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ABSTRACT
Few non-invasive models were established for precisely identifying the immune tolerant (IT) phase from chronic hepatitis
B (CHB). This study aimed to develop a novel approach that combined next-generation sequencing (NGS) and machine
learning algorithms using our recently published viral quasispecies (QS) analysis package. 290 HBeAg positive patients
from whom liver biopsies were taken were enrolled and divided into a training group (n = 148) and a validation group (n
= 142). HBV DNA was extracted and QS sequences were obtained by NGS. Hierarchical clustering analysis (HCA) and
principal component analysis (PCA) based on viral operational taxonomic units (OTUs) were performed to explore the
correlations among QS and clinical phenotypes. Three machine learning algorithms, including K-nearest neighbour,
support vector machine, and random forest algorithm, were used to construct diagnostic models for IT phase
classification. Based on histopathology, 90 IT patients and 200 CHB patients were diagnosed. HBsAg titres for IT
patients were higher than those of CHB patients (p < 0.001). HCA and PCA analysis grouped IT and CHB patients into
two distinct clusters. The relative abundance of viral OTUs differed mainly within the BCP/precore/core region and
was significantly correlated with liver inflammation and fibrosis. For the IT phase classification, all machine-learning
models showed higher AUC values compared to models based on HBsAg, APRI, and FIB-4. The relative abundance of
viral OTUs reflects the severity of liver inflammation and fibrosis. The novel QS quantitative analysis approach could
be used to diagnose IT patients more precisely and reduce the need for liver biopsy.
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Introduction

The natural history of chronic hepatitis B virus (HBV)
infection can be divided into five phases, including the
hepatitis B e antigen (HBeAg)-positive chronic infec-
tion, previously known as the immune tolerant (IT)
phase (Phase I); the HBeAg-positive chronic hepatitis
B (CHB) (Phase II); the HBeAg-negative chronic
infection (Phase III); the HBeAg-negative CHB
(Phase IV); and the hepatitis B surface antigen
(HBsAg)-negative (Phase V) [1,2]. However, in a sig-
nificant number of patients, it is difficult to precisely
classify a specific patient into one of the above phases
in the clinic, even after a complete assessment of clini-
cal and virological profiles, including HBeAg, HBV
DNA, and alanine aminotransferase (ALT) levels

[1,3,4]. Eventually, an invasive liver biopsy is required
for some patients to determine the infection phase and
the severity of the liver disease.

In HBV infection, due to the high variability of the
HBV genome, a mass of complex and dynamically dis-
tributed variants, termed quasispecies (QS), are gener-
ated during replication and contain a remarkable
amount of genomic diversity [5,6]. The QS property
confers virus adaptability to the changing environment
by shifting fitness under host immune or antiviral
pressure. Any newly generated mutation with a selec-
tive advantage under multiple pressures posed by the
innate and adaptive immune responses will take over
other mutations and become the dominant QS, follow-
ing the Darwinian evolutionary process [7,8].
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Lim et al. [9] analyzed the long-term evolution of
HBV during HBeAg seroconversion and found that
more positive selection sites were identified within
the precore/core region in HBeAg seroconverters
than in non-seroconverters. Our previous study
showed that more positive selection sites were
detected within the surface region in patients with sus-
tained response than in patients who experienced viral
relapse after nucleotide analogue withdrawal. Most of
the positive selection sites in patients with sustained
response were located in HLA-I and HLA-II epitopes
[10]. An enhanced host immune response and concur-
rent selection of mutations were associated with
HBeAg seroconversion or off-treatment sustained
response. A recent study showed the high genetic
divergence of HBV haplotype across different phases
of HBV natural history following deep sequencing of
the whole HBV genome [11]. Taken together, these
studies suggest that deep analysis of viral QS charac-
teristics may constitute a means by which to study
the interaction between the host immune response
and viral replication.

Next-generation sequencing (NGS) enables charac-
terization of viral variants with higher sensitivity than
is possible with standard population sequencing and
can detect variants at frequencies as low as 1% in the
QS pool [12,13]. Indeed, NGS platforms have been
implemented in many clinical and research laboratories,
as the cost of these platforms is progressively decreasing
[14]. NGS analysis of HBV sequences has shown that
patients with detectable basal core promoter (BCP)
and/or precore variants and high viral diversity achieved
a lower probability of HBsAg loss during long-term
tenofovir therapy [15]. NGS study also showed that a
high proportion of BCP mutation was associated with
the risk of cirrhosis development in HBV carriers [16].
Therefore, NGS technology provides an excellent
opportunity to determine the high-risk population and
to choose the optimal candidates for antiviral therapy.

Recently, we developed an automatic quasispecies
analysis package (QAP) software to quantitatively ana-
lyse the massive viral quasispecies data generated from
next-generation sequencing [17]. In this study, the aim
was to apply the novel non-invasive approach, based on
machine learning-assisted viral QS quantitative analy-
sis, to precisely identify the IT phase in HBeAg-positive
patients. Such a novel approach would help physicians
to identify patients who really need antiviral therapy,
reducing the clinical need for liver biopsy.

Materials and methods

Patients

HBeAg-positive CHB patients who underwent liver
biopsy were enrolled retrospectively from 2008 to
2017 at Ruijin Hospital, Shanghai Jiaotong University

School of Medicine as a training group, whereas a vali-
dation group was enrolled from Huashan Hospital,
Fudan University. Patients were diagnosed based on
the criteria recommended by the American Associ-
ation for the Study of Liver Disease (AASLD) [2].
All patients were HBsAg and HBeAg positive for >6
months. Exclusion criteria included: (1) HBV DNA
levels <104 IU/ml; (2) hepatitis C virus (HCV) or
hepatitis D virus (HDV) co-infection; (3) previous his-
tory of antiviral therapy; (4) had received immunosup-
pressive therapy within the preceding 6 months; and
(5) insufficient serum sample available for NGS analy-
sis. Two hundred and ninety patients were enrolled in
this study. Of them, 148 patients were in the training
group and 142 patients were in the validation group.
The flowchart for patient inclusion is shown in Figure
1A. Written informed consent according to the
Declaration of Helsinki was obtained from each
patient. This study was approved by the Ethics Com-
mittee of the Ruijin Hospital, Shanghai Jiaotong Uni-
versity School of Medicine (2016–17), and the
Huashan Hospital, Shanghai Medical College, Fudan
University (2016–124).

Clinical and laboratory tests

The serum samples were collected at the time of liver
biopsy, aliquoted, and stored at −80°C. Baseline
demographic variables and clinical profiles for each
patient were recorded. HBV serological biomarkers
(HBsAg, HBs antibody, HBeAg, HBe antibody, and
hepatitis B core antibody) were measured using auto-
mated chemiluminescent microparticle immunoas-
says (CMIA) (Abbott, Chicago, IL, USA). HBV DNA
levels were measured by real-time polymerase chain
reaction (PCR) (PJ Co. Ltd., Shenzhen, China or
Roche, Mannheim, Germany). Serum ALT and aspar-
tate aminotransferase (AST) levels (upper limit of nor-
mal: 60 IU/L) were assessed with an automatic
biochemical analyzer (Beckman Coulter, Brea, CA,
USA or Abbott, Chicago, IL, USA).

Histopathological evaluation

Liver samples were obtained by percutaneous liver
biopsy using 16-G Menghini needles, fixed in forma-
lin, and embedded in paraffin. Hematoxylin-eosin
and reticular fibre staining or Masson’s staining were
undertaken on each section. Section slides with less
than three portal tracts were regarded as poor biopsy
specimens and were excluded. Liver inflammation
grading and fibrosis staging were based on a modified
Scheuer scoring system by two experienced clinical
pathologists [18]. The definition of the IT phase was:
patients with HBsAg and HBeAg positivity, very
high levels of HBV DNA (typically >1 million IU/
mL), and normal or minimally elevated ALT levels
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(less than two times of upper limit of normal) with no
or mild liver inflammation and fibrosis (G0-1S0-1) by
liver histopathology. The definition of CHB phase was:
patients with HBsAg and HBeAg positivity, high levels
of HBV DNA (>20,000 IU/ml), elevated ALT levels
with moderate to severe liver inflammation or fibrosis
(G2-4/S2-4) by liver histopathology, according to the
AASLD guideline [2].

HBV DNA extraction, amplification, and NGS
process

HBV DNA was extracted from 200 µl of serum using
the QIAamp UltraSens Virus Kit (Qiagen, Hilden,
Germany). The whole HBV genome was amplified
for 50 randomly selected samples from the training
group, using nine pairs of primers with nine overlap-
ping fragments (Supplementary Table S1, and Figure
S1, primersP1–P9). For other samples, only fragment
P5 corresponding to the BCP/precore and core region
was amplified. Each HBV fragment was amplified by
PCR with the corresponding primers. A library of
PCR products was established using a Nextera DNA
Sample Prep Kit (Illumina, San Diego, CA, USA).
Each library was subjected to size selection to remove
fragments <400 bp using AMPure XP beads (Beckman
Coulter) and verified using an Agilent Bioanalyzer.
Before sequencing, each library was quantified by
real-time PCR using an NGS Library Quantification
Kit (Takara, Mountain View, CA, USA). Sequencing

of the PCR products was performed using an Illumina
Miseq platform, according to the manufacturer’s PE
2 × 300 bp protocol (maximum read length 300 bp,
maximum read pair span 600 bp). Image analysis
and base calling were performed using Illumina
CASAVA version1.8.2 with default parameters.

Raw data pre-processing

Raw NGS data in fastq format was quality filtered by
using the software QAP [17], with the following cri-
teria: read length ≥250 bp and base quality ≥25 to
remove adaptors and filter out low-quality or short
reads. Totally 16,010,732 clean reads from
17,309,648 raw reads were left after filtration and
used for subsequent analysis. Next, clean reads were
mapped to the reference genome (genotype B, Gen-
Bank accession D00329; genotype C, GenBank acces-
sion X04615), and read pairs were assembled to
amplicon sequences based on their mapping positions.
Amplicon sequences were subsequently processed to
correct sequencing errors, and finally, the viral haplo-
types in fastq format were generated. All QS data were
analyzed using QAP software [17].

QS quantification

To define a unified quantitative unit, the concept of an
operational taxonomic unit (OTU) was borrowed
from bacterial metagenomics analysis and redefined

Figure 1. (A) Flowchart of patient enrolment in the study. (B) A schematic diagram of the experiment and data analysis workflow.
Briefly, HBV genome DNA was extracted from serum and amplified by 9 pairs of primers, then detected by NGS which generated a
pooled sequencing reads of different viral strains. QS were then quantified based on the abundances of viral OTUs, and clustered
using HCA and PCA. Finally, classification models were constructed using machine learning algorithms based on sample clusters.
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here as viral strains with high homology [17]. Briefly,
variant viral strains were first extracted from viral hap-
lotypes. Next, all viral strains were clustered, and those
with high homology were regarded as the same poten-
tial viral OTU. If a potential OTU met the following
criteria: abundance greater than 0.1% and prevalence
in the cohort greater than 2%, it would be regarded
as an OTU and used for subsequent quantification.
Then, OTUs were picked based on their abundance
and frequency among samples. Finally, the abundance
of OTUs within each QS was quantified and an OTU
table was generated, in which rows corresponded to
samples and columns to OTUs.

Clustering analysis

To further explore the correlations among QS and
clinical phenotypes, hierarchical clustering analysis
(HCA) and principal component analysis (PCA)were
performed based on QS quantification. In the present
study, HCA was performed in an unsupervised man-
ner to explore potential groups in the QS of all
samples. PCA converts the abundances of OTUs into
a set of values of linearly uncorrelated variables
known as PCs. HCA and PCA were carried out by
using QAP software [17].

Diagnostic model construction using machine
learning algorithms

Based on pathological classification (IT vs. CHB),
three machine learning methods were applied to con-
struct diagnostic models based on viral OTU quantifi-
cation of patients in the training group, including K-
nearest neighbour (KNN), support vector machine
(SVM), and the random forest (RF) algorithm. These
three machine-learning methods were implemented
using R package KKNN, e1071, and randomForest,
respectively. All R packages can be downloaded from
CRAN or Bioconductor. All three models were per-
formed with five-fold cross-validation to avoid overfi-
tting. And then the diagnostic models were validated
in the validation group. The workflow of the exper-
iment and data analysis is shown in Figure 1B.

Statistical analysis

All analysis was performed using R version 4.0.1. Con-
tinuous data are presented as mean ± SD or median
(interquartile range) and compared using Student’s
t-test or Mann-Whitney U test as appropriate. The
categorical data were expressed as proportions and
analyzed using the χ2 test. Correlations were evaluated
by the Spearman, Pearson, or Kendall rank correlation
coefficient as appropriate. To evaluate the perform-
ance of diagnostic models, receiver operating charac-
teristic (ROC) curve analysis was performed using R

package pROC with a 95% confidence interval (CI).
Diagnostic accuracy was expressed as the sensitivity,
specificity, and area under the ROC curve (AUC). A
two-sided p-value <0.05 was considered statistically
significant for all tests.

Results

Clinical characteristics of patients

A total of 290 patients were enrolled retrospectively.
Ninety and 200 patients were diagnosed as IT and
CHB patients respectively, based on the clinical, viro-
logical, and histopathological profiles. Most of the
patients were male, and the median age was 32.83
and 36.75 years for IT and CHB patients, respectively.
HBsAg titres [(4.60 ± 0.66) vs. (3.90 ± 0.77) log10IU/
mL] and HBV DNA load [(7.56 ± 0.52) vs. (6.59 ±
1.29) log10IU/mL] in IT patients were higher than
those in CHB patients (p < 0.001) (Table 1). Interest-
ingly, thirty-five patients (38.8%, 35/90) in the IT
group had slightly elevated ALT levels [76.00(64.50–
93.00) IU/L]; while 99 patients (49.5%, 99/200) in
the CHB group had normal ALT levels. The age,
ALT, HBsAg, and HBV DNA levels were different
among the subgroups (p < 0.05) (Table S2). The clini-
cal characteristics of the training group and validation
group were shown in Supplementary Table S3.

The relative abundance of viral OTUs between
IT and CHB patients differed mainly within the
BCP/precore/core region

To identify the specific regions of sequence divergence
between viral strains of IT and CHB patients, 50
patients were randomly selected from the training
group, and the whole HBV genome in these patients
was sequenced with nine pairs of overlapping primers.
PCA was performed based on viral OTU quantifi-
cation of nine amplicons (Figure 2). Among the nine
amplicons, sample clustering based on viral OTUs in
amplicon P5 (Figure 2E) showed two distinct clusters
corresponding to the IT and CHB patients. Associ-
ations between PC1 and the sample groups were calcu-
lated, and amplicon P5 had the most statistically
significant association (p = 1.11E−10, supplementary
Table S4). Thus, amplicon P5 was regarded as the
most divergent region between IT and CHB patients.
As amplicon P5 corresponds to the BCP/precore and
core region in the HBV genome, the results indicate
that most of the sequence divergence between IT
and CHB patients occurred within this region. The
frequency of hot-spot mutation within the BCP/pre-
core and core regions, such as A1762T/G1764A and
G1896A mutation, was higher in the CHB group
than in the IT group (Table S5).
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PCA analysis demonstrated clusters overlapped
slightly between IT and CHB patients

PCA based on viral OTU quantification within ampli-
con P5 was analyzed for all training group patients.
The abundance of viral OTUs in IT and CHB patients
was significantly different with distinct clusters in the
two groups. PCA of viral OTUs revealed that IT and
CHB patients were grouped into two distinct clusters.
There was a small overlap between the two clusters in
both HCA and PCA, indicating a potential transitional
phase between IT and CHB phases (Figure 3A and B).

The relative abundance of viral OTUs was
significantly correlated with liver inflammation
and fibrosis

To evaluate the associations among commonly
used clinical markers and viral QS quantification,
the first two PCs were extracted and their corre-
lations with clinical markers were evaluated
using correlation coefficients. The first two PCs
were more correlated with liver inflammation
and fibrosis than with HBsAg, HBV DNA, and
PLT levels (Table 2).

Table 1. The clinical characteristics of the study patients in the IT and CHB group.
IT group (n = 90) CHB group (n = 200) p value

Sex (Male, %) 80 (88.89) 152 (76.00) 0.02
Age (years) 32.83 ± 9.18 36.75 ± 10.68 <0.01
ALT (IU/L) 47.00 (29.50–70.50) 61.00 (40.50–110.50) <0.01
AST (IU/L) 29.50 (23.00–39.25) 40.50 (30.25–63.75) <0.01
PLT (109/L) 202.96 ± 50.99 176.50 ± 54.94 <0.01
HBV DNA (log10IU/ml) 7.56 ± 0.52 6.59 ± 1.29 <0.01
HBsAg (log10IU/ml) 4.60 ± 0.66 3.90 ± 0.77 <0.01
Genotype B/C (n) 38/52 78/122 0.75
G0/G1/G2/G3/G4(n) 30/60/0/0/0 4/26/112/47/11 <0.01
S0/S1/S2/S3/S4(n) 55/35/0/0/0 2/48/86/31/33 <0.01

Figure 2. Scatter plots of PCA results of 9 amplicons in the training group. (A∼I) corresponds to amplicon P1 to P9 (amplified by
primers P1 to P9, respectively). Each dot in the plot represents a sample, of which dots in the red represent CHB patients and dots
in the blue represent IT patients. The x-axis and y-axis represent the top 2 principal components (PC), PC1 and PC2, respectively.
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Machine-learning models had superior
diagnostic performance

Firstly, the diagnostic models were constructed to pre-
cisely identify the IT or CHB phase of HBV infection
based on viral QS quantification using machine learn-
ing methods.

The relative abundance of viral OTUs within QS
was quantified according to haplotype counts in the
viral spectra. RF, SVM, and KNN algorithms were
used to construct predictive models without involving
any clinical phenotypic parameters. The models were
then validated in the validation group. The sensitivity,
specificity, and classification accuracy of each model
were compared with quantitative HBsAg, ALT level,
and widely used liver fibrosis models APRI and FIB-
4 [19,20]. All models showed significantly higher
specificity, sensitivity, accuracy, and AUC values
than HBsAg, ALT, or APRI and FIB-4 in the classifi-
cation of clinical phenotypes, both in the training
and in the validation group (Table 3 and Figure 4).

Secondly, the diagnosticmodels were constructed to
evaluate the severity of liver histopathology in patients
with normal and elevated ALT levels, respectively.
Three machine learning models showed significantly
higher specificity, sensitivity, accuracy, and AUC
values than HBsAg and APRI and FIB-4 in identifying

the IT or CHB patients, either in the patients with nor-
mal ALT or elevated ALT levels (Tables S6, S7).

Discussion

We developed a novel non-invasive approach to pre-
cisely identify the IT phase in HBV patients using
machine learning-assisted analysis of NGS-generated
viral QS sequences in a very well-defined patient
cohort based on a set of clinical, biological, virologic,
and histopathological findings. PCA of viral OTUs
revealed that IT and CHB patients were grouped
into two distinct clusters. PCA analysis also clustered
different levels of liver inflammation and fibrosis,
either in the normal ALT subgroup or in the elevated
ALT subgroup. Predictive models that analyze the
relative abundance of viral OTUs, based on machine
learning algorithms, can accurately identify the HBV
infection phase with significant accuracy.

The complicated interaction between the host
immune response and HBV results in different clinical
outcomes [21]. It is commonly believed that immuno-
logical events play important roles in the shift from the
IT phase to the immune clearance phase. The innate
and adaptive immune responses place multiple selec-
tive constraints on viral replication. Under such cir-
cumstances, viruses tend to increase mutations and
gain replicative fitness, maintaining persistent infec-
tion [7]. A consequence of viral QS adaptation to the
changing environment is rapid generation of phenoty-
pic diversity and escape mutations [6]. The BCP/pre-
core region, which does not overlap with other
ORFs, exhibits wide sequence variation and immuno-
genicity [22]. Deep sequencing of mother-to-child
transmission CHB patients has shown that the BCP
and precore sequences are highly conserved during
the IT phase in contrast to frequent mutation during
the immune clearance phase [23]. The lesser mutation

Figure 3. HCA and PCA based on viral OTUs of amplicon P5 in the training group. (A) Hierarchal clustering heatmap of viral OTUs.
A column corresponds to viral OTUs within a patient, and a row corresponds to the relative abundance of a representative OTU in
all patients. The colours corresponding to the scales bars and traits are shown on the left. (B) Principal component analysis of viral
OTUs in 148 patients in the training group. PC1 and PC2 were used as x-axis and y-axis in two dimensions, respectively. Each dot
represents one sample, and the colours indicate different groups.

Table 2. Statistical significance of associations between PCs
and clinical profiles.

Phenotype

PC1 PC2

p value Correlation p value Correlation

Gender (Male/Female) 3.40E−02 0.07 2.74E−01 0.02
Age (years) 1.06E−01 0.10 6.32E−01 0.03
ALT (IU/L) 5.67E−01 0.03 2.97E−04 0.21
AST (IU/L) 2.20E−02 0.14 1.38E−05 0.26
PLT(109/L) 4.86E−02 −0.12 1.94E−03 −0.19
HBV DNA (log10IU/mL) 4.25E−07 −0.30 1.96E−01 −0.08
HBsAg (log10IU/mL) 1.81E−08 −0.33 1.53E−05 −0.26
Inflammation grade (G) 2.98E−10 0.42 8.19E−06 0.38
Fibrosis stage(S) 6.47E−10 0.43 2.01E−05 0.34
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rate during the IT phase may reflect the lack of signifi-
cant selective pressure on the virus. Similar to a recent
study that HBV haplotype generally separated, par-
ticularly within precore/core gene, according to differ-
ent phases of HBV natural history [11], the PCA
analysis based on precore/core gene can identify the
IT and CHB patients precisely. Recent studies have
shown that HBV-specific T-cell responses may not
be as exhausted as previously thought and that HBV
DNA integration events may occur during the IT
phase [24,25], which challenged the prevailing opinion
that the immune response and virus mutation is quies-
cent in such patients. The present study showed a
slight overlapping area between IT and CHB patients
in cluster analysis and a minimally elevated ALT
level in some IT patients. Moreover, a recent study

on HBV variants by NGS from treatment naïve IT
patients revealed that the level of viral diversity was
corelated with age and ALT level and negatively core-
lated with HBVDNA, HBsAg and HBeAg level, indi-
cating immune tolerant phase transition towards
immune clearance phase despite of normal ALT
level [26]. These observations further supported the
concept that antiviral immune responses and virus
evolution may occur in certain IT patients.

Further, increased viral mutations, due to enhanced
immune pressure during the CHB phase, are associ-
ated with liver inflammation and fibrosis. The fre-
quency of the I27 V mutation in the HBV core gene
is higher in severe compared to moderate liver inflam-
mation [27].CHB patients who carry the A1762T/
G1764A mutation have a higher risk of severe fibrosis

Table 3. Comparison of the performance between diagnostic models and clinical parameters in identifying the IT or CHB patients.
SVM KNN RF HBsAg ALT FIB-4 APRI

Training group SPEC 0.9689 0.9689 0.9678 0.8218 0.6602 0.4353 0.7326
SENS 1.0000 0.9598 0.9670 0.9211 0.5854 0.7857 0.6552
ACC 0.9817 0.9657 0.9675 0.8489 0.6389 0.5221 0.7130
AUC 0.9845 0.9652 0.9681 0.8876 0.6153 0.5576 0.7153

Validation group SPEC 0.9349 0.9411 0.9446 0.6744 0.4255 0.6484 0.6813
SENS 0.8327 0.8192 0.8141 0.7447 0.8958 0.6905 0.7143
ACC 0.9031 0.9032 0.9040 0.6992 0.5845 0.6617 0.6917
AUC 0.8838 0.8801 0.8793 0.6759 0.6806 0.7033 0.7276

SPEC, specificity; SENS, sensitivity; ACC, accuracy; AUC, area under ROC curve; SVM, support vector machine; KNN, K-nearest neighbour; RF, random forest;
FIB-4, fibrosis-4 index; APRI, AST-to-platelet ratio index.

Figure 4. ROC curves of three diagnostic models using machine learning methods compared with HBsAg and ALT level in identify-
ing IT and CHB patients. (A∼C) ROC curves of three diagnostic models constructed using SVM, KNN and RF methods in the training
group. (D∼F) ROC curves of three diagnostic models constructed by using SVM, KNN and RF methods in the validation group. The
coloured ribbon corresponds to the 95% CI of ROC curves. SVM, support vector machine; KNN, K-nearest neighbour; RF, random
forest; FIB-4, fibrosis-4 index; APRI, AST-to-platelet ratio index.
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[28]. NGS in a longitudinal cohort revealed that the
BCP mutation is significantly associated with cirrhosis
development [16]. Massively parallel pyrosequencing
of HBV quasispecies showed that the frequency of
viral substitution within BCP/pre-core/core region,
including A1762T/G1764A/G1896A and other two
novel mutations, was significantly associated with
the advanced liver disease compared to chronic HBV
carrier [29]. In our study, PCA analysis based on P5
amplicons, which corresponding to the BCP/pre-
core/core region, significantly grouped the IT and
CHB patients into two distinct clusters, and the first
two PCs were significantly correlated with liver
inflammation and fibrosis. Our data demonstrated
for the first time that liver inflammation and fibrosis
can be inferred using deep analysis of viral QS spectra.

Despite a encouraging randomized clinical trial
with IT children [30], current clinical practice guide-
lines recommend against antiviral therapy for adults
with the IT phase [1,2]. Precise identification of the
IT or CHB phase is crucial for physicians when con-
sidering the initiation of antiviral therapy. In the
clinic, the classification of the different phases is
mainly based on clinical, biochemical, and virological
profiles and non-invasive fibrosis tests. However,
37∼40.2% of HBeAg positive CHB patients with per-
sistently normal ALT levels had significant liver fibro-
sis or inflammation [31,32]. Lower HBsAg
quantification and HBV DNA load was correlated
with moderate or severe fibrosis in HBeAg positive
CHB patients, with an AUC of 0.77 [33]. The non-
invasive method for measuring liver stiffness using
Fibroscan identified patients with ≥F2 fibrosis, with
a sensitivity of 58∼82% and specificity of 75∼79%
[34]. The widely used non-invasive panels, including
FIB-4 and APRI, are more suitable for the evaluation
of significant or advanced fibrosis in normal ALT
patients, but with low PPV. However, previous bio-
marker or panels failed to precisely identify the IT
phase, which was characterized by no or minimal
liver necro-inflammation or fibrosis. In the present
study, the predictive models using machine learning
algorithms had high accuracy in identifying the IT
phase patients and determining the severity of liver
histopathology, compared with HBsAg quantification,
ALT level, and FIB-4 and APRI. Specifically, the clus-
tering analysis and predictive models precisely deter-
mined the subgroup of CHB patients with normal
ALT levels. Such patients would have been excluded
from antiviral therapy if a liver biopsy was not per-
formed. Further, this novel approach precisely ident-
ified a subgroup of IT patients with no or mild liver
inflammation and fibrosis but exhibited mildly elev-
ated ALT levels. The ALT level can be minimally elev-
ated in the IT patients according to the AASLD
guideline [2] in contrast to the EASL guideline [1].
Actually, a substantial proportion of patients with

slightly elevated ALT levels had near-normal liver his-
topathology [35]. Some HBeAg positive CHB patients
(52∼71%) with ALT levels less than twice the upper
limit of normal (60 IU/L) do have mild liver inflam-
mation or fibrosis [36,37]. Antiviral therapy may not
be urgent but close surveillance may be a better strat-
egy for such patients. Other causes for elevated ALT
level should be investigated, including but not limited
to non-alcoholic fatty liver disease, alcoholic, and
autoimmune liver disease. Our novel approach
would provide clinicians with a means by which to
precisely identify the patients who really need antiviral
therapy, reducing the need for liver biopsy.

The traditional method used to analyze viral QS is
cloning and sequencing. This is a costly, labor-inten-
sive process that requires multiple, complex, exper-
imental steps, with limited resolution [38]. NGS
approaches enable high-throughput analysis of thou-
sands of sequences and are a powerful tool for the
characterization of genetic diversity in viral strains
[38]. Deep sequencing analysis of the HBV genome
can increase our understanding of HBV diversity
and evolution, host immune responses, resistance to
treatment, and disparities in clinical outcomes [39].

Studies on HBV QS have focused on the global
description of viral spectra, including mutation fre-
quency and QS complexity and diversity [40–42].
Due to the lack of a uniform quantification unit, it is
difficult to quantitatively compare the relative abun-
dance among different samples. In this study, we
introduced the concept of OTU, which is widely
used as a unit of microbial diversity [43], for global
and local quantitative analysis of viral QS. Each
OTU represents a cluster of nucleotide sequences
that are highly similar and likely to represent one
QS. The assumption is that sequences with a high
degree of nucleotide identity belong to the same
OTU [44]. Moreover, specific variants within QS can
be recognized and extracted when the OTUs are
matched with clinical and viral profiles.

Machine learning methods have been applied to a
variety of problems in genomics and genetics [45].
Compared with previous diagnostic tools and tra-
ditional QS analysis, the novel machine learning-
assisted QS analysis has some advantages. First,
high-throughput NGS technology provides a more
detailed description of the viral QS spectra. The pre-
dictive models have a high degree of classification
accuracy (>90%) in classifying the IT and CHB phases,
no matter which machine learning algorithm was
applied. Second, this novel approach combines big
data and machine learning algorithms in a high-qual-
ity computer processing platform, significantly over-
coming the disadvantages of traditional QS analysis
methods that are labor-intensive and time-consuming.
Third, an unsupervised learning method [45] is
applied so that the input OTUs can be trained without
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any other clinical or viral information. The output
results show the clinical phenotype automatically.
Finally, the novel approach is non-invasive and prac-
tical for clinical application.

There are limitations to this approach. First, to
understand and perform the procedure, a bioinfor-
matics background is required. To overcome this
necessity, we have developed software (QAP) with a
visual interface that can process the NGS data auto-
matically [17]. Second, the raw NGS data must be
filtered to subtract background information to
improve sequence quality before QS analysis.

In summary, we have developed a novel non-inva-
sive diagnostic approach, based on machine learning-
assisted viral QS analysis, to precisely identify IT and
CHB patients and to determine the severity of liver
histopathology. A difference in the relative abundance
of viral OTUs reflects the severity of liver inflam-
mation and fibrosis. The primary results demonstrate
high sensitivity, specificity, and diagnostic efficiency
when machine learning algorithms were applied.
These results demonstrate the slight overlap between
IT and CHB patients and imply an interaction
between HBV and the host immune response, deepen-
ing our understanding of the natural history of HBV.
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