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Abstract

Accurate segmentation of retinal vessels is critical to the mechanism, diagnosis, and treat-

ment of many ocular pathologies. Due to the poor contrast and inhomogeneous background

of fundus imaging and the complex structure of retinal fundus images, this makes accurate

segmentation of blood vessels from retinal images still challenging. In this paper, we pro-

pose an effective framework for retinal vascular segmentation, which is innovative mainly in

the retinal image pre-processing stage and segmentation stage. First, we perform image

enhancement on three publicly available fundus datasets based on the multiscale retinex

with color restoration (MSRCR) method, which effectively suppresses noise and highlights

the vessel structure creating a good basis for the segmentation phase. The processed fun-

dus images are then fed into an effective Reverse Fusion Attention Residual Network

(RFARN) for training to achieve more accurate retinal vessel segmentation. In the RFARN,

we use Reverse Channel Attention Module (RCAM) and Reverse Spatial Attention Module

(RSAM) to highlight the shallow details of the channel and spatial dimensions. And RCAM

and RSAM are used to achieve effective fusion of deep local features with shallow global

features to ensure the continuity and integrity of the segmented vessels. In the experimental

results for the DRIVE, STARE and CHASE datasets, the evaluation metrics were 0.9712,

0.9822 and 0.9780 for accuracy (Acc), 0.8788, 0.8874 and 0.8352 for sensitivity (Se),

0.9803, 0.9891 and 0.9890 for specificity (Sp), area under the ROC curve(AUC) was

0.9910, 0.9952 and 0.9904, and the F1-Score was 0.8453, 0.8707 and 0.8185. In compari-

son with existing retinal image segmentation methods, e.g. UNet, R2UNet, DUNet, HAnet,

Sine-Net, FANet, etc., our method in three fundus datasets achieved better vessel segmen-

tation performance and results.

Introduction

Image segmentation is one of the most studied problems in computer vision, where the main

goal is to classify each pixel of an image into a specific class of instances [1]. In the field of med-

ical ophthalmology, the goal of segmentation is to accurately classify the blood vessels and

background pixels of a patient’s fundus image. Glaucoma, diabetic retinopathy, age-related
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macular degeneration and fundus retinopathy are all diseases in the field of ophthalmology. In

these, diabetic retinopathy is a major cause of blindnes [2]. The retinal vasculature is again the

only deep microvasculature in the blood circulation system which can be directly and non-

invasively visualized. It is extremely rich in information about its vascular characteristics [3].

More importantly, the morphological information related to the retinal vascular tree (e.g. cur-

vature, length and width of vessels) is an important basis for ophthalmologists to diagnose and

treat diseases. The main structures in a normal retinal fundus image are optic disc, macula,

blood vessels, etc., refer to Fig 1a. In contrast, the structures in a diseased fundus image are

microaneurysms, hemorrhages, exudates, cotton wool spots, etc. [4], refer to Fig 1b. In clinical

trials, the diagnosis of glaucoma is made by calculating the vertical cup-to-disc ratio (CDR)

[5]. The CDR is calculated by dividing the vertical cup diameter (VCD) by the vertical disc

diameter (VDD). The normal CDR ranges from 0.3 to 0.4, but a larger CDR is indicative of

glaucoma or other ophthalmic neurological disease, refer to Fig 1c and 1d. For the task of seg-

menting the optic disc and optic cup, it focuses on the localization of the boundaries of the

optic disc and the optic cup, which is especially critical for determining the value of the CDR.

Traditional optic disc and cup segmentation methods rely on the physician’s professional

judgment, but the current choice of using machine learning methods to jointly segment optic

discs and cups can greatly relieve the physician’s consultation pressure. For example, Jiang

et al. [6] proposed to use convolutional neural networks not only to experiment with retinal

vessels but also to further validate the effectiveness of their method by jointly segmenting the

optic disc and optic cup. However, the method is not currently applied in real life. If machine

learning and other methods are applied in the clinic, it will be a good aid for doctors to effi-

ciently segment blood vessels and optic disc visual cups for diagnosing eye diseases. By further

observation of fundus images, we can find that the retinal vessels are thin and thick and closely

connected to each other, and the low illumination of the images makes it more difficult to

observe the vascular structures. In addition, the difference between the vascular area and the

background is not obvious and the fundus image is susceptible to uneven illumination and

noise interference. All these reasons simultaneously affect the task of retinal vascular segmen-

tation. Therefore, accurate segmentation of fundus images plays an important role in the initial

screening, subsequent diagnosis, and treatment of patients’ ocular diseases. In this paper, we

focus on the retinal vessel segmentation task by a machine learning approach. In clinical appli-

cations, ophthalmologists usually manually segment the retinal vessels to extract information

about the lesion. However, manual segmentation is not only tedious and time-consuming but

also requires ophthalmologists to be skilled in avoiding errors. With recent advances in deep

learning, automatic segmentation techniques have gradually become the mainstream

Fig 1. Fundus retinal image structure. (a) is a healthy fundus image; (b) is an image of diabetic retinopathy with a large amount of hemorrhage and exudate; (c) is an

image of glaucoma with a narrower neuroretinal rim band between the optic disc and the optic cup; (d) is also a normal fundus image with a small VCD to VDD ratio.

https://doi.org/10.1371/journal.pone.0257256.g001
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technique for retinal vessel segmentation. Automatic segmentation of retinal vessels helps oph-

thalmologists to detect ocular diseases and relieves inexperienced ophthalmologists of the

stress of diagnosis, which is important for the clinical diagnosis and treatment of ocular

diseases.

In the last two decades, a large number of articles have demonstrated the rapid development

of segmentation methods for different medical images [7–10]. In the survey report [7, 8], the

researchers described in detail about the development of automatic extraction of retinal vascu-

lar studies, which provides a valuable resource for people to better study retinal vascular seg-

mentation in the future. It can be seen that the current mainstream retinal segmentation

methods are mainly with the help of computer technology. In the survey report [9], the investi-

gators review segmentation methods and techniques for optic disc and cup boundaries that

automatically and accurately calculate the geometric parameters of the optic disc and cup to

help ophthalmologists and optometrists screen for glaucomatous disease, but not to replace

their work. For the segmentation of the optic disc and the optic cup, it makes more sense to

segment them jointly as a separate segmentation task than to segment the optic disc or the

optic cup separately. In the survey report [10], the research work on semantic segmentation

methods based on deep learning is reviewed, and the survey mentions that a large number of

newly proposed semantic segmentation methods using deep learning techniques have emerged

in recent years with greatly improved performance, which also indicates their significant use-

fulness for the segmentation task. However, most methods for segmentation of retinal vessels

have over-segmentation or mis-segmentation. The main reasons for these occurrences are the

complexity of the retinal vessel structure, as well as by different scales of noise or unbalanced

illumination within the image, and low image contrast and spatial resolution. Therefore, it is

desirable to devise an effective method for the automatic segmentation of retinal vessels. Con-

ventional retinal vessel segmentation methods use default rules for vessels to specify vein

regions without reference to manually labelled labels. Traditional retinal vessel segmentation

methods include vein tracking [11], matched filtering [12], morphological characteristics [13],

multi-scale analysis [14], and model-based algorithms. These methods are also collectively

referred to as unsupervised learning methods. For example, by using B-COSFIRE filters [15],

Gabor filters [16], and Gaussian filters [17] for retinal vessel segmentation, these methods aim

to eliminate undesired intensity variations in images and suppress background structure and

noise. However, because of the simplicity of vascular feature encoding methods based on filters

and other methods, and their lack of effective supervision information will lead to the extrac-

tion of coarse vascular information and poor final image segmentation, which cannot meet the

needs of clinical applications. This largely limits the ease of application of these methods in

clinical practice. In addition to this, there are methods such as region growth algorithms, EM

algorithms with maximum entropy [18], and hybrid active contour models [19] which have

been used for the segmentation of fundus images. The unsupervised method described above

identifies target vessels by using the intrinsic association between features without training a

classifier, and the method is relatively simple to operate requiring less hardware environment

for experiments. More importantly, the poor quality of the actual fundus imaging leads to an

increased segmentation error rate and may result in undetected unlabeled fine vessels in low

contrast images.

Currently, deep convolutional neural networks (CNNs) have successfully broken the bottle-

neck of traditional hand-based feature extraction methods, in which especially Fully Convolu-

tional Network (FCN) [20], U-Net [21] and their variants are widely used in the field of

fundus image segmentation. This class of methods has the ability to capture features from

coarse to fine detail, and it has better data processing and robustness, and better segmentation

performance. These make it one of the most popular methods for current segmentation tasks.
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After the emergence of U-Net, there is an increasing number of U-Net improvement networks

for medical data segmentation, which improve the performance of vascular segmentation

from different entry points. Among them, Feng Z et al. proposed a patch-based fully convolu-

tional neural network, which improves and accelerates the training class balancing loss mainly

by local entropy sampling and skip-connected CNN structure [22]. Hu et al. proposed a multi-

scale CNN architecture with an improved cross-entropy loss function. Their final application

of fully connected conditional random fields (CRFs) to obtain segmentation results of retinal

vessels [23]. Due to the repetitive stride and pooling operations in the CNN structure, resolu-

tion is inevitably lost and the extracted pixels are difficult to refine, making it impossible to

accurately segment the target vessel pixels. In order to detect the edges of blood vessels and

fine vessel pixels more accurately, we need to design a more effective retinal vessel segmenta-

tion network model to achieve accurate segmentation of blood vessels, especially to improve

the accurate segmentation of fine vessels. Alom et al. proposed a recurrent convolutional neu-

ral network (RCNN) and a recurrent residual convolutional neural network (RRCNN) based

on U-Net. Their approach fused the U-Net, residual networks, and the ability of RCNN to rep-

resent features to achieve retinal vessel segmentation, skin cancer segmentation, and lung

lesion segmentation [24]. As the depth of the network increases, the convolutional network

parameter space increases consequently and the optimization problem becomes more difficult.

However, the network architecture designed by Alom et al. is able to train a deeper network

structure through the residual module in RCNN, which is a good approach for the network to

learn deeper features. Jin et al. proposed Deformable U-Net (DUNet) for retinal vessel seg-

mentation mainly for local features of retinal vessels [25], which introduces deformable convo-

lution in the network structure and adaptively adjusts the sensory field by the changes of

vessels that are useful for extracting effective features. Wang et al. designed a hard attention

network (HAnet) consisted of three decoders, the first one aiming to dynamically analyze the

“hard” and “easy” regions of the image, while the other two decoders were responsible for seg-

menting the “hard” and “easy” regions of the retinal vessels [26]. Atli et al. proposed a model

(Sine-Net) which applies upsampling to capture thin vascular features and then downsampling

to capture thick vascular features [27]. Wang et al. and Atli et al. used different strategies to

focus on different cases of features for the variability of vascular features, which was effective

in extracting the corresponding features, and Sine-Net performed well in the vascular segmen-

tation task especially in the specificity index. The above encoder-decoder structured network

usually encoder uses cascaded convolution to extract high level semantic representations, but

only uses skip connection to concatenate the features of encoder and decoder. This encoding-

decoding structure can enhance the recognition of vessel boundary information which is a

good choice for retinal vessel segmentation tasks. However, if the actual receptive field of the

network is insufficient it will lead to poor segmentation of fine vessels which requires us to

design a more efficient network to alleviate this problem.

All of the above methods have progressed well, but the retinal vessel segmentation method

using CNN repeatedly steps and pooling operations resulting in inevitable loss of image resolu-

tion. In addition, the fundus image itself makes the segmentation task more difficult due to the

complex structure of the fundus image which requires a high imaging environment. Fundus

images may contain different scales of noise and image illumination imbalance, as well as low

image contrast and low spatial resolution, so image preprocessing methods will be the key to

efficient training of network models. When the image acquisition conditions are dark or low

light, the presence of low contrast conditions in the image will make the image segmentation

task more difficult. In recent years, some effective image preprocessing methods have been

proposed for image segmentation tasks, such as Multiscale Retinex (MSR) and Multiscale Reti-

nex with Color Restoration (MSRCR) [28] are widely used for visual tasks, and they are both
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based on Retinex theory [29] have been proven to be effective by several studies. Ke et al. pro-

posed an Enhanced Deep Convolutional Low-light Image Enhancement Network (EDLLIE-

Net) to achieve the effect of low-light image enhancement [30], EDLLIE-Net enhances the

extraction ability of features by MSR method but does not perform preprocessing operation

on the original color image, which may still have an impact on the subsequent segmentation if

the representation of features is not enhanced from the root. Further, Liskowski and Krawiec

proposed preprocessing of magnified image slices using global contrast normalization and

zero-phase whitening [31], which preprocessed the fundus image image background to be

completely white while the vascular structures in the image became more visible in black. The

zero-phase whitening of the image removes the correlation between the feature signals, which

makes the subsequent extraction process of the overall segmentation difficult. We address the

fact that the above methods do not yet fully address the differences between different retinal

vessel segmentation methods, as well as the problems posed by poor contrast in fundus imag-

ing and different image lesion areas and large amounts of noise. In this paper, we propose an

effective framework for retinal vessel segmentation Reverse Fusion Attention Residual Net-

work (RFARN), which achieves fundus image enhancement and retinal vessel segmentation

goals. The main work in this paper is as follows:

1. We propose a multiscale retinex with color restoration (MSRCR)-based preprocessing

method for fundus retinal images, aiming to improve image quality, enhance vascular

regions, and eliminate imaging noise for better segmentation.

2. We propose a model called Reverse Fusion Attention Residual Network (RFARN) for the

automatic segmentation of retinal vessels. RFARN is used as a training network model for

the subsequent retinal vessel segmentation task, aiming to reduce the feature redundancy

between different layers of the network model and improve the quality of retinal vessel

segmentation.

3. In the Reverse Fusion Attention Residual Network (RFARN), the Reverse Channel Atten-

tion Module (RCAM) effectively captures the lost edge features and residual detail informa-

tion in the encoding stage using the reverse idea, and Reverse Spatial Attention Module

(RSAM) help to recover the underlying feature information lost during upsampling in the

encoder and decoder modules for further improving the accuracy of retinal vessel

segmentation.

The rest of this paper is organized as follows. Section II describes the MSRCR-based retinal

image preprocessing method and the new retinal vessel segmentation network in this paper.

Section III describes the details of the experimental implementation, the experimental perfor-

mance evaluation metrics, and the analysis of the ablation and comparison experiments. In

Section IV, we summarize the full text.

Methods

In this section, we describe the proposed retinal vessel segmentation method RFARN in detail.

The new retinal vessel segmentation framework is shown in Fig 2, which consists of two stages,

the first phase is retinal image preprocessing and the second phase is retinal vessel segmenta-

tion phase.

Datasets

In the retinal image pre-processing stage, this paper visualizes the results before and after pre-

processing on three fundus datasets. In the experimental part of retinal vessel segmentation,
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this paper validates our proposed method on three fundus datasets. The paper uses the digital

retinal image DRIVE [32] for vessel extraction, STARE [33] for retinal structure analysis, and

the CHASE (CHASE_DB1) [34] dataset.

The DRIVE dataset is from the Dutch Diabetic Retinopathy Screening Programme. It con-

sists of 40 retinal fundus vascular images with corresponding Ground truth images and corre-

sponding masks images. Of these, 33 images do not show any signs of diabetic retinopathy,

while the remaining 7 images show signs of mild early diabetic retinopathy. The size of each

image was 565 x 584. (http://www.isi.uu.nl/Research/Databases/DRIVE/).

The STARE dataset consists of 20 retinal fundus images with corresponding hand-labeled

images and corresponding mask images. Each image was digitized to 700 × 605. The first 10

images in the dataset are of healthy subjects, while the remaining 10 are images of abnormal

pathology with vascular overlap. (https://cecas.clemson.edu/~ahoover/stare/).

The CHASE dataset consists of the left and right retinal images of 14 students and the corre-

sponding Ground truth images and the corresponding mask images. Each image has a resolu-

tion of 1280 × 960. Compared to DRIVE and STARE, the images in the CHASE dataset suffer

from uneven background illumination, poor contrast of blood vessels, and extensive arterial

narrowing. (https://blogs.kingston.ac.uk/retinal/chasedb1/).

Pre-processing methods for retinal images

The diagnosis of ophthalmic diseases requires high-quality fundus images, but the existing

fundus imaging is constrained by the imaging environment and imaging equipment, which

results in poor quality fundus images and images with low brightness, low contrast and high

noise. At the same time, these factors directly create challenges for pathological analysis of fun-

dus images, which may cause analytical errors in severe cases. Therefore, it is essential to

improve the visualization of fundus images and to enhance the readability of information and

the variability of features in order to obtain more accurate information about the characteris-

tics of blood vessels for pathological analysis. Image enhancement techniques based on Histo-

gram Equalization (HE) [35] are commonly used by researchers, but using balanced

histograms to improve the contrast of an image can result in a reduction in the gray level of

the image, which in turn results in a loss of image details. To compensate for the shortcomings

Fig 2. Structure of the proposed retinal vessel segmentation RFARN framework. A is the retinal image pre-processing stage. B is the retinal vessel segmentation

stage using the inverse fusion attention residual network.

https://doi.org/10.1371/journal.pone.0257256.g002
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of HE, Reza proposed the Contrast Limited Adaptive Histogram Equalization (CLAHE) algo-

rithm [36], which largely improves the contrast of images, but the method amplifies back-

ground noise and may treat the focal part as a background region, and is not effective in

enhancing images with more concentrated gray levels. Therefore, the histogram-based image

enhancement method cannot achieve the practical application effect. For the above methods,

on the one hand, there is the inability to enhance the overall information of the optic nerve

disc, the fundus vessels, and the lesions in the fundus image. On the other hand, most methods

directly process color fundus images into grayscale images, which is hardly a real effect of

image fidelity. In contrast, the Multiscale Retinex with Color Restoration (MSRCR) image

enhancement method based on Retinex theory has been extensively tested on several test

scenes and more than one hundred images on multiscale retinas, and solves the grayscale level

at the cost of moderate dilution of color consistency defects of the images [28]. Therefore, in

this paper, we propose the Multiscale Retinex with Color Restoration (MSRCR) based image

preprocessing method, where the fundus images are properly preprocessed so that the network

model can learn the information of image features more effectively. The results of pre-process-

ing the DRIVE, STARE and CHASE dataset images are shown in Fig 3. The specific imple-

mentation of the retinal image pre-processing method is shown below.

Images are primarily formed by the interaction of incident light and reflected light from an

object. Land believes that the color of an object is determined by the object’s ability to reflect

long-wave (red), medium-wave (green) and short-wave (blue) light, independent of the inci-

dent component [29]. Therefore, the first step of preprocessing is to estimate and remove or

reduce the incident component of the original color fundus image by MSRCR method, so as to

obtain the reflective component that reflects the essential information of the image and achieve

the purpose of image enhancement. Assume that the fundus image P is divided into a reflective

Fig 3. The results of the pre-processing of the retinal images. The first row shows the DRIVE dataset, the second row shows the STARE dataset and the third row

shows the CHASE dataset. (a) is the original image of each dataset, (b) is the corresponding Ground truth, (c) is the enhanced retinal image based on the MSRCR

method, (d) is the retinal images enhanced by the CLAHE method, (e) is the enhanced G-channel greyscale image, (f) is the enhanced R-channel greyscale image, and

(g) is the enhanced B-channel greyscale image.

https://doi.org/10.1371/journal.pone.0257256.g003
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component R and an incident component I, as shown in Eq (1):

Piðx; yÞ ¼ Riðx; yÞ � Iiðx; yÞ; ð1Þ

Where Pi(x, y) is the distribution of the fundus image in the i-th spectral band, Ri(x, y) is the

reflectance component of the Retinex output. The effect due to illumination factors is attenu-

ated by separating the incident component I in the fundus image P. Therefore, the logarithmic

domain processing of Eq (1) achieves the purpose of removing the incident component and

enhancing the image detail information. As shown in Eq (2):

Riðx; yÞ ¼ log Piðx; yÞ � log ðFðx; yÞ � Piðx; yÞÞ; ð2Þ

Where F(x, y) is a Gaussian surround function. The smaller the value the greater the range of

pixel value intensity compression and the more prominent the detail of the image. The larger

its value the better the overall effect of the image, the more natural the image color, but the less

clear the local detail. To achieve a balance between the local detail information, the color fidel-

ity performance, and the pixel value compression range properties of the image. Firstly, Ri(x,

y) at different scales are weighted and averaged to find the sum. Then, the gray-level image is

obtained by using the proportional relationship between each channel of the color image,

which not only ensures the color information of the fundus image, but also reduces the noise

of the image to highlight the detail information. As shown in Eq (3):

RMSRCRiðx; yÞ ¼ Ciðx; yÞ �
XM

m¼1

WmRiðx; yÞ; ð3Þ

where Ci(x, y) is the color restoration function,Wm is the weighting factor for the different

scales,M is the number of scales.

The first step in pre-processing has yielded an overall enhancement of the fundus image.

Next, we need to focus on the most important vascular structures in the fundus image.

Inspired by the fact that single-channel grey-scale images show the contrast between the blood

vessels and the background better than RGB images [25]. So the second step of preprocessing

converts the RGB fundus image processed by the MSRCR method into a single-channel grey-

scale image [37]. The conversion is as in Eq (4):

Igray ¼ 0:299� Rþ 0:587� Gþ 0:114� B; ð4Þ

where R, G, B denote the red, green and blue channels respectively. According to the formula,

it can be seen that the R channel accounts for 29.9% of the converted grey-scale image, the G
channel accounts for 58.7% and the B channel accounts for 11.4%. By decomposing the RGB

color fundus image into monochrome images of the red, green, and blue channels, it can be

seen that a large number of high luminance set pixels in the R channel are concentrated

around the optic disc. This results in more blurring of the blood vessels around the optic disc,

while the G channel pixels are less luminous. However, the pixels around the optic disc in the

G channel image are clearer, which is important for the model to learn the relevant features of

the blood vessels. Further analysis of the R, G and B channel images shows that the R and B
channel images have a lot of noise and low contrast, while the G channel images have a high

degree of differentiation between the blood vessels and the background. So we used the G
channel as a base and incorporated the R and B channels into the G channel proportionally.

This retains some of the feature information of the R and B channels while making maximum

use of the information of the G channel. Finally, the grey-scale image of the G channel is fed

into the network.
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To aid the training of the retinal vessel segmentation network, we normalized the retinal

images to improve the convergence speed of the network [38]. Therefore, the third step of pre-

processing is to normalize the retinal images to the data. First, we used the Z-score normaliza-

tion method [39] to dimensionally normalize the dataset, i.e., each dimension of the fundus

dataset I was set to have zero mean and unit variance. The Z-score normalization transforma-

tion was as in Eq (5):

Inorm ¼
I � m
s

; I 2 I1; I2; . . . ; In ð5Þ

where I 2 [I1, I2, . . ., In] denotes the fundus datasets, μ is the mean of I, and σ is the standard

deviation of I. Since there are positive and negative values of I after normalization, and the

mean of I is 0, the variance is 1. Therefore, we mapped the values of the fundus image data I to

the range 0-255 by Min-Max normalization as in Eq (6):

ij ¼
ij � i

j
min

ijmax � ijmin
� 255; ð6Þ

where ij 2 Inorm, i 2 [1, 2, . . ., n]. The above steps are the specific fundus retinal image pre-pro-

cessing process.

Reverse fusion attention residual network for retinal vessel segmentation

This section describes in detail the Reverse Fusion Attention Residual Network (RFARN) pro-

posed in this paper for retinal vessel segmentation. RFARN is mainly composed of residual

encoder module, reverse channel attention module (RCAM), decoder module, and reverse

spatial attention module (RSAM). RFARN uses side inputs to construct image pyramids,

which fuse different levels of image features to improve the extraction of network feature infor-

mation. Specifically, the side inputs of RFARN are divided into four branches, each with image

sizes of 48 × 48, 24 × 24, 12 × 12, and 6 × 6 pixels, respectively. The specific RFARN network

structure is shown in Fig 4.

Residual encoder module. The introduction of Residual Learning and Identity Mapping

by Shortcuts in the network structure makes the deep network easier to optimize and does not

produce higher training error rates, and even reduces the segmentation error rate [40]. We

improve the encoder module by referring to the residual module in Residual Network, but

using the residual module to convolve first and then pool, which causes the loss of semantic

information in the image by continuous subsampling and a single convolution kernel size can-

not accurately capture the thin and thick vascular features. This problem can be alleviated by

atrous convolution [41], which allows a large range of features to be extracted while increasing

the perceptual field and preserving the information lost by pooling. The residual encoder in

RFARN consists of four main encoders based on the residual module. The output features

from each side input are fed sequentially to the encoder module, where they are passed sequen-

tially through a 3 × 3 convolution and an atrous convolution layer with an expansion ratio of

2. The original inputs are then summed by the residual connections to accelerate the conver-

gence of the network and avoid gradient disappearance. At the same time, it filters the back-

ground noise of the low-resolution feature mapping and highlights important regions in the

fundus image. Finally, the output of the features from the residual encoder is subjected to a

maximum pooling operation to expand the perceptual field for better extraction of global fea-

tures, and the pooled features are sent to the next level of the residual encoder. The structure

of the residual encoder is shown in Fig 5.
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Reverse channel attention module. In the encoding stage, we use atrous convolution to

achieve the purpose of expanding the field of perception and capturing more global features.

As each downsampling operation results in a loss of edge information of the retinal vessels. In

addition, the texture features in the image describe the spatial color distribution and light

intensity distribution of small regions of the image. In order to restore as much detailed

Fig 4. RFARN network structure.

https://doi.org/10.1371/journal.pone.0257256.g004

Fig 5. Residual encoder structure.

https://doi.org/10.1371/journal.pone.0257256.g005
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information as possible, most researchers will take to directly collocate the features of each

encoder layer with those of the decoder. However, the vascular features extracted from the

shallow encoder module not only contain the edges of the vessels but also retain the texture

features of the fundus retinal image. If the loss of these feature information has an impact on

the robustness of the higher-level features, it further affects the recovery of the decoder module

features [42]. In RFARN, we fuse shallow and deep features by the reverse attention idea [43]

as a way to obtain the blood vessel boundary regions in the shallow features and highlight the

obscure blood vessel features in the image. For texture information in the image, the interde-

pendent texture features are enhanced and the responsiveness of feature semantics is improved

by exploiting the dependencies between different channels [44]. For this purpose, we designed

a Reverse Channel Attention Module (RCAM), whose structure is shown in Fig 6. It utilizes

the reversal mechanism and the dependencies between different channels to enhance the inter-

dependencies between channel features and improve the feature representation of the feature

semantics.

RCAM starts from the feature map generated at the bottom of the RFARN model, which is

low resolution but has deep semantic information, so RCAM is used to help the network sup-

press the currently prominent feature regions to enhance the edges and details in the deep fea-

tures. First, the feature map C ×H ×W is converted to 1 ×H ×W by a 1 × 1 convolution layer,

followed by a deconvolution kernel of 2 × 2 with a stride of 2 to resize the feature map to 1 ×
H0 ×W0. Then the predicted value generated by the deep feature map 1 ×H0 ×W0 is subtracted

by 1, so that the high-resolution and complete blood vessel edge regions and details can be

obtained, which is implemented as shown in Eq (7):

Rn� 1 ¼ 1 � sigmoidð�Þ ¼ 1 �
1

1þ e� �
; ð7Þ

where n denotes the feature generated at the nth residual encoder module, Rn−1 denotes the

corresponding weight of the (n-1)th residual encoder module. The edge features of the n-1th

layer of the residual encoder are obtained by pixel dot product, and the operation is shown in

Eq (8):

R̂ n� 1 ¼ Rn� 1 � Bn� 1; ð8Þ

Fig 6. Reverse channel attention module structure.

https://doi.org/10.1371/journal.pone.0257256.g006
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where R̂n� 1 denotes the edge feature of the n-1th layer of the residual encoder,� denotes the

pixel point multiplication, and Bn−1 denotes the feature of the (n-1)th layer of the residual

encoder. To make the network focus on the edge features of each channel, we input the edge

features B̂ 2 RC0�H0�W0 into the channel attention. The edge features are reshaped into average

pooling features B̂Avg 2 RN�C
0

and maximum pooling features B̂Max 2 RN�C
0

by average pooling

operation and maximum pooling operation. Since the two types of pooling operations are per-

formed on the semantic information of the same channel features. Therefore, we use a fully

connected layer to multiply the transpose of the average pooled feature with the maximum

pooled feature, and afterwards reshape the attentional feature map CB 2 RC
0×1×1 that obtains

stronger channel correlation strength. This is done as shown in Eq (9):

CBði; jÞ ¼
expðB̂Avgði;1;1Þ � B̂Maxðj;1;1ÞÞ

PC
i¼1
expðB̂Avgði;1;1Þ � B̂Maxðj;1;1ÞÞ

; ð9Þ

where� denotes pixel point multiplication, CB(i, j) denotes the similarity between the i-th

channel and the j-th channel, C denotes the channel element, B̂Avgði;1;1Þ and B̂Maxðj;1;1Þ denote the

average pooled feature and the maximum pooled feature respectively. After that, the reshaped

channel feature map CB is activated by sigmoid and the optimal channel attention matrix AB is

obtained by the parametric learning function, and then the channel attention matrix AB is

multiplied with the edge features as the final output of channel attention. As shown in Eq (10):

CAB ¼ AB � B̂ ¼ rðdðCBÞÞ � B̂; ð10Þ

Where CAB represents the final channel attention output, AB represents the optimal channel

attention matrix, B̂ represents the edge features, ρ represents the parametric learning function,

δ represents the sigmoid function, CB represents the reshaped channel features, and� repre-

sents the pixel point multiplication. Finally, the channel feature map CB and edge feature B̂ are

matrix multiplied and then summed pixel by pixel with the output feature map B of the resid-

ual encoder module. In this way, RCAM obtains the final output feature map C0 ×H0 ×W0.

Such an operation not only emphasizes the feature mapping associated with the class but also

gives a strong global correlation for each channel, which helps to improve the discriminability

of the features.

Decoder module. During decoding, each decoding stage uses a deconvolution kernel of

2 × 2 with a stride of 2 to recover the feature size, followed by two serial 3 × 3 convolutions to

extract the features, and finally ReLU activation is used. To aid the decoding process, the fea-

ture maps generated by the reverse channel attention module and the underlying feature maps

are stitched together by using skip connections to capture the fine feature information retained

in the residual encoder module. In addition, considering the variability in the feature distribu-

tion of fundus vascular images in different layers of the network, we send the output of the

decoder to the proposed reverse spatial attention module to highlight the local vascular regions

of the decoding module output feature maps. The decoder structure is shown in Fig 7.

Reverse spatial attention module. Inspired by stacking multiple network models to

achieve a horizontal increase in the depth of the network and direct delivery of predicted

images to sub-network models for deblurring [45]. We propose to embed the reverse spatial

attention modes between different decoding layers to further improve the performance of net-

work recovery features. Firstly, the output of the features from the residual encoder and

decoder are used as input to the RSAM. This provides more granular feature information for

the current decoding stage to recover the retinal image. Secondly, as the features which are

attended to usually come from a lower level, the decision to pay attention is made by the
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features from a higher level. This means that we need to pay attention to the feature informa-

tion from the different encoder layers and eventually pass all useful features to the decoder

module. Thus, we focus on spatial features between different layers of encoders and decoders

employing a cross-layer approach based on the idea of spatial attention. Compared with the

simple transfer of the output of the upper level and the addition of the features of the same

level, RSAM facilitates the propagation of feature information cross-layer and cross-level. The

RSAM structure is shown in Fig 8.

RSAM differs from RCAM in that RCAM emphasizes focusing on the less prominent detail

regions in the feature map, while RSAM is targeted at the local features of the current retinal

image to achieve better segmentation results. First, RSAM takes the previous stage encoded

feature map C ×H ×W and generates a residual feature 10 ×H0 ×W0 of the same size as the

next stage decoded feature map by an upsampling operation. And the corresponding stage

decoder output features and the residual features are simultaneously used as the input to

RSAM. Next, the decoder feature map C0 ×H0 ×W0 is fed into two parallel branching opera-

tions to extract local features of the feature map using the idea of spatial attention [44], which

generates the corresponding attention-guided features. The first branch uses a 1 × 1 convolu-

tion and a convolution kernel of 2 × 2 whose stride is 2 to deconvolute the residual features

with the features of the previous decoder for element-by-element summation, and the reverse

use of the bottom features is for better fusion with the top-level features. In addition, pixel

attention masks are generated by using 1 × 1 convolution and sigmoid activation, so that

stronger semantic information is extracted for the higher-level features. These masks are

Fig 7. Decoder structure.

https://doi.org/10.1371/journal.pone.0257256.g007

Fig 8. Reverse spatial attention module structure.

https://doi.org/10.1371/journal.pone.0257256.g008
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multiplied with the decoder feature map C0 ×H0 ×W0 after 1 × 1 convolution are used to

rescale the high-level local featuresH0 ×W0 as a way to capture the spatial dependence between

any two positions of the feature map. This is done as shown in Eq (11):

SBðx; yÞ ¼
expðRx � DyÞ

PN
x¼1
expðRx � DyÞ

; ð11Þ

where SB(x, y) denotes the similarity between the x-th channel and the y-th location, Rx
denotes the inverse pixel feature generated after 1 × 1 convolution and sigmoid activation, and

Dx denotes the decoder feature after 1 × 1 convolution. Finally, the new attention-enhanced

features SB are summed with the decoder feature map C0 ×H0 ×W0 and passed to the decoder

module at the next stage. The attention features generated by RSAM suppress the features that

are less informative in the current phase, and it allows only valid features to be passed to the

next decoding phase, which helps to improve the segmentation performance of the network.

Ablation experiments

This section details the implementation of the method proposed in this paper for the retinal

vessel segmentation task on the DRIVE, STARE and CHASE datasets. It also discusses the

analysis of experimental results and visualization results of retinal vessel segmentation.

Implementation details

The RFARN proposed in this paper is based on the deep learning open source framework

Pytorch [46], Linux operating system, Intel(R) Xeon(R) Gold 5218 2.30GHz CPU, and Quar-

dro RTX 6000 24G GPU with 187G of running memory. The programming language used to

build the network model is Python 3.7, and the main library packages used are Pytorch 1.4,

OpenCV 4.1.2, Numpy 1.18.1, etc. In the training phase, gradient descent was performed

using the Adam [47] optimiser with parameters set by default to β1 = 0.9, β2 = 0.999 and � =

1e-8. The learning rate was attenuated by Plateau’s method [48], with learning rate lr initialized

to 0.001 and weight attenuation coefficient of 0.0005. To prevent the risk of overfitting and to

improve model performance, this paper adopts random dynamic extraction of small batches

of patches to train the network. RFARN randomly extracted image patches of size 48 × 48 on

the DRIVE, STARE and CHASE datasets with a batch initialization of 32 and a training period

of 200. The probability threshold in the three standard data sets was set to 0.49. The RFARN

model uses a cross-entropy loss function. The definition is given in Eq (12):

Lðpi; qiÞ ¼ �
1

n

X

i

½pi log qi þ ð1 � piÞ � log ð1 � qiÞ� ð12Þ

Where pi denotes the true label and qi denotes the predicted image.

In this paper, DRIVE, STARE and CHASE fundus image datasets are used for experiments.

For the DRIVE dataset, 20 images were used for training and 20 images were used for testing.

For the CHASE dataset, 20 images are used for training and 8 images are used for testing [49].

For the STARE dataset, the “leave-one-out” method was used for training [25, 50, 51] since

there were only 20 images in total and there was no division between the training and testing

sets. Nineteen images were selected as the training set and the remaining one image was used

for testing. The process was repeated by changing the test images until all images in the dataset

were used for testing once.
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In the test phase, each test image of each dataset is sequentially extracted with image patches

in a sliding window with a sliding step of 5 pixels, and the part of the sliding window beyond

the image is filled with zeros.

Performance evaluation indicators

To evaluate the effectiveness of this method and other existing methods for retinal vessel seg-

mentation, we used five commonly used metrics to objectively assess the segmentation perfor-

mance of retinal vessels, including Accuracy, Sensitivity, Specificity, ROC curve area, and

F1score, each calculated as in Eqs (13)–(18):

Accuracy ¼
TPþ TN

TP þ FPþ TN þ FN
ð13Þ

Sesitivity ¼
TP

TPþ FN
ð14Þ

Specificity ¼
TN

TN þ FP
ð15Þ

Precision ¼
TP

TP þ FP
ð16Þ

Recall ¼
TP

TP þ FN
ð17Þ

F1score ¼ 2�
Precision� Recall
Precisionþ Recall

ð18Þ

Where TP is the number of vascular pixels correctly segmented, FP is the number of vascular

pixels incorrectly segmented as background pixels, TN is the number of background pixels

correctly segmented and FN is the number of background pixels incorrectly segmented as vas-

cular pixels.

Evaluating performance before and after image enhancement and model

improvement

We experimentally validated the effectiveness of the retinal image pre-processing method

MSRCR and the Reverse Channel Attention Module (RCAM) and Reverse Spatial Attention

Module (RSAM) in the Retinal Vessel Segmentation Network RFARN proposed in this paper.

Under the same experimental environment settings, this paper uses ResUNet as the baseline

network, and conducts retinal vessel segmentation experiments in the DRIVE, STARE and

CHASE datasets. For the implementation details of the experiment, the effectiveness of each

module in RFARN is verified by ablation experiments. For the implementation details of the

experiment, the effectiveness of each module in RFARN is verified by ablation experiments.

Specifically, the ablation experiments in this paper were conducted based on ResUNet sequen-

tially fusing the residual encoder module, the multi-scale Retinex color recovery based retinal

image preprocessing method, the Reverse Channel Attention Module (RCAM), and the

Reverse Spatial Attention Module (RSAM). The experimental results for the model variations

of the DRIVE, STARE and CHASE datasets are shown in Tables 1–4. In the table, ResUNet

denotes UNet with side input section and residual encoder module, MSRCR denotes
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multiscale retinex with color restoration based preprocessing method for retinal images,

RCAM denotes reverse channel attention module, RSAM denotes the reverse spatial attention

module, and RFARN denotes Reverse Fusion Attention Residual Network using MSRCR reti-

nal image preprocessing method. The data in the table are in the format of mean/standard

deviation.

Table 1 shows the results of the self-comparison experiments of the models on the DRIVE

dataset. The bolded data in the table indicate the maximum values of the same evaluation met-

rics for different network models. First, this paper demonstrates the enhancement effect of the

MSRCR method on the retinal images of DRIVE, STARE and CHASE datasets from theoreti-

cal and visualization perspectives in the retinal image preprocessing section. From Fig 3, it can

Table 1. Comparison of experimental results for DRIVE dataset model improvement.

Methods Acc Se Sp AUC F1

ResUNet 0.9650/0.0040 0.7947/0.0655 0.9717/0.0034 0.9842/0.0040 0.8023/0.0332

ResUNet +MSRCR 0.9697/0.0029 0.8707/0.0498 0.9784/0.0035 0.9903/0.0032 0.8284/0.0164

ResUNet +MSRCR + RCAM 0.9700/0.0032 0.8782/0.0517 0.9790/0.0034 0.9903/0.0031 0.8395/0.0184

ResUNet +MSRCR + RSAM 0.9703/0.0030 0.8745/0.0518 0.9797/0.0035 0.9904/0.0031 0.8403/0.0179

RFARN(ours) 0.9712 / 0.0029 0.8788 / 0.0498 0.9803 / 0.0034 0.9910 / 0.0030 0.8453 / 0.0163

https://doi.org/10.1371/journal.pone.0257256.t001

Table 4. Comparison of experimental results for CHASE dataset model improvement.

Methods Acc Se Sp AUC F1

ResUNet 0.9723/0.0040 0.8036/0.0577 0.9839/0.0029 0.9848/0.0040 0.7943/0.0248

ResUNet +MSRCR 0.9775/0.0038 0.8259/0.0354 0.9889/0.0021 0.9903/0.0027 0.8049/0.0194

ResUNet +MSRCR + RCAM 0.9774/0.0036 0.8243/0.0392 0.9888/0.0020 0.9905 / 0.0027 0.8146/0.0184

ResUNet +MSRCR + RSAM 0.9772/0.0037 0.8309/0.0363 0.9883/0.0022 0.9904/0.0026 0.8159/0.0193

RFARN(ours) 0.9780 / 0.0035 0.8352 / 0.0342 0.9890 / 0.0020 0.9904/0.0027 0.8185 / 0.0178

https://doi.org/10.1371/journal.pone.0257256.t004

Table 2. Comparison of experimental results of DRIVE dataset pre-processing.

Methods Acc Se Sp AUC F1

ResUNet + CLAHE 0.9683 0.8081 0.9836 0.9839 0.8168

ResUNet +MSRCR 0.9697 0.8707 0.9784 0.9903 0.8284

Khan(GLM) 0.9600 0.7470 0.9800 0.9658 -

Khawaja(CLAHE) 0.9561 0.8027 0.9733 - -

Khawaja(GLM) 0.9603 0.7907 0.9790 - -

RFARN(MSRCR) 0.9712 0.8788 0.9803 0.9910 0.8453

https://doi.org/10.1371/journal.pone.0257256.t002

Table 3. Comparison of experimental results for STARE dataset model improvement.

Methods Acc Se Sp AUC F1

ResUNet 0.9774/0.0033 0.8193/0.1040 0.9831/0.0045 0.9732/0.0057 0.8232/0.0358

ResUNet +MSRCR 0.9788/0.0027 0.8479/0.0474 0.9828/0.0032 0.9864/0.0040 0.8386/0.0228

ResUNet +MSRCR + RCAM 0.9791/0.0035 0.8467/0.0443 0.9886/0.0043 0.9936/0.0015 0.8577/0.0263

ResUNet +MSRCR + RSAM 0.9795/0.0042 0.8514/0.0362 0.9866/0.0040 0.9942/0.0043 0.8687/0.0262

RFARN(ours) 0.9822 / 0.0031 0.8874 / 0.0267 0.9891 / 0.0023 0.9952 / 0.0009 0.8707 / 0.0264

https://doi.org/10.1371/journal.pone.0257256.t003
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be observed that the enhanced retinal images of the three datasets images have higher contrast

than the original images in terms of blood vessels, noise, and background areas. Observing the

smaller blood vessels in the original images, we can find that the proposed preprocessing

method successfully enhances their structural features, which can bring significant help to the

subsequent segmentation. To further verify the effectiveness of the MSRCR retinal image pre-

processing method for vessel segmentation, retinal vessel segmentation experiments were con-

ducted for the ResUNet model and the MSRCR retinal image preprocessing method-based

ResUNet model, respectively. From the experimental results in the first and second rows of

Table 1, it can be seen that when the MSRCR retinal image preprocessing method is added to

the model, the results of all indexes are significantly higher than those of the baseline model, in

which the F1score is increased by 2.61% and the sensitivity is increased by 7.6% which also indi-

cates that the MSRCR retinal image preprocessing method can help the network model to

extract the blood vessels which are not captured by ResUNet. From the experimental results,

adding the MSRCR preprocessing method improved the sensitivity of the network to the vas-

cular region. After that, to verify the ability of the reverse channel attention module RCAM

and the reverse spatial attention module RSAM to capture the boundary and local features of

fine vessels of retinal images, we embed the RCAM and RSAM modules respectively based on

the ResUNet method of MSRCR retinal image preprocessing method for experiments, as

shown in the third and fourth rows of Table 1. From the experimental data in the table, it can

be seen that the models incorporating RCAM and RSAM have higher accuracy and F1score

than the baseline model ResUNet, respectively. From the experimental results, the network

incorporating RCAM and RSAM modules can learn features better. RCAM enables the net-

work to fuse the vascular edge features valid in the encoder stage with those in the decoder

stage, which alleviates the problem of loss of vascular information due to continuous down-

sampling. In addition, the RSAM module can effectively improve the recovery of local vascular

features during upsampling in the decoding stage. Finally, the RCAM and RSAM modules

were added together to the ResUNet model with the MSRCR retinal image preprocessing

method. Comparing the experimental results of RFARN with the baseline model ResUNet, it

was found that the former showed a significant improvement in F1score and sensitivity, includ-

ing a 4.3% increase in F1score, 8.41% increase in sensitivity, 0.86% increase in specificity, 0.68%

increase in AUC, and 0.62% increase in accuracy.

To validate the retinal image preprocessing method MSRCR proposed in this paper, we

compared the segmentation performance with the CLAHE-based preprocessing method

experimentally on the DRIVE dataset. In addition to this, we further compare with the Gener-

alized Linear Model (GLM) based retinal vessel segmentation method, where GLM regression

is mainly used for non-uniform contrast enhancement. Among them, Khan et al. proposed to

use the results of nonuniform contrast enhancement by Generalized Linear Model (GLM) as

input [52], and then enhance the vessel features by Frangi filter. Finally, they apply post-pro-

cessing is applied to eliminate unconnected pixels, which provides quality assurance for the

final obtained binary image. Khawaja et al. experimented their proposed segmentation method

on two preprocessing models, i.e., on both CLAHE and GLM preprocessing methods yielding

competitive results [53]. The specific experimental results are shown in Table 2. We can see by

the experimental results in the first and second rows that MSRCR performs somewhat better

than CLAHE in all metrics. Comparing the results of RFARN, Khan (GLM) and Khawaja

(GLM), the segmentation performance of RFARN has improved significantly in terms of sen-

sitivity metrics. In order to compare with GLM, which is currently an advanced preprocessing

method, we show the difference between the MSRCR-based method and the GLM-based seg-

mentation method on the DRIVE and STARE datasets by visualization in Figs 9 and 10. The
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red box in the figure shows that the GLM-based segmentation method suffers from incomplete

segmentation and segmentation breakage.

Table 3 shows the comparison experimental results of each module combination on the

STARE dataset. On the STARE dataset, RFARN has a good preprocessing method as the foun-

dation, which makes the final segmentation results closer to the real labels. The network with

the addition of RCAM and RSAM modules strengthens the response between the vascular

Fig 9. Visualization of segmentation results after different pre-processing in DRIVE dataset. (a) column shows the

original image, (b) Ground Truth, (c) column shows the segmentation result based on GLM, and (d) column shows

the segmentation result based on MSRCR.

https://doi.org/10.1371/journal.pone.0257256.g009

Fig 10. Visualization of segmentation results after different pre-processing in STARE dataset. (a) column shows the original image, (b) Ground

Truth, (c) column shows the segmentation result based on GLM, and (d) column shows the segmentation result based on MSRCR.

https://doi.org/10.1371/journal.pone.0257256.g010
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features of retinal images, which also helps RFARN to have a stronger learning ability. Com-

pared with the baseline network ResUNet, RFARN has improved all metrics, especially the

sensitivity has improved by 6.81% and the F1score has improved by 4.75%. Among them, the

improvement of sensitivity also indicates the increasing responsiveness of RFARN to blood

vessels.

Table 4 shows the results of the comparison experiments on the CHASE dataset for each

combination of modules. On the CHASE dataset, the difficulty of segmentation is greatly

increased by the non-uniform background illumination and low contrast of the blood vessels

in the CHASE original images. Therefore, RFARN using MSRCR method to enhance the origi-

nal image of CHASE can not only alleviate the large arterial stenosis and low contrast in the

image but also create a good prerequisite for vessel segmentation. From the experimental

results in Table 4, it can be seen that the MSRCR retinal image preprocessing method based on

the ResUNet model has better experimental results than the baseline model ResUNet. The

detailed features in vascular images cannot be captured by pre-processing methods, so the

channel response between features is enhanced by RCAM and the spatial association between

features is enhanced by RSAM, which makes the network significantly more sensitive to fea-

tures. From the table, we can find that RFARN gives better segmentation results than the single

introduction of RCAM or RSAM. Compared with the baseline network ResUNet, the sensitiv-

ity of RFARN is improved by 3.16% and the F1score is improved by 2.42%. The comparison of

the experimental results from RFARN with the model introducing RCAM or RSAM reveals

that RFARN has better segmentation results, which further indicates the effectiveness of the

RFARN method for retinal vessel segmentation.

In this paper, we not only perform ablation experiments on different datasets but also visu-

alize the retinal vessel segmentation results of these ablation experiments to illustrate the

advantages of RFARN by visualizing the comparison of vessel segmentation. Figs 11–13 show

the visualization results of retinal vessel segmentation for each ablation experiment model on

the DRIVE, STARE and CHASE datasets. As can be seen from the partially enlarged area in

the figure, RFARN shows better segmentation results than the other ablation experiments. In

more detail, the ResUNet+MSRCR model shows better segmentation results for the retinal

images as a whole, with a significant improvement in vascular continuity. In addition, RFARN

has a much better recovery of lost fine vessels and the entire segmented target region than

ResUNet’s segmentation visualization. When the RCAM or RSAM module is introduced

alone, it can be seen from the red box of the figure that the model handles the connection

between the main and terminal vessels better, which indicates that the RCAM or RSAM mod-

ule can achieve enhanced response to the vascular features of the retinal images. With the

inclusion of both the RCAM and RSAM modules, RFARN’s vascular segmentation results are

closer to the true labels. Importantly, RFARN has a restorative effect on breaks in fine vessels

and is more sensitive to fine vessels. This allows the network to retain more details of the blood

vessels when extracting features.

In order to compare the results of the different models in the DRIVE, STARE and CHASE

datasets, we have visualized the ROC (Receiver Operating Characteristic) plots and PR (Preci-

sion Recall) plots of the above five models. These are shown in Fig 14. The larger the value of

AUC, the more efficient the model and algorithm. The experimental results show that RFARN

has higher AUC values than the other models for both ROC and PR. The AUC values for ROC

on the DRIVE, STARE and CHASE datasets were 0.9910, 0.9952 and 0.9904, respectively, and

the AUC values for PR were 0.8414, 0.9158 and 0.8990, respectively. When comparing the

plots of RFARN with other models, it was found that the plots of RFARN were all increasing at

a positive rate, which further indicated that RFARN outperformed other models in retinal ves-

sel segmentation and was more powerful in preserving retinal image details.
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Discussion

In recent years, many network models have achieved good segmentation results in retinal ves-

sel segmentation tasks. The RFARN model proposed in this paper is paved with good pre-pro-

cessing methods and the improved attention module has also greatly improved the network’s

ability to extract vascular features. To demonstrate the effectiveness of RFARN in the vascular

segmentation task, quantitative comparisons of accuracy, sensitivity, specificity, and F1score

results are performed on the DRIVE, STARE and CHASE datasets with some state-of-the-art

unsupervised and supervised methods. At the same time, the retinal vessel segmentation

results of the different unsupervised and supervised methods were visually compared with the

retinal vessel segmentation results of the methods in this paper by visualization. Table 5 shows

the evaluation metrics for the different retinal vessel segmentation results on the DRIVE data-

set. Figs 15 and 16 show the visual comparison of unsupervised and supervised retinal vessel

segmentation results on the DRIVE dataset, respectively. Table 6 shows the evaluation metrics

for the different retinal vessel segmentation results on the STARE dataset. Figs 17 and 18 show

a visual comparison of unsupervised and supervised retinal vessel segmentation results on the

STARE dataset, respectively. Table 7 shows the metrics for the evaluation of different retinal

vessel segmentation results on the CHASE dataset. Figs 19 and 20 show a visual comparison of

unsupervised and supervised retinal vessel segmentation results on the CHASE dataset,

Fig 11. Visualization of segmentation results of different models for random samples on DRIVE dataset. The first column is the original image, the second

column is Ground Truth, a column is the ResUNet model, b column is the ResUNet+MSRCR model, c column is the ResUNet+MSRCR+RCAM model, d column is

the ResUNet+MSRCR+RSAM model, and e column is the RFARN model.

https://doi.org/10.1371/journal.pone.0257256.g011
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Fig 13. Visualization of segmentation results of different models for random samples on CHASE dataset. The first column is the original image, the second

column is Ground Truth, a column is the ResUNet model, b column is the ResUNet+MSRCR model, c column is the ResUNet+MSRCR+RCAM model, d column is

the ResUNet+MSRCR+RSAM model, and e column is the RFARN model.

https://doi.org/10.1371/journal.pone.0257256.g013

Fig 12. Visualization of segmentation results of different models for random samples on STARE dataset. The first column is the original image, the second

column is Ground Truth, a column is the ResUNet model, b column is the ResUNet+MSRCR model, c column is the ResUNet+MSRCR+RCAM model, d column is

the ResUNet+MSRCR+RSAM model, and e column is the RFARN model.

https://doi.org/10.1371/journal.pone.0257256.g012
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Fig 14. ROC and PR curves for different retinal datasets. (a) ROC curve and PR plot for each model in the DRIVE dataset; (b) ROC curve and

PR plot for each model in the STARE dataset; (c) ROC curve and PR plot for each model in the CHASE dataset.

https://doi.org/10.1371/journal.pone.0257256.g014

PLOS ONE RFARN

PLOS ONE | https://doi.org/10.1371/journal.pone.0257256 December 3, 2021 22 / 33

https://doi.org/10.1371/journal.pone.0257256.g014
https://doi.org/10.1371/journal.pone.0257256


Table 5. Comparison of proposed methods with other methods in the DRIVE dataset.

Type Methods Year Acc Se Sp F1

Unsupervised methods 2nd human expert 0.9637 0.7743 0.9819 0.7889

Miao et al. [12] 2015 0.9597 0.7481 0.9748 -

Azzopardi et al. [15] 2015 0.9442 0.7655 0.9704 -

Chen et al. [19] 2017 0.9390 0.7358 0.9680 -

Shah et al. [16] 2019 0.9470 0.7760 0.9724 -

Tian et al. [17] 2019 0.9580 0.8639 0.9690 -

Jainish et al. [18] 2020 0.9657 0.9890 0.7900 -

Supervised methods Feng et al. [22] 2017 0.9560 0.7811 0.9839 -

U-Net [21] 2018 0.9531 0.7537 0.9820 0.8142

Hu et al. [23] 2018 0.9533 0.7772 0.9793 -

R2U-Net [24] 2018 0.9556 0.7792 0.9813 0.8171

DUNet [25] 2019 0.9566 0.7963 0.9800 0.8237

HAnet [26] 2020 0.9581 0.7991 0.9813 0.8293

Sine-Net [27] 2020 0.9685 0.8260 0.9824 -

FANet [1] 2021 0.8189 - 0.9826 0.8183

Huang et al. [3] 2021 0.9701 0.8011 0.9849 -

RFARN (ours) 2021 0.9712 0.8788 0.9803 0.8453

https://doi.org/10.1371/journal.pone.0257256.t005

Fig 15. Visualization comparison of unsupervised retinal vessel segmentation results on the DRIVE dataset.

https://doi.org/10.1371/journal.pone.0257256.g015

Fig 16. Visualization comparison of the results of supervised retinal vessel segmentation on the DRIVE dataset.

https://doi.org/10.1371/journal.pone.0257256.g016
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respectively. From the experimental results in the graphs, it can be seen that the segmentation

performance of the supervised methods is generally better than which of the unsupervised

methods. Moreover, the visualization results of the supervised methods are closer to those of

expert segmentation. The main reason for this may be the enhanced image intensity or the use

Table 6. Comparison of proposed methods with other methods in the STARE dataset.

Type Methods Year Acc Se Sp F1

Unsupervised methods 2nd human expert 0.9522 0.9017 0.9564 0.7417

Miao et al. [12] 2015 0.9532 0.7298 0.9831 -

Azzopardi et al. [15] 2015 0.9497 0.7716 0.9701 -

Chen et al. [19] 2017 0.9390 0.7449 0.9690 -

Shah et al. [16] 2019 0.9409 0.8004 0.9644 -

Jainish et al. [18] 2020 0.9657 0.9900 0.8500 -

Supervised methods U-Net [21] 2018 0.9690 0.8270 0.9842 0.8373

Hu et al. [23] 2018 0.9632 0.7543 0.9814 -

R2U-Net [24] 2018 0.9712 0.8298 0.9862 0.8475

DUNet [25] 2019 0.9773 0.8369 0.9888 0.8485

HAnet [26] 2020 0.9673 0.8186 0.9844 0.8379

Sine-Net [27] 2020 0.9711 0.6776 0.9946 -

Huang et al. [3] 2021 0.9683 0.6329 0.9967 -

RFARN (ours) 2021 0.9822 0.8874 0.9891 0.8707

https://doi.org/10.1371/journal.pone.0257256.t006

Fig 17. Visualization comparison of unsupervised retinal vessel segmentation results on the STARE dataset.

https://doi.org/10.1371/journal.pone.0257256.g017

Fig 18. Visualization comparison of the results of supervised retinal vessel segmentation on the STARE dataset.

https://doi.org/10.1371/journal.pone.0257256.g018
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of manually designed features to predict the class label of each pixel in the image which pro-

vides convenience for the whole segmentation task. Furthermore, learning a set of rules for

extracting blood vessels based on the training set makes the network more powerful than

unsupervised methods for extracting blood vessel features.

To more objectively compare and evaluate the performance of RFARN, we implemented

U-Net, R2U-Net, and DUNet networks, which are still very popular models for retinal vessel

segmentation tasks. And we compared them by visualization. For the unsupervised method,

Table 7. Comparison of proposed methods with other methods in the CHASE dataset.

Type Methods Year Acc Se Sp F1

Unsupervised methods 2nd human expert 0.9733 0.8313 0.9829 0.7969

Azzopardi et al. [15] 2015 0.9387 0.7585 0.9587 -

Tian et al. [17] 2019 0.9601 0.8778 0.9680 -

Supervised methods U-Net [21] 2018 0.9578 0.8288 0.9701 0.7783

Hu et al. [23] 2018 0.9533 0.7772 0.9793 -

R2U-Net [24] 2018 0.9634 0.7756 0.9820 0.7928

DUNet [25] 2019 0.9610 0.8155 0.9752 0.7883

HAnet [26] 2020 0.9670 0.8239 0.9813 0.8191

Sine-Net [27] 2020 0.9676 0.7856 0.9845 -

FANet [1] 2021 0.7722 - 0.9830 0.8108

RFARN (ours) 2021 0.9780 0.8352 0.9890 0.8185

https://doi.org/10.1371/journal.pone.0257256.t007

Fig 19. Visualization comparison of unsupervised retinal vessel segmentation results on the CHASE dataset.

https://doi.org/10.1371/journal.pone.0257256.g019

Fig 20. Visualization comparison of the results of supervised retinal vessel segmentation on the CHASE dataset.

https://doi.org/10.1371/journal.pone.0257256.g020
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Miao et al. [12] performed simulation experiments on MATLAB R2012b on a Windows 7 sys-

tem with 2G memory. Azzopardi et al. performed experiments via Matlab on a personal com-

puter equipped with a 2GHz processor. The hardware environment required for the

experiments of this method is less demanding, but its use of two B-COSFIRE converter

response summation makes the choice of experimental parameters extremely demanding [15].

Shah et al. completed using an unoptimized Matlab script with an average time of less than 20

seconds per image [16]. Tian et al. used a 1080ti graphics card for training and testing with the

software environment PyTorch. The initial learning rate of the method was set to 0.01 and

reduced to 90% of the original learning rate after every 20 epochs. After 200 epochs, the net-

work reaches convergence and stops training, and the entire training time of the network is

about half an hour [17]. Jainish et al. extracted retinal vessels on MATLAB using probabilistic

modeling and expectation of maximum entropy [18]. The method suggested by Chen et al.

required only a few experiments in MATLAB 2014 bona 2.4 GHz PC applying CGLI model

[19]. In the supervised approach, Hu et al. conducted experiments on hardware configured

with two Intel Xeon E5-2650 CPUs and eight NVIDIA GTX1080 GPU graphics cards via the

RCF framework of Cae. During the training phase, the learning rate was reduced every 2,000

steps to ensure convergence and the maximum number of iterations was set to 6,000 steps

[23]. HANet was implemented on a single Nvidia GeForce Titan X GPU via PyTorch. The

method uses Adam’s algorithm for gradient descent with initial learning rate values set to

3�10-4, betas = (0.9, 0.999), and a training batch size of 10 [26]. Sine-Net is implemented on a

Xeon(R) CPU E5-2667v4 (3.20 GHz) CPU with 128 GB RAM and NVIDIA Tesla P100 GPU

(Graphics Processing Unit) to train the data using TensorFlow’s Keras library. Each training

contains 50 epochs of stochastic gradient descent (SGD) followed by 20 epochs of Adam opti-

mizer [27]. FANet all experiments were performed on Volta 100 GPUs and NVIDIA DGX-2

systems using the PyTorch 1.6. framework. The model was trained with 100 epochs using the

Adam optimizer (empirically set) with a learning rate of 1e-4 for all experiments, except for

the (DRIVE) and CHASE-DB1 datasets, which were tuned to 1e-3 due to the small size of the

training dataset [1]. Huang et al. conducted experiments via Pycharm (python 3.6), Keras and

its TensorFlow port base with a hardware environment of Intel(R) Core(TM) i7-7700HQ CPU

@ 2.81 GHz, 16 GB of RAM, a GPU graphics card of NVIDIA GeForce GTX 1050, and an

operating system is 64-bit Windows 10 [3], and the model training is performed using a cross-

entropy loss function, optimized by the Adam algorithm. After a specific comparison, we

found that the experimental environment requirements of the phase supervised methods are

generally higher than those of the unsupervised methods.

Retinal segmentation results of different methods on the DRIVE dataset

Comparing the vessel segmentation results of different methods, it can be seen from Fig 15

that most of the unsupervised methods have noisy visualization and incomplete vessel segmen-

tation. Among them, the method of Miao et al. [12] using a matched filter with a 2D Gaussian

kernel has better segmentation results than the method of Tian et al. [17] using a Gaussian

low-pass filter and a Gaussian high-pass filter. By looking at Fig 15, it can be noticed that Tian

et al. mis-segmented the optic disc into vessels. In addition, Jainish et al. [18] used an expecta-

tion-maximization algorithm with maximum entropy in unsupervised methods to extract reti-

nal vessels. The sensitivity of their segmentation results reached optimal values on both the

DRIVE and STARE datasets. The visualization aspect shows that their method has a more

accurate extraction of the vessel contours. However, its method segmented vessels with severe

breaks and incomplete ends. Compared to the unsupervised vessel segmentation results,

PLOS ONE RFARN

PLOS ONE | https://doi.org/10.1371/journal.pone.0257256 December 3, 2021 26 / 33

https://doi.org/10.1371/journal.pone.0257256


RFARN removes most of the noise from the images and provides a more complete segmenta-

tion of small vessels.

Comparing the experimental results of different supervised methods, Fig 16 shows that the

patch-based fully convolutional neural network of Feng et al. [22] segmented more complete

blood vessels with a greater sensitivity compared to U-Net [21]. The same U-shaped architec-

ture of DUNet [25] and Sine-Net [27], the latter of which takes an up-sampling followed by

down-sampling approach, this method largely compensates for the shortcomings of partial

capillary segmentation in the former method. In addition to this, the HAnet [26] and Huang

et al. [3] methods are also improved U-shaped networks, with the difference that HAnet is

designed with multiple decoders focusing on features in different regions. Although HAnet is

not as accurate as of the segmentation of Huang et al.’s method, the vascular continuity of its

method segmentation is stronger than that of the latter. In contrast, the Huang et al. method

focuses more on the features of fine vessels, which makes the network more sensitive to all

pixel points of the fundus image with an optimal specificity of 0.9849. Compared to other

methods, RFARN uses MSRCR preprocessing to focus on vessel features from both a local and

global perspective, which improves the network’s ability to extract vessel trunks and ends as

well as capillaries from fundus images. RFARN achieved a segmentation accuracy of 0.9712

and an F1score of 0.8453 on the DRIVE dataset. From a visualization point of view, RFARN

fixes some of the method’s vessel segmentation breakdowns and reduces some of the detailed

mis-segmentations. It would also be beneficial to avoid these situations as much as possible for

the diagnosis of some ophthalmic diseases.

Retinal segmentation results of different methods on the STARE dataset

On the STARE dataset, it can be found from the visualization results in Fig 17 that Shah et al.

[16] proposed a pre-processing method using Gabor wavelets to enhance the green channel of

the image, but its metrics for vessel segmentation results on the STARE dataset were not the

best when compared with other unsupervised methods. However, observing its visualization

results reveals that the method has better segmentation results for vessel ends than the method

of Miao et al. [12] Secondly, a comparison of the segmentation results of Ground truth and

Miao et al. shows that Shah et al.’s method has some unsegmented trunk vessels, which may be

the reason for its poor segmentation accuracy. In addition, Chen et al. [19] improved the prob-

lem of low image contrast by mixing the Selective Binary and Gaussian Filtering Regularized

Level Set (SBGFRLS) models and the Local Binary fitting (LBF) model. Although it does not

require high initial conditions, the segmentation results of this method are far inferior to the

vessel segmentation results of the supervised method. The segmentation accuracy of RFARN

on the STARE dataset is greatly improved compared to the unsupervised method mentioned

in the paper. From a visualization perspective, our segmentation results are closer to Ground

truth in both global and local regions, indicating that the RCAM and RSAM modules facilitate

RFARN to extract vascular features in both channel dimension and spatial dimension in fun-

dus images.

Supervised methods using U-Net [21] as a baseline network on the STARE dataset are still

valid for vascular segmentation tasks, as shown in Fig 18, and R2U-Net [24] is based on U-Net

incorporating the idea of recursion and the advantages of residual networks. From the experi-

mental results, R2U-Net provides better verification accuracy than U-Net. Some methods are

not based on UNet, such as the method proposed by Hu et al. [23] that applies fully connected

conditional random fields (CRFs) based on convolutional neural networks (CNNs) for final

segmentation. This method may also affect the final segmentation results if it does not detect

poorly the boundaries of vessels with little difference in thinness and thickness. In addition,
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the experimental results comparing the methods of DUNet and Huang et al. showed that

DUNet is more accurate and sensitive than the latter, and its visualization results are more

complete. Although the segmentation method of Huang et al. had severe breakage of blood

vessels, its ability to extract fine vessels was significantly better than that of DUNet. Its specific-

ity values were optimal on the STARE dataset. By comparison with other methods, RFARN

performs better on the STARE dataset in terms of both vessel integrity and continuity. Its seg-

mentation of vessel boundaries and fine vessels is closer to the true value. In terms of specific

evaluation metrics, the segmentation accuracy of RFARN was 0.9822 and the F1score was

0.8707.

Retinal segmentation results of different methods on the CHASE dataset

By looking at unsupervised vessel segmentation methods in recent years, we find that most

methods tend to use a form of matched filtering. For example, on the CHASE dataset, Azzo-

pardi et al. [15] added a selective response operation based on the existing Combination of

shifted filter responses(COSFIRE) method, which makes the method somewhat restrictive as

its selectivity is determined from the original modalities of the vessel in an automatic configu-

ration process. In contrast, Tian et al. [17] used two filters to obtain low-frequency images and

high-frequency images for subsequent feature extraction, respectively, and compared with the

method of Azzopardi et al, Tian et al’s method greatly improved the accuracy of vessel segmen-

tation and the sensitivity of the vessels. In addition, by observing Fig 19, it can be found that

RFARN and HAnet [26] are obviously segmented more accurately than Tian et al. and the

continuity of some capillaries is more complete, and the F1score of HAnet reaches the highest

value of 0.8191. This also indicates that the supervised method is more effective than the unsu-

pervised method for vessel segmentation.

To compare the differences between supervised methods, this paper also presents the exper-

imental results of the CHASE dataset in graphical form. From the visualized results in Fig 20,

R2U-Net [24] and DUNet [25] outperform U-Net [21] for the segmentation of fine vessels.

However, the higher accuracy achieved by R2U-Net and DUNet also introduces noise and has

the effect of segmenting background areas like blood vessels. Such a problem is also seen in

Sine-Net [27], where the noise generated in the segmented images is even worse. This does not

help the ophthalmologist to diagnose the disease. In contrast to them, RFARN uses good

image enhancement techniques to improve the CHASE dataset with uneven background illu-

mination, poor vascular contrast, and stenosis between arteries, which provides a good basis

for subsequent segmentation of the model. In terms of visualization, RFARN does not produce

as much noise as the other methods of segmentation. And it is cleaner for the ends of fine ves-

sels, and the trunk of the vessel is not affected by too many background factors. In addition,

RFARN has improved the accuracy, sensitivity, and specificity of blood vessel segmentation on

the CHASE data set, which also benefits from the effective RCAM and RSAM modules. The

accuracy and sensitivity of RFARN reached 0.9780 and 0.8352 respectively. Ablation experi-

ments were performed on the DRIVE, STARE and CHASE datasets in comparison with exist-

ing retinal vascular methods, and the differences between the results of each method were

analyzed in further detail to demonstrate which the method can achieve effective and accurate

segmentation of retinal vessels.

Analysis the number of model parameters and computation time

To illustrate the superiority of this paper’s method in terms of the spatial and temporal spend-

ing of the model, we calculated the structure of this paper’s ablation network and the number

of parameters of U-Net, R2U-Net, and DUNet in the same experimental setting, and recorded
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the training time and single image testing time of the network on different datasets. Besides, in

order to judge the superiority of vascular segmentation comprehensively, we use a more mean-

ingful measure of the quality of pixelated segmentation, Matthews correlation coefficient

(MCC), which considers TP, TF and TP and FN, and is usually considered as a more balanced

accuracy indicator. Its calculation is shown in Eq (19):

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p ð19Þ

The value of MCC ranges from [-1, 1], where a value of 1 indicates that the prediction is

completely consistent with the actual result, a value of 0 indicates that the predicted result is

not as good as the random prediction result, and -1 indicates that the predicted result is

completely inconsistent with the actual result. Thus, MCC essentially describes the correlation

coefficient between the predicted and actual results. Table 8 records details of the number of

parameters, time cost and Matthews correlation coefficient (MCC) for different models. In the

same experimental setting, U-Net is at a low level of time overhead and number of parameters

due to its simple network structure. However, R2U-Net uses a more dense structure for better

segmentation effect but makes the number of network parameters relatively high and the time

overhead is also higher. Comparing RFARN and DUNet, we can find that RFARN has a higher

number of parameters, but its average time of segmentation is slightly faster. By comparing the

number of parameters and computation time of each model, we found that the number of

parameters varied by the model has an impact on the time of both network training and test-

ing. By further comparing the MCC metrics of different models on the same dataset, we found

that the test results of RFARN are better, which also indicates that the vascular segmentation

results of RFARN are closer to the true labels. Among them, the MCC values of RFARN

reached 0.8302, 0.8480, and 0.7944 on the DRIVE, STARE, and CHASE datasets, respectively.

Compared with the ablation experiment ResUNet, it improved by 4.52%, 4.7%, and 5.1%,

respectively.

Limitations of current work and directions for future research

Comparing the sensitivity metrics of the DRIVE and STARE datasets, the segmentation results

of the CHASE dataset are severely affected by the poor image quality. In addition to this, the

negative pixels (non-vascular) of the lesioned fundus image account for a larger proportion of

the image, which may be a factor that reduces the network’s ability to extract vascular features.

In the future, we can introduce a class balance loss function to improve and accelerate the net-

work training class balance. One more point is that the network structure in the experiments

Table 8. Details of the number of parameters, time cost and Mathews correlation coefficient (MCC) for different models.

Method Params DRIVE STARE CHASE

Train(s) Test(s) MCC Train(s) Test(s) MCC Train(s) Test(s) MCC

ResUNet 7.87M 14.20 3.12 0.7850 22.42 10.36 0.8010 19.97 11.16 0.7434

ResUNet +MSRCR 8.03M 15.42 4.58 0.7920 23.81 12.43 0.8214 23.27 14.67 0.7889

ResUNet + RCAM 9.27M 18.44 5.27 0.8229 25.32 12.92 0.8333 24.49 17.90 0.7925

ResUNet + RSAM 9.49M 20.50 5.42 0.8195 25.99 13.71 0.8363 26.80 17.29 0.7920

U−Net 7.76M 14.03 2.73 0.8094 19.44 12.50 0.8165 11.28 9.6 0.7716

R2U−Net 20.94M 43.20 13.19 0.7852 50.75 49.45 0.8206 35.09 25.60 0.7293

DUNet 4.41M 20.40 15.21 0.8077 25.48 18.32 0.8251 53.69 47.86 0.7758

RFARN 9.74M 23.97 5.75 0.8302 27.07 15.54 0.8480 30.73 18.71 0.7944

https://doi.org/10.1371/journal.pone.0257256.t008
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may come at the expense of time and storage in order to achieve more accurate vessel segmen-

tation results, which requires us to further optimize the network model to reduce the reliance

on hardware facilities.

In addition, the limited number of existing publicly available fundus image datasets places a

significant constraint on the training of the model. In subsequent research work, we can use a

suitable number of Ground truth images to supervise the network training to overcome the sit-

uation where the model is under-trained due to the small amount of data. Apart from this,

good retinal image pre-processing methods remain one of the important directions to explore

for future research on medical image segmentation tasks.

Conclusion

Automatic segmentation of retinal vessel images plays an important role in the diagnosis and

screening of disease. Because the complex structure of fundus imaging makes segmentation

substantially more difficult, in order to alleviate the problems of low image contrast, illumina-

tion limitation and complex connections between blood vessels, this paper firstly enhances the

features of blood vessels in fundus images by the multiscale retinex with color restoration

(MSRCR) retinal image preprocessing method based on Retinex theory. The pre-processed

fundus images are then fed into the Reverse Fusion Attention Residual Network (RFARN)

constructed in this paper, and the trained RFARN model is used for testing to achieve auto-

matic segmentation of the final fundus retinal blood vessels. To solve the problem of insuffi-

cient accuracy of retinal vessel segmentation, this paper embeds the RCAM module in RFARN

to give more attention to the deeper features which are not prominent in the bottom and resid-

ual encoders. In addition, the RSAM module is used to enhance the local response of decoder

features in the spatial dimension. Retinal vessel segmentation experiments were performed on

the DRIVE, STARE and CHASE fundus image databases to evaluate the performance of the

F1score, accuracy, sensitivity, specificity, and AUC metrics of RFARN. Compared with some

existing retinal vessel segmentation methods such as DUNet, Sine-Net, and HAnet, the

RFARN proposed in this paper significantly improves the segmentation of vessels. Given the

high accuracy, F1score, and sensitivity of the experimental results, RFARN is effective for retinal

vessel segmentation and the method can significantly reduce the misdiagnosis rate of fundus

diseases by ophthalmologists.
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