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Abstract

PIERCE1, p53 induced expression 1 in Rb null cells, is a novel p53 target involved in the

DNA damage response and cell cycle in mice. These facts prompted us to study the function

of PIERCE1 with respect to p53-associated pathophysiology of cancer in humans. Unex-

pectedly, PIERCE1 did not respond to overexpression and activation of p53 in humans. In

this study, we swapped p53 protein expression in human and mouse cells to find the clue of

this difference between species. Human p53 expression in mouse cells upregulated

PIERCE1 expression, suggesting that p53-responsive elements on the PIERCE1 promoter

are crucial, but not the p53 protein itself. Indeed, in silico analyses of PIERCE1 promoters

revealed that p53-responsive elements identified in mice are not conserved in humans.

Consistently, chromatin immunoprecipitation-sequencing (ChIP-seq) analyses confirmed

p53 enrichment against the PIERCE1 promoter region in mice, not in human cells. To com-

plement the p53 study in mice, further promoter analyses suggested that the human

PIERCE1 promoter is more similar to guinea pigs, lemurs, and dogs than to rodents. Taken

together, our results confirm the differential responsiveness of PIERCE1 expression to p53

due to species differences in PIERCE1 promoters. The results also show partial dissimilarity

after p53 induction between mice and humans.

Introduction

PIERCE1, p53-induced expression 1 in retinoblastoma (RB)-null cells also known as C9orf116

and RbEst47, was first shown to be upregulated in Rb-deficient mouse embryonic fibroblasts

(MEFs) [1]. PIERCE1 is highly induced by p53 overexpression and activation because it con-

sists of three p53-responsive elements at the region adjacent to the transcription start site [2].

As a result, genotoxic stresses such as ultraviolet C (UVC) light can activate PIERCE1 expres-

sion [2]. PIERCE1 expression fluctuates during the cell cycle, and its protein stability is highly

affected by the proteasome system as it harbors the PEST domain at the N-terminus [1].

PIERCE1 expression is restricted in normal human tissues such as the brain, kidney, and lung
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[1]. In vivo analyses of PIERCE1 knockout (KO) mice revealed that approximately half of

PIERCE1 homozygous KO mice exhibit embryonic lethality due to developmental defects, and

40% of survivors have situs inversus totalis, which reverses all organs from their normal posi-

tions [3].

p53, as an essential tumor suppressor gene, is a guardian of the genome that is the most fre-

quently mutated or deleted in approximately 50% of all human cancers [4–7]. Activated p53

under stress conditions regulates target gene expression, resulting in the alteration of multiple

physiologies including senescence, apoptosis, metabolism, and the cell cycle [8–11]. p53 is a

sequence-specific pleiotropic transcription factor that binds specifically to a palindromic con-

sensus sequence, RRRCWWGYYY (N0-13) RRRCWWGYYY [12] with at least one mismatch.

Mutation hotspots in p53 are mainly found in the DNA binding region across tumor types,

suggesting that transcriptional activity is critical for its tumor suppressor function [13–15].

Since PIERCE1 is significantly induced after p53 overexpression and activation in mice, we

examined tumor related PIERCE1 function under p53 activation and mutation conditions in

humans. Unexpectedly, PIERCE1 expression was not affected by p53 overexpression and acti-

vation in normal and cancerous human cell types, while mouse cells successfully induced

Pierce1 expression regardless of p53 protein species origins. At the molecular level, the human

PIERCE1 promoter did not harbor the p53-responsive element near the transcription start

site, but mice have three responsive elements. Though mice have been used as a typical model

organism due to several genetic and physiological advantages and similarities to humans [16],

recent reports suggested that mouse models are less reliable as representative human disease

models [17]. Thus, as a part of p53 targets are differ between two species, molecular and bio-

chemical data that comparing mice and humans need to be accounted more carefully espe-

cially in aspect to p53.

Materials & methods

Mice

FVB/NTac mice and p53 KO (Trp53tm1Tyj) mice were purchased from Taconic Biosciences

and Jackson Laboratory, respectively [18]. p53 heterozygous KO mice were backcrossed onto

the FVB/N for more than 20 generations. All mice were maintained in the specific pathogen-

free (SPF) facility of the Yonsei Animal Research Center [19–21]. Animal suffering was mini-

mized, and all experiments were performed in accordance with the Korean Food and Drug

Administration (KFDA) guidelines for animal research. The experimental protocols for gener-

ating the genetically engineered mouse models were approved by the Institutional Animal

Care and Use Committee (IACUC-A-201709-359-03) at Yonsei University.

Cell culture

B16F1, H1299, and HCT-116 cells were purchased from the Korean Cell Line Bank (KCLB).

MCF-7, A549, and BJ cells were purchased from the American Type Culture Collection

(ATCC). Mouse embryonic fibroblasts (MEFs) were prepared and cultured as previously

described [1]. Briefly, MEFs were isolated from 13.5-day embryos of wild-type (WT) and p53

KO mice. Lung cancer cells were isolated from tumor nodules of the KRASLa2 mouse model

[22]. AC-16, Beas-2b, and 293A cells were provided by WJ Park (Gwangju Institute of Science

and Technology) and HW Park (Yonsei University, Department of Biochemistry). All cells

were cultured and maintained in RPMI 1640 (Gibco) or Dulbecco’s modified Eagle’s medium

(DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS; Sigma) and 1% penicillin/

streptomycin (Gibco) at 37˚C in a humidified chamber containing 5% CO2 [23].
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Transfection, RNA isolation, and real-time quantitative PCR

RNA was isolated and used for quantitative PCR as previously described [24]. In brief, total

RNAs from cells were prepared with TRIsure reagent (Bioline) after treating for 12 hours with

cisplatin (Sigma) or transfection. Cell extracts were harvested after 24 hours of transfection

with Lipofectamine 3000 reagent (Invitrogen) or 36 hours of transfection with RNAiMAX

reagent (Thermo Fisher Scientific). One microgram of total RNA was reverse-transcribed

using the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific), and quantitative

PCR was performed using SYBR Green (Bioline) and CFX Connect Real-Time System (Bio

Rad) [25]. Experiments were conducted in triplicate, and signals were normalized to mouse

and human GAPDH. All primers and siRNA sequences are listed in S1 and S2 Tables.

Reporter gene constructs and luciferase assays

Reporter genes were constructed by subcloning the genomic DNA fragment containing the

PIERCE1 promoter region into the pGL3 Basic vector (Promega) [2]. p53 response elements

were predicted by directly comparing DNA sequences with the consensus sequence [2, 12].

The mutant PIERCE1 promoter constructs were generated using PCR-based mutagenesis [26]

with the following primers: 5’- AAC AGG ACG CCG CCT TGC CGC AGC AGG CAC
AGA CTT GAT CGC TTC TCC TCC AGG CAC AAT GT-3’ and 5’- GAG GAG AAG
CGA TCA AGT CTG TGC CTG CTG CGG CAA GGC GGC GTC CTG TTG CCA AGC
GAC GG-3’ for BS1; 5’- GGC AGG TTC CAG ACT TGC CTA CAG CTA GCT GCC
CGG CCC ACG CGC GGC GCC TT-3’ and 5’- GTG GGC CGG GCA GCT AGC TGT
AGG CAA GTC TGG AAC CTG CCG GGC GAC TCC CCA AG-3’ for BS2 and were veri-

fied by sequencing. Reporter genes and effector constructs pcDNA3-p53 were transfected with

Lipofectamine 3000 reagent (Invitrogen). Luciferase assays were conducted as previously

described [27].

Chromatin immunoprecipitation-sequencing (ChIP-seq) enrichment peak

analysis

The enrichment peaks were analyzed as previously described [28]. In brief, human and mouse

p53 ChIP-seq data were aligned to the human and mouse reference genome assemblies hg19

and mm9 [29, 30], respectively. The peaks were re-calculated by normalizing to read depth of

10 million. The Gene Expression Omnibus accession number for the acquisition of publicly

available ChIP-Seq data reported in this paper is GSE55727 (p53 ChIP-Seq in MEF) and

GSE86164 (p53 ChIP-Seq in HCT116 and MCF7).

Statistical analyses

Statistical significance was determined using the two-tailed t-test. Data were analyzed with

GraphPad Prism (GraphPad Software). The value of relative difference was transformed into

log 10. P-values less than 0.05 were considered statistically significant.

Results

Differential regulation of PIERCE1 expression by p53 in mice and humans

PIERCE1 is a novel p53 target involved in the DNA damage response in mice [1, 2]. Since

mice are predicted to have similar genetic and physiological aspects to humans [31, 32], these

data prompted us to examine whether PIERCE1 expression is affected by p53 and apply the

previous results to humans to investigate p53-related and tumor regulating functions of
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PIERCE1. Consistent with previous data, ectopic p53 expression significantly upregulated

Pierce1 expression approximately 2.5- and 10-fold in mouse primary fibroblasts and cancer

cells, respectively (Fig 1) [2]. However, unlike p53-dependent regulation in mouse cells, the

transcript level of PIERCE1 was not affected by p53 overexpression in p53-deficient HCT-116

cells, even though induction of other p53 targets was confirmed (Fig 2A and 2B). Additionally,

transient p53 overexpression and knockdown could not alter the PIERCE1 expression in six

different cell lines originating from humans (Fig 2C–2G), suggesting that PIERCE1 is not the

downstream target of p53 in humans.

Since genotoxic stress such as platinum treatment can promote p53 activity followed by

induction of its downstream targets [6], genotoxic stresses were applied to examine gene

expression alteration of p53 targets. Consistent with the previous report [2], significant upre-

gulation of both p21 and Pierce1 was detected with cisplatin treatment conditions in MEFs (S1

Fig). However, unlike mice, the PIERCE1 mRNA level was not changed by cisplatin in human

primary fibroblast and cancer cell lines, but the p21 mRNA level increased (Fig 3). These data

implied that genotoxic stress-mediated p53 activation is not sufficient to induce human

PIERCE1.

Poor transcriptional activation is not due to p53 protein, but low

conservation of p53 responsive elements in human PIERCE1 promoter

The differential responsiveness of PIERCE1 expression to p53 can be due to either the p53 pro-

tein or PIERCE1 promoter. To validate the factor that determines the species difference, the

cDNA encoding human p53 was introduced into mouse cells and vice versa. Pierce1 transcript

was significantly upregulated up to 23.5-fold when human p53 was overexpressed in MEFs,

the response which is similar to that of mouse p53 (Figs 1A and 4A), whereas overexpression

of mouse p53 did not affect PIERCE1 expression in p53 KO HCT-116 cells (Fig 4B and 4C).

These results indicated that the PIERCE1 promoter, rather than the p53 protein, is crucial for

determining the species differences.

Since the PIERCE1 promoter is predicted to differ between mice and humans, in silico anal-

yses of the PIERCE1 promoter were conducted to examine which element varies between

them. Based on the previous reports [2, 12], the mouse Pierce1 promoter was compared to the

human promoter and promoters in other species, especially in the regions of p53-responsive

elements (Fig 5A and S2 Fig). By re-analyzing publicly available mouse and human p53 ChIP--

Seq, we confirmed that only mouse PIERCE1 promoter selectively accumulates p53 while the

promoter of known p53 target (i.e. CDKN1A) is occupied regardless of mouse and human

cells (Fig 5B and 5C and S3 Fig). We measured p53 occupancy at the PIERCE1 promoter and

Fig 1. p53-mediated Pierce1 induction in mice. (A–C) Relative p53 and Pierce1 mRNA level determined using qPCR in cells 24 hours after transient transfection with

empty vector (yellow bars) or p53 (dark blue bars) in indicated mouse cell lines. p53-deficient mouse embryonic fibroblasts (MEFs, A) and cancer cells (B, melanoma; C,

lung cancer) were used for the analyses. GAPDH was used for normalization. Data are presented as mean ± SD (Student’s t-test, ��P<0.01, ���P<0.001).

https://doi.org/10.1371/journal.pone.0236881.g001
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compared it to the well-known p53 target gene, CDKN1A, in MEFs, HCT-116, and MCF-7 cell

lines. Given that the p53 activation status is based on CDKN1A peaks, significant binding affin-

ity at Pierce1 promoter was identified in MEFs. No remarkable interaction was seen in HCT-

116, and MCF-7 cells (Fig 5B and 5C). These data indicated that p53 binding sites (BSs) in

PIERCE1 promoter are not conserved in humans.

To investigate whether alteration of putative p53 BSs from the human to mouse sequences

can affect p53 responsiveness, we used mutant forms of human PIERCE1 promoter constructs

called BS1mut, BS2mut, and BS1/2mut, which contain either mouse p53 binding site 1 or 2

(BS1 and 2), or both in human PIERCE1 promoter, respectively (Fig 5A and 5D). As expected,

luciferase analyses revealed no notable activation of human PIERCE1 promoter by p53. How-

ever, mutant promoters, especially the constructs containing the BS1 mutation, showed signifi-

cant upregulation of promoter activity in response to p53 (Fig 5D). Consistent with previous

Fig 2. PIERCE1 expression is not controlled by p53 in humans. (A-B) RT-PCR analyses of p53 (A) and its target (B) mRNA levels 24 hours after transient transfection

of empty vector (yellow bars) and p53 (red bars) in p53 KO HCT-116 cells. (C-F) RT-PCR analyses of p53 and PIERCE1 transcripts 24 hours after transient transfection

of control (yellow bars) and p53 (red bars) in Beas-2b (C), MCF-7 (D), A549 (E), and H1299 (F) cell lines. (G) Relative p53 and PIERCE1 mRNA levels of no transfection

(NT, white bars) or 36 hours after transient transfection of siRNA against control (siCTRL, gray bars) or p53 (sip53, black bars) in AC16 cells. The level of each gene was

normalized to GAPDH. ns indicates no significant difference. Data are presented as mean ± SD (Student’s t-test, ���P<0.001).

https://doi.org/10.1371/journal.pone.0236881.g002
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data [2], BS2mut did not respond to p53. These data suggest that p53-response elements are

the determining factors of PIERCE1 expression across the species.

Proposal of alternative experimental animal models for p53 study

Although the mouse is the most frequently used model to examine p53 function, our data sug-

gested that there is some inconsistency between mouse data and human cases. Thus, we inves-

tigated the PIERCE1 promoter in the representative animal models to suggest representatives

with more similarity to humans. Sequence analyses in the PIERCE1 promoter region revealed

that rat has high p53 BS consensus sequence homology with mouse, but these sites are poorly

conserved in primates such as chimpanzees and humans (Fig 5A, the data for chimpanzee are

not shown). Furthermore, the PIERCE1 promoter phylogenetic tree analyses suggested that

zebrafish, dog, pika, and guinea pig have similar PIERCE1 promoter structure to humans (S2

Fig 3. PIERCE1 expression is not induced by cisplatin in human cells. (A–E) Relative expression of p21 (green bars) and PIERCE1 (red bars) transcripts after 12 hours

of cisplatin treatment at the indicated doses in BJ (A), HFF (B), p53 KO HCT-116 (C), MCF-7 (D), and A549 (E) cell lines. GAPDH was used for normalization. Data are

presented as mean ± SD (Student’s t-test, triplicate).

https://doi.org/10.1371/journal.pone.0236881.g003
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Fig). Additionally, previous reports indicated that Lpin1 and Cpt1c genes are differentially con-

trolled between mice and humans [33]. We also found that p53-responsive elements in these

genes are preserved in rats, partially in guinea pigs and lemurs, but not in dogs and primates

(S4 Fig). Furthermore, this tendency was stronger in the more closely related species. Collec-

tively, these data indicate that mouse p53 is not fully representative of humans. On the con-

trary, guinea pig, lemur, and dog models might show a better correlation with human p53

function.

Discussion

Here, we identified PIERCE1 as a differentially-regulated gene across species due to its pro-

moter region variation. These dissimilarities inhibit the responsiveness of PIERCE1 to human

p53. In a proof-of-concept, mutagenesis of the human PIERCE1 promoter at p53-responsive

elements to the mouse allele successfully enabled transcriptional activation of the human

PIERCE1 by p53 or genotoxic stress conditions.

Analyses of PIERCE1 promoter sequences in several species suggested that zebrafish, dogs,

guinea pigs, and lemurs were predicted to be similar to humans in expression patterns and p53

or genotoxic stress responsiveness. On the contrary, transcriptional activity and responsive-

ness to p53 in the mouse Pierce1 promoter might be similar to rats, frogs, squirrels, and tree

shrews. The transcriptional responses to p53 are not restricted in PIERCE1, but approximately

Fig 4. Species differences in the PIERCE1 promoter and not in the p53 protein is the key factor for PIERCE1 induction by p53. (A) Relative mRNA level of p53 and

Pierce1 24 hours after transient transfection of empty vector (yellow) or human p53 (red) in p53 KO MEF. (B-C) Relative mRNA level of p53 (B) and its targets (C) 24

hours after transient expression of empty vector (yellow bars), human p53 (red bars), and mouse p53 (dark blue bars) in p53 KO HCT-116 cells. GAPDH was used for

normalization. Data are presented as mean ± SD (Student’s t-test, ���P<0.001; ns, no significance).

https://doi.org/10.1371/journal.pone.0236881.g004
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1010 genes including POLK [34], LPIN1 [35], and CPT1C [36] also show species variation in

their expression [33]. Gene ontology (GO) classification of these genes suggested that they are

related to the DNA damage response, DNA metabolism, and cell cycle [33]. p53-induced

DNA damage response and cell cycle alteration could vary between mice and humans due to

the dissimilar expression of p53-dependent downstream target genes. Therefore, the use of

animal models showing differential p53 responsiveness might interrupt proper p53 function

interpretation.

Supporting information

S1 Fig. Pierce1 expression is responsible for cisplatin-induced p53 activation in mice. Rela-

tive mRNA level of Pierce1 12 hours after cisplatin treatment at the indicated doses in MEFs.

GAPDH was used for normalization. Data are presented as mean ± SD (Student’s t-test, tripli-

cate).

(TIF)

S2 Fig. Phylogenetic tree of the p53 binding sites of the PIERCE1 promoter region in the

indicated species. Deep blue lines show that no binding site exists. Light blue and yellow lines

are predicted to harbor only BS2 or BS1, respectively. Red lines indicate that both two binding

sites exist. (BS, binding site; O, exist; X, does not exist).

(TIF)

S3 Fig. Identification of direct p53 binding sites. ChIP-seq profiles and identified peaks of

direct p53 binding to CDKN1A in mouse cells (MEFs) (A) and human HCT-116 and MCF-7

cell lines (B). The CDKN1A gene schematic is shown below. Exons are shown as blue boxes,

and introns are marked in blue lines.

(TIF)

S4 Fig. p53 responsiveness prediction based on promoter sequence analysis in several spe-

cies. p53 response sequence alignment of the Lpin1 (A) and Cpt1c (B) in mice, and its consen-

sus regions in rats, guinea pigs, lemurs, dogs, and humans. Predicted response elements are

shown in blue, and two RRRCWWGYYY sequences separated by 0 to 13 bp of spacer DNA

are highlighted in yellow. Mismatches with the p53 consensus sequences are shown in green.

R, purine; Y, pyrimidine; W, adenine, or thymine.

(TIF)

S1 Table. Primer sets for qPCR.

(DOCX)

S2 Table. siRNA sequences for p53 knockdown.

(DOCX)

Fig 5. PIERCE1 promoter is the determining factor of varying p53 responsiveness in mice and humans. (A) A schematic view of PIERCE1 promoter region with

p53-responsive elements (BS, shown in blue) in the mouse Pierce1 locus (upper panel) and predicted BS sites in the PIERCE1 locus of human and rat (human locus is

shown in the bottom panel). Predicted BS sites are shown in blue, and two RRRCWWGYYY sequences, are highlighted in yellow. Mismatches with the p53 consensus

sequence are shown in green. R, purine; Y, pyrimidine; W, adenine, or thymine. Arrows indicate the transcription start region. (B-C) ChIP-sequencing profiles and

identified peaks of direct p53 binding to PIERCE1 in mouse cell, MEFs, (B) and human cell lines HCT-116, and MCF-7 (C). A schematic view below the profiles shows

the PIERCE1 gene and promoter region. Exons are shown as blue boxes, and introns are marked by blue lines. (D) A conceptual diagram of WT and mutant PIERCE1
promoters with putative p53 BSs and relative luciferase activity of these promoters 24 hours after transfection of empty vector (yellow bars) or p53 (red bars) in 293A

cells. Each mutant PIERCE1 constructs contains mouse p53 binding site as described with ovals. Gray bars, human PIERCE1 promoter; White ovals, WT; Black ovals,

p53 BS sequence of mouse Pierce1. Data are presented as mean ± SD (Student’s t-test, triplicate).

https://doi.org/10.1371/journal.pone.0236881.g005
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