RB-directed screening campaigns.
We anticipate that the miniaturized 5-EU assay will expedite
the identification and definition of novel regulators of RB in
basic or translational studies of nucleolar function.
ietypublishing.org/journal/rsob
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4. Material and methods
4.1. Cell lines and culture conditions
Human MCF10A breast epithelial cells (ATCC CRL-10317)
were cultured in DMEM/F-12 (Gibco 11330032) with 5%
horse serum (Gibco 16050122), 10 µg ml−1 insulin (Millipore-
Sigma I1882), 0.5 µg ml−1 hydrocortisone (MilliporeSigma
H0135), 20 ng ml−1 epidermal growth factor (Peprotech
AF-100-15), and 100 ng ml−1 cholera toxin (MilliporeSigma
C8052). Cells were incubated at 37°C in a humidified
atmosphere with 5% CO2.

4.2. RNAi depletion by reverse-transfection
RNAi depletion was conducted inMCF10A cells as previously
reported [24,25]. MCF10A cells were reverse-transfected into
an arrayed 384-well plate library containing small interfering
RNA (siRNA) constructs (Horizon Discovery, see electronic
supplementary material, table S2). Assay-ready plates contain-
ing 10 µl of 100 nM ON-TARGET siRNAs resuspended in 1X
siRNA buffer (Horizon Discovery B-002000-UB-100) were pre-
pared from master library 384-well plates (Horizon Discovery,
0.1 nmol scale) and stored at −80°C. Plates were thawed at
room temperature for 30 min and briefly centrifuged at
300 RPM. siRNA controls (electronic supplementary material,
table S2) were freshly diluted in 1 X siRNA buffer to 100 nM
from a 50 µM frozen stock, and 10 µl of 100 nM control
siRNAs were manually pipetted into the assay-ready plates.
To each well, 10 µl of a 1 : 100 (v/v) RNAiMAX:OptiMEM
solution was added (Invitrogen 13778-150, Gibco 31985070),
after which the plates were briefly centrifuged at 300 RPM
and incubated at room temperature for 30 min. MCF10A cells
at 70%-80% confluency were trypsinized for 15 min with
0.05% trypsin (Gibco 25300054), resuspended in culture
media, counted with a hemacytometer, and diluted in culture
medium to a density of 100 000 cells ml−1. Thirty microliters
of cells were dispensed into assay plates using a Multidrop
Combi Reagent Dispenser (Thermo Scientific), to achieve a
seeding density of 3000 cells well−1, a final volume of 50 µl
and a final siRNA concentration of 20 nM. Seeded assay
plates were briefly centrifuged at 300 RPM and incubated at
37°C for 72 h. RB factors were screened in triplicate.

4.3. Analysis of mRNA knockdown by RT-qPCR
MCF10A cells were seeded at 1 × 105 cells per well in 6-well
plates and incubated at 37°C for 24 h. Cells were reverse trans-
fected with 20 nM siRNA controls (electronic supplementary
material, table S2) using lipofectamine RNAiMAX per manu-
facturer’s instructions for 72 h. RNA was harvested using
TRIzol reagent (Life Technologies 15596018) per manufac-
turer’s instructions. RNA used for cDNA synthesis had a
minimum A260/A230 ratio of 1.7. cDNA was synthesized
from 1 µg total input RNA using iScript gDNA Clear cDNA
Synthesis Kit (BioRad 1725035). qPCR was performed using
SYBR Green reagent (BioRad 1725121) and gene-specific
primers (shown below). Cycling parameters were as follows:
initial denaturation 95°C for 30 s, 40 cycles 95°C for 15 s and
60°C for 30 s, melt curve analysis 60°C to 94.8°C in 0.3°C incre-
ments. Data analysis was completed using the comparative CT

method (ΔΔCT) using ACTB mRNA as an internal control.
target
gene
forward primer
sequence
 reverse primer sequence
(50 → 30)
 (50 → 30)
ACTB
 ATT GGC AAT GAG CGG

TTC
CGT GGA TGC CAC AGG ACT
NOL11
 TCC AGG CAA GAA CGG

TGT TT
GAA ACC TGC AGT CCT ACC CC
POLR1A
 CTT CAT TCT TCC ACA

GGG CA
CCG AAA GGA ACA CAA CAG

CA
4.4. BMH-21 treatment and 5-ethynyl uridine
incorporation

BMH-21 (MilliporeSigma SML1183) was resuspended in
DMSO to a working concentration of 50 µM (50X) and
stored at −20°C. 5-EU (ClickChemistryTools 1261-100) was
resuspended in ddH2O from powder to a working concen-
tration of 50 mM (50X) and stored at −20°C. For BMH-21
treatment, reverse-transfected assay plates were treated
15 min before the end of the 72 h RNAi depletion period.
One microliter of either DMSO vehicle or of 50 µM BMH-21
was manually added directly to 50 µl medium in the appro-
priate wells of the assay plates, which were then briefly
centrifuged at 300 RPM and incubated for 15 min before
5-EU incorporation and for the remaining 1 h 5-EU treatment
period. For 5-EU incorporation into nascent RNA, reverse-
transfected assay plates were treated for 1 h after the end of
the 72 h RNAi depletion period. One microlitre of 50 mM
5-EU was manually added directly to 50 µl medium in each
well of the assay plates, which were then briefly centrifuged
at 300 RPM and incubated for 1 h.

4.5. Immunofluorescent staining and click fluorophore
labelling

After 5-EU incorporation, cells were gently washed with 30 µl
of PBS and fixed with 1% (v/v) paraformaldehyde (Electron
Microscopy Sciences 15710-S) diluted in PBS at room tempera-
ture for 20 min. Cells werewashed twicewith 20 µlwash buffer
consisting of PBSwith 0.05% (v/v) TWEEN 20 (MilliporeSigma
P1379), then permeabilized with 20 µl of 0.5% (v/v) Triton
X-100 in PBS for 5 min. Cells were washed twice with 20 µl
wash buffer and incubatedwith 20 µl of blocking buffer consist-
ing of 10% (v/v) FBS (MilliporeSigma F0926) diluted in PBS for
1 h at room temperature. FBL primary antibody solution was
prepared by diluting supernatant from the 72B9 hybridoma
line [100] at 1 : 500 or 1 : 250 (v/v) in blocking buffer. After
blocking, cells were incubatedwith 20 µl FBL primary antibody
solution for 2 h at room temperature. Cells were washed twice
with 20 µlwash buffer and incubatedwith 20 µl secondaryanti-
body solution, consisting of 1 : 1000 (v/v) goat anti-mouse
AlexaFluor 647 (Invitrogen A-21236) and 3 µg ml−1 Hoechst
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33342 dye in blocking buffer, for 1 h in the dark at room temp-
erature. Immediately before the end of the secondary antibody
incubation period, the click reaction cocktail was prepared in
PBS by combining 5 µM AFDye 488 azide (ClickChemistry-
Tools 1275-5), 0.5 mg ml−1 CuSO4 (Acros Organics 197730010)
and 20 mg ml−1 freshly resuspended sodium ascorbate (Alfa
Aesar A15613). Cells were washed twice with 20 µl wash
buffer, then treated with 20 µl of click reaction cocktail for
30 min in the dark at room temperature. Cells were washed
twicewith 20 µlwash buffer and soaked in 20 µl PBS containing
3 µg ml−1 Hoechst 33342 dye for 30 min in the dark at room
temperature to dissociate excess AFDye 488 azide. Cells were
washed twice with 20 µl wash buffer and 40 µl of PBS was
added to each well before high-content imaging.

4.6. High-content imaging
Stained assay plates were imaged with a GE Healthcare IN Cell
Analyzer 2200. Fields of viewwere acquired at 20Xmagnification
with 2 × 2 pixel binning (665.63 µm × 665.63 µm, 1 pixel =
0.65 µm) at 16-bit depth using Cy5, DAPI, and FITC channels
for FBL,Hoechst, and5-EUstaining, respectively. Laserautofocus
was used to automatically determine imaging Z-height. For pub-
lication, images were cropped, merged and labelled with scale
bars using ImageJ 1.53i [101].

4.7. Cellprofiler pipeline and data analysis
Image analysis was conducted with a custom pipeline for Cell-
Profiler 3.1.9 [47,102] (electronic supplementary material, file
S1). Briefly, nuclei and nucleoli objects were segmented from
DAPI and Cy5 channels, respectively, using global two-class
Otsu thresholding. Child nucleoli objects were linked to
parent nuclei objects using the RelateObjects module. For both
object classes, area was measured from DAPI or Cy5 images,
and 5-EU intensity was measured from FITC images. Object-
level normalized 5-EU intensity metrics including maximum,
mean, median, and standard deviation were calculated by
CellProfiler. Raw CellProfiler output CSV files including plate
metadata were imported into and analysed with JMP Pro
15.2.0 (SAS Institute). Per-well averages were computed for
each 5-EU metric. For each plate, aggregate control well data
were used to calculate signal-to-background (S/B) and Z’
factor screening statistics. Nucleolar rRNA biogenesis percen-
tage inhibition values were calculated for each well as follows:

nucleolar rRNA biogenesis percentage inhibition

¼ 1� xi � �xPOLR1A

�xNT � �xPOLR1A

� �
� 100%,

wherex is theaverage5-EUmetricvalueoverall objects inawell,
xi is thewellmetric value for a non-controlwell, �xNT and �xPOLR1A

are averages of all NT or POLR1A control well metric values,
respectively. Plate-adjusted percentage inhibition values were
calculated for non-control wells by subtracting the plate’s
median NT percentage inhibition value from each non-control
well percentage inhibition [103]. Nucleolar/nuclear area ratios
were calculated for each nucleus by summing the area of all
child nucleoli for a given nucleus, then dividing by the area of
the specified nucleus. Nucleoli without a valid parent nucleus
(parent ID 0)were discarded. Per-well averageswere then com-
puted. Optimization data were graphed in JMP. Triplicate data
from the RB factor screen were averaged in JMP and graphed
with GraphPad Prism 8 (GraphPad Software).

4.8. BMH-21 dose–response treatment
A 14-point 50X dilution series ranging from 1 mM to 100 nM
BMH-21 was created in DMSO vehicle from a 1 mM
BMH-21 working stock. In a 384-well plate, 3000 MCF10A
cells per well were plated in 50 µl of media on day 0. On day
1, columns 3–4 were treated with 1 µl of only vehicle and
each column from 5 to 18 was treated with 1 µl of one concen-
tration of the BMH-21 dilution series for 15 min at 37°C,
resulting in a 1X dilution series ranging from 20 µM to 2 nM
at final concentration. Columns 1–2 were not treated with
DMSO. Each well was treated with 1 µl of 50 mM 5-EU for a
final concentration of 1 mM 5-EU for an additional 1 h at
37°C. Cells were fixed and stained as detailed above. Rows
A–H were stained only for FBL (no 5-EU click reaction), and
rows I-P were stained for FBL and treated with the 5-EU click
reaction. Cells were imaged as above and processed with the
CellProfiler pipeline. Raw data were analysed in JMP, and
per-well averages were used to fit dose–response curves
using JMP’s Logistic 4 Parameter Hill equation. Fit parameter
estimates and errors are provided in the electronic supplemen-
tary material, table S3. Summary data were graphed in JMP.

Data accessibility. 5-EU data, siRNAs used, and dose–response fit data
are included in the electronic supplementary material, tables S1, S2
and S3, respectively. Our CellProfiler computational pipeline is also
included as Supplementary File 1, and an optimized 5-EU assay stan-
dard operating procedure is included as Supplementary File 2.

Thedataareprovided in theelectronic supplementarymaterial [104].
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