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Abstract: Sickle cell disease (SCD) and ß
hemoglobinopathies caused, respectively, by the alteration of structural features or deficient 
production of the ß-chain of the Hb molecule. Other hemoglobinopathi
different mutations in the α- or ß
require periodic or chronic blood transfusions. Therefore, ß
hemoglobinopathies are excellent candidates for genetic
disorders and, potentially, could be cured by introducing or correcting a single gene into the 
hematopoietic compartment or a single stem cell. Initial attempts at gene transfer of these 
hemoglobinopathies have proved u
vectors. With the advent of lentiviral vectors many of the initial limitations have been 
overcame. New approaches have also focused on targeting the specific mutation in the ß
globin genes, correcting the DNA sequence or manipulating the fate of RNA translation and 
splicing to restore ß-globin chain synthesis. These techniques have the potential to correct the 
defect into hematopoietic stem cells or be utilized to modify stem cells generated from pat
affected by these disorders. This review discusses gene therapy strategies for the 
hemoglobinopathies, including the use of lentiviral vectors, generation of induced pluripotent 
stem cells (iPS) cells, gene targeting, splice

ß-thalassemia, sickle cell anemia and other 
hemoglobinopathies: The thalassemias
of disorders due to a large number of heterogeneous 
mutations causing abnormal globin gene expression 
resulting in the total absence or quantitative 
reduction of globin chain synthesis
the α- or ß-globin gene lead to α- and ß
respectively1. α-Thalassemia is usually due to 
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Sickle cell disease (SCD) and ß-thalassemia represent the most common 
hemoglobinopathies caused, respectively, by the alteration of structural features or deficient 

chain of the Hb molecule. Other hemoglobinopathies are characterized by 
or ß-globin genes and are associated with anemia and might 

require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other 
hemoglobinopathies are excellent candidates for genetic approaches since they are monogenic 
disorders and, potentially, could be cured by introducing or correcting a single gene into the 
hematopoietic compartment or a single stem cell. Initial attempts at gene transfer of these 
hemoglobinopathies have proved unsuccessful due to limitations of available gene transfer 
vectors. With the advent of lentiviral vectors many of the initial limitations have been 
overcame. New approaches have also focused on targeting the specific mutation in the ß

ng the DNA sequence or manipulating the fate of RNA translation and 
globin chain synthesis. These techniques have the potential to correct the 

defect into hematopoietic stem cells or be utilized to modify stem cells generated from pat
affected by these disorders. This review discusses gene therapy strategies for the 
hemoglobinopathies, including the use of lentiviral vectors, generation of induced pluripotent 
stem cells (iPS) cells, gene targeting, splice-switching and stop codon readthrough.

thalassemia, sickle cell anemia and other 
The thalassemias are a group 

of disorders due to a large number of heterogeneous 
mutations causing abnormal globin gene expression 
resulting in the total absence or quantitative 
reduction of globin chain synthesis1. Mutations in 

and ß-thalassemia, 
Thalassemia is usually due to 

deletions within the α-globin gene cluster, leading 
to loss of function of one or both α
each locus2. However, non-
been described, although they are much less 
frequent1. Depending on the number of genes that 
are unable to synthesize the α
different clinical manifestations can be observed. If 
one or two α-globin genes are mutated (in 
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trans), normally no or minimal hematological 
effects are seen, and individuals are normally silent 
thalassemia carriers or show α-thalassemia trait1. If 
three out of four genes are mutated, the condition is 
called hemoglobin H (HbH) disease, resulting in a 
hemolytic anemia that can worsen with febrile 
illness or exposure to certain drugs, chemicals, or 
infectious agents. Hemoglobin H disease is 
characterized by moderate to severe anemia, 
hepatosplenomegaly, and jaundice. Transfusion 
may occasionally be required and, if provided 
frequently, can lead to iron overload. If all four α-
globin genes are deleted, the resulting condition is 
called α-thalassemia major, which is so severe that 
death occurs in utero. Children rescued through 
intrauterine transfusions remain dependent on red 
blood cell transfusions for survival3.

The thalassemias are characterized by their 
clinical severity and genetic mutations. Patients 
with Cooley’s anemia, also known as ß-thalassemia 
major, which is the most severe form of this 
disease, require many blood transfusions per year 
and is characterized by ineffective erythropoiesis 
and extra medullary hematopoiesis (EMH)1. If 
untreated, ß-thalassemia major is fatal in the first 
few years of life1. In ß-thalassemia intermedia, 
where a greater number of ß-globin chains are 
synthesized, the clinical picture is milder, and the 
patients require only infrequent or no 
transfusions4,1. In both thalassemias, with time the 
spleen is enlarged, the hemoglobin level decreases, 
and progressive iron overload occurs from 
increased GI iron absorption in addition to 
transfusions1. The vast majority of ß-thalassemias 
are caused by point mutations within the gene or its 
immediate flanking sequences and are classified 
according to the mechanism by which they affect 
gene regulation: transcription, RNA processing and 
mRNA translation1. These mutations are also 
classified as ß0 and ß+ according to the quantity of
ß-globin chains synthesized. Mutations that lead to 
alternative splicing are associated with reduced 
synthesis of normal ß-globin mRNA and protein 
and are defined ß+. In contrast, mutations that 
completely impair ß-globin synthesis (for instance 
premature termination codons or PTCs) are defined 
ß0. Depending on the association of these different 
mutations, patients are classified into three principal 
groups with none, very low or low ß-globin 
production (ß0/0, 0/+, +/+ respectively). The levels 
of fetal hemoglobin (HbF) account for a large part 
of the clinical heterogeneity observed in patients 

with ß-thalassemia. Variation in HbF expression 
among individuals is an inheritable disease modifier 

and high HbF (composed from 2 α- and 2 γ-chains) 
levels generally correlate with reduced morbidity 
and mortality in this disorder, since the γ-globin 
chains combine with the excess α-chains. 

A single mutation leads to SCD, causing an 
adenine (A) to thymidine (T) substitution in codon 
6 (GAG-GTG), which leads to insertion of valine in 
place of glutamic acid in the ß-globin chain. The 
resulting Hb (HbS) has the unique property of 
polymerizing when deoxygenated1. When the 
polymer becomes abundant, the red cells “sickle”, 
stiff rods form that stretch and distort the red cells. 
These distorted cells can obstruct blood flow 
through the small vessels, and the restricted oxygen 
delivery to the tissues damages cells, injures organs, 
and produces pain. Similarly to SCD, other 
hemoglobinopathies can be triggered by the 
substitution of one amino acid (HbE5,6,2), deletion of 
a portion of the amino acid sequence (Hb Gun 
Hill7), abnormal hybridization between two chains 
(Hb Lepore8,9), or abnormal elongation of the globin 
chain (Hb Constant Spring10). These abnormal Hbs 
can have a variety of pathophysiologically 
significant effects, including ineffective 
erythropoiesis and anemia1.

SCD and the thalassemias are quite common 
among Asian, African, African-American and 
Mediterranean populations1. It has been estimated 
that approximately 7% of the world population are 
carriers of such disorders, and that 300,000–
400,000 children with severe forms of these 
diseases are born each year117. 

Hematopoietic stem cell transplantation: Current 
disease management of ß-thalassemia consists of 
prenatal diagnosis, transfusion therapy, or 
allogeneic BMT11-13. Only the latter is potentially 
curative14. The first successful BMT of ß-
thalassemia was reported in 198215. Consequently, 
several centers have utilized this approach as 
definitive therapy16-18. The most extensive 
experience in treating ß-thalassemia patients with 
BMT is that of Lucarelli and coworkers in Italy18. 
Established protocols can lead to a high success of 
thalassemia-free survival, although the transplant-
related mortality is still significant and the chronic 
graft-versus-host disease is still a potential long-
term complication of allogeneic HSCs 
transplantation17,19. In addition, availability of 
allogeneic bone marrow is limited by finding an 
identical human leucocyte antigen (HLA) matched 
bone marrow donor. However, development of new 
techniques to improve the management of graft-
versus-host disease, to perform BMT from 
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unrelated donors and cord blood stem cells may 
expand the pool of potential donors in the near 
future20.

In addition, patients with severe ß-thalassemia 
and SCD might benefit from new genetic and 
cellular approaches. From this prospective, ß-
thalassemia and SCD are excellent candidate 
diseases for genetically based therapies in 
autologous hematopoietic stem cells (HSCs)21-23. 
Alternatively, somatic cells reprogrammed to 
induced pluripotent stem cells might also provide a 
possible new approach to treat ß-thalassemia24,25.

Gene transfer using oncoretroviral vectors: Gene 
addition mediated by retroviral vectors is an 
attractive approach for monogenic disorder, 
However, when applied to hemoglobinopathies, this 
strategy raises major challenges in terms of 
controlling transgene expression, which should be 
erythroid-specific, elevated, position independent 
and sustained over time. In fact, many studies were 
performed before positive preclinical data were 
generated. The first attempts were done using 
oncoviruses. These viruses belong to the large 
family of Retroviridae and are characterized by a 
genome that encodes the genes gag-pol and env26. 
Onco-retroviral vectors, such as those derived from 
Moloney murine leukemia virus, efficiently transfer 
therapeutic genes into murine hematopoietic stem 
cells (HSC) without transferring any viral gene27. 
Recombinant oncoretroviruses were the first viral 
vectors used to transfer the human ß-globin gene in 
mouse HSCs28,29. These experiments resulted in 
tissue-specific but low and variable (position-
dependent) human ß-globin expression in bone 
marrow chimeras, usually varying between 0 and 
2% of endogenous mouse ß-globin mRNA 
levels29,30-33. Studies aimed at increasing expression 
levels of transferred ß-globin genes have focused on 
including locus control region (LCR) elements of 
the human ß-globin gene locus into oncoretroviral 
vectors. The LCR contains cis-acting DNase I 
hypersensitivity sites (HS) that are critical for high-
level, long-term, position-independent, and 
erythroid-specific expression34,35. These HS 
elements contain several DNA-binding motifs for 
transcriptional and chromatin remodeling factors 
that facilitates chromatin opening. Also, thes 
genomic regions allow for binding of other 
regulatory elements required for high-level 
expression of the ß-globin gene36. Incorporation of 
the core elements of HS2, HS3, and HS4 of the 
human ß-globin LCR significantly increased 
expression levels in murine erythroleukemia (MEL) 

cells but failed to abolish positional variability of 
expression37,35. Additional efforts aimed to include 
larger elements resulted in the inability of the vector 
to incorporate large quantities of genetic material, 
as shown by the rearrangements of the transferred 
sequences38-41. Since these rearrangements 
frequently occur because of activation of splicing 
sites of the LCR sequence contained in the 
retroviral RNA, additional attempts were done to 
eliminate these sites. However, even these new 
vectors failed to include HS elements sufficient 
large to considerably increase expression of the ß-
globin gene37,35.

Additional erythroid-specific transcriptional 
elements were investigated within oncoretroviral 
vectors, including the HS40 regulatory region from 
the human α-locus42-44 and alternative promoters. 
The promoter of ankyrin, a red cell membrane 
protein, has shown some promise in transgenic mice 
and in transduced MEL cells45. In mice, the ankyrin 
promoter has been used to drive expression of the 
human γ-globin gene resulting, at double copy, in 
an average expression of 8% of that of the 
endogenous α-globin genes46. To overcome 
transcriptional silencing of the γ-globin promoter in 
hematopoietic chimeras, mutant γ-globin promoters 
from patients with hereditary persistence of fetal 
hemoglobin (HPFH) were also investigated118,47. 
The Greek mutation at position −117 thus appeared 
to substantially increase γ-globin expression in 
MEL cells47.  However, even these vectors failed to 
increase the level of the ß-globin gene to 
therapeutic levels.

Although oncoretrovirus vectors integrate into 
the genome, many integrants undergo 
transcriptional silencing, posing an additional 
challenge to the success of gene therapy using these 
vectors. Kalberer and co-workers attempted to 
avoid gene silencing by preselecting ex vivo 
retrovirally transduced hematopoietic stem cells on 
the basis of expression of the green fluorescent 
protein (GFP). In this vector the GFP gene was 
driven by the phosphoglycerate kinase promoter, 
while the human ß-globin gene by its own promoter 
and small elements from the LCR48. Using this 
approach, in vivo hematopoietic stem cell gene 
silencing and age-dependent extinction of 
expression were avoided, although suboptimal 
expression levels and heterocellular position effects 
persisted.

Another major limitation is that oncoretroviral 
vectors need to infect cells before and close to their 
division, otherwise the viral RNA cannot migrate 
into the nucleus due to the presence of a nuclear 
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membrane49. Since most hematopoietic stem cells 
are in a quiescent state, they must be induced with 
cytokines to divide in order to achieve higher 
transduction efficiencies and overall expression 
levels. Stimulation of quiescent hematopoietic stem 
cells, however, impairs or halts their long-term 
repopulating capacities49. 

Gene Transfer Using Lentiviral Vectors: With 
the extensive research on human immunodeficiency 
virus-1, it has been realized that lentivirus, 
engineered to be devoid of any pathogenic 
elements, can become efficient gene transfer 
vectors. Lentiviruses are characterized by a 
complex genome that encodes a number of 
accessory proteins besides the canonical retroviral 
genes gag-pol and env. They share all the common 
characteristic of retroviral replication including 
receptor-mediated entry, capsid uncoating, reverse 
transcription of the viral RNA, and integration into 
the host cell genome26. In addition, they are able to 
transduce non-replicating cells, which confers to 
these viruses a special value for the development of 
clinically functional gene vectors. Moreover, 
compared to oncoretroviral vectors, the stabilization 
of the proviral mRNA genome by the interaction of 
the accessory protein Rev with its cognate motif 
Rev-responsive element (RRE), increases their 
range of application, since larger genomic elements 
can be introduced in their genome with limited or 
no sequence rearrangement50. Therefore, lentiviral 
vectors are thus likely to be selected as vectors of 
choice for the stable delivery of regulated 
transgenes in stem cell–based gene therapy. The use 
of lentiviral vectors has allowed the introduction of 
large genomic elements from the ß-globin locus, 
different promoters, enhancers, and chromatin 
structure determinants that led to lineage-specific 
and elevated of ß-, γ- and α-globin expression in 
vivo. This resulted, in the amelioration or correction 
of anemia and secondary organ damage in several 
murine models of hemoglobinopathies, making the 
recombinant lentiviruses the most effective vector 
system to date for gene therapy of these disorders. 

α-Thalassemia could potentially be a target for 
fetal gene therapy since fetuses with this disorder 
usually die between the third trimester of pregnancy 
and soon after birth. The potential use of lentiviral 
vectors to treat α-thalassemia was investigated a 
vector containing the HS2, 3, and 4 of the LCR 
from the human ß-globin locus, and the human α-
globin gene promoter directing the human α-globin 
gene. Using this vector, Han and colleagues 
performed gene delivery in utero during 

midgestation targeting embryos affected by a lethal 
form of α-thalassemia. They showed that in 
newborn mice, the human α-globin gene expression 
was detected in the liver, spleen, and peripheral 
blood51. The human α-globin gene expression was 
at the peak at 3–4 months, when it reached 20% in 
some recipients. However, the expression declined 
at 7 months. Colony-forming assays in these mice 
showed low levels of transduction and lack of 
human α-globin transcript. Thus, lentiviral vectors 
can be an effective vehicle for delivering the human 
α-globin gene into erythroid cells in utero, but, in 
the mouse model, delivery at late midgestation 
could not transduce hematopoietic stem cells 
adequately to sustain gene expression.

Treatment of ß-thalassemia, SCD and other 
disorders through lentiviral mediated gene transfer 
is studied in murine and primate models52-60. The 
original studies in mice showed that lentiviral 
mediated human ß-globin gene transfer can rescue 
mice affected by ß-thalassemia intermedia and ß-
thalassemia major61,62,59. The mouse ß-globin cluster 
has two adult ß-globin genes, ßminor- and ßmajor-
globin. Thalassemic mice were generated with 
deletion of both the ßminor- and ßmajor-globin on one 
allele, designated th3/+ mice (63; 64). Also adult 
th3/+ mice have a degree of disease severity 
(hepatosplenomegaly, anemia, aberrant erythrocyte 
morphology) comparable to that of patients affected 
by ß-TI. May and colleagues tested two lentiviral 
vectors termed RNS1 (carrying minimal core LCR 
elements) and TNS9 (with large LCR fragments 
encompassing HS2, HS3 and HS4; approximately 
3.2 kb in size) on th3/+ mice. Compared to RNS1, 
mice recipient of the larger TNS9 vector maintained 
higher human ß-globin transcript levels over time 
showing amelioration of red cell pathology
(anisocytosis and poikilocytosis) and significantly 
increased hemoglobin levels (from 8-9 g/dL to 11-
13 g/dL). The massive splenomegaly found in 
chimeras engrafted with control th3/+ bone marrow 
was not observed in TNS9-treated animals61. This 
correction was sustained in secondary mice62.

Mice completely lacking adult ß-globin genes 
(th3/th3) die late in gestation, limiting their 
utilization as a model for Cooley's anemia64. For 
this reason, adult animals affected by Cooley’s 
anemia were generated by transplantation of 
hematopoietic fetal liver cells harvested from 
th3/th3 embryos at E14.5 into lethally irradiated 
syngeneic adult recipients59. Hematological 
analyses of engrafted mice performed 6 to 8 weeks 
post-transplant revealed severe anemia due not to 
pancytopenia but rather to low red blood cell and 
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reticulocyte counts together with massive 
splenomegaly and extensive EMH62,59. These 
animals could be rescued using TNS9 or by blood 
transfusions, supporting the notion that their 
phenotype is due specifically to erythroid 
impairment65,59. 

Pawliuk and colleagues investigated the efficacy 
of a lentiviral vector harboring the ß-globin 
promoter, LCR elements and a mutated human ß-
globin gene with enhanced anti-sickling activity 
(ß87) in two different transgenic mouse models for 
SCD: SAD and BERK66,67. Mice transplanted with 
BERK and SAD bone marrow cells transduced with 
this modified ß-globin gene exhibited corrected 
reticulocyte counts and amelioration of Hemoglobin 
concentration, anisocytosis, and poikilocytosis. 
Moreover, the proportion of irreversibly sickled 
cells, SCD-associated splenomegaly, and 
characteristic urine concentration defect in SAD and 
BERK mice were vastly improved or corrected by 
ß87. Using a similar vector, Levasseur and 
colleagues obtained equivalent results. They 
transduced Sca1+c-Kit+Lin− cells rather than 
unselected bone marrow cells and achieved durable 
therapeutic results (5–7 months) following 
transplantation of 100 cells in lethally irradiated 
C57BL/6 mice113,114.

Samakoglu and coworkers applied the principle 
of RNA interference (RNAi) to down-regulate the 
ß-globin mRNA in CD34(+) cells from patients 
affected by SCD116. They utilized a lentiviral vector 
harboring a promoterless small-hairpin RNA 
(shRNA) within the intron of a recombinant γ-
globin gene. Expression of both γ-globin and the 
lariat-embedded small interfering RNA (siRNA) 
was induced upon erythroid differentiation, 
specifically downregulating the targeted gene in 
tissue and differentiation stage-specific fashion. The 
position of the shRNA within the intron was critical 
to concurrently achieve high transgene expression, 
effective siRNA generation and minimal interferon 
induction. 

Miccio and colleagues also utilized an erythroid-
specific lentiviral vector driving the expression of 
the human ß-globin gene from a minimal 
promoter/enhancer element containing two 
hypersensitive sites from the ß-globin locus control 
region in mouse models of ß-thalassemia (68). They 
showed that genetically corrected erythroblasts 
underwent in vivo selection. The selected 
erythroblast that derived from progenitors harboring 
proviral integrations in genome sites and were more 
favorable to high levels of vector expression. These 
data suggested that a regimen of partially

myeloablative transplantation might be sufficient to 
achieve a chimerism that would therapeutic in ß-
thalassemic patients. 

While correction of murine models of ß-
thalassemia has been achieved through lentiviral-
mediated high levels of globin gene transfer into
mouse HSCs, transduction of human HSCs is less 
robust and may be inadequate to achieve therapeutic 
levels of genetically modified erythroid cells. Zhao 
and coworkers therefore developed a double gene 
lentiviral vector encoding both human γ-globin 
under the transcriptional control of erythroid
regulatory elements and methylguanine 
methyltransferase (MGMT), driven by a constitutive 
cellular promoter60. MGMT is an alkyltransferase
that normally functions to repair cellular DNA 
damage at the O6 position of guanine69,70. The 
cytotoxic effects of alkylating agents, such as 
temozolomide and 1,3-bis-chloroethyl-1-nitrosourea
(BCNU), can be prevented if there is adequate 
expression of MGMT, which removes the O6 adduct 
from the modified DNA. Variant MGMT proteins 
with specific amino acid changes retain significant 
activity while possessing the useful property of 
resistance to inactivation by O6-benzylguanine
(BG)71. BG can be used to inactivate endogenous 
MGMT to enhance the specificity of alkylator-
mediated cell death to cells not expressing the 
variant form. Therefore, expression of these variant 
forms of MGMT provides cellular resistance to 
alkylator drugs, which can be administered to kill 
residual untransduced HSCs, whereas transduced 
cells are protected. To test this hypothesis, mice 
transplanted with ß-thalassemic HSCs cells 
transduced with a lentiviral γ-globin/MGMT vector 
were treated with BCNU60. This led to significant
increas in the number of γ-globin–expressing red 
cells, the amount of fetal hemoglobin and resolution 
of anemia. One important advantage of using the γ-
globin gene, normally expressed exclusively during 
fetal life, is that high level γ-globin expression 
would be therapeutic not only for ß-thalassemia, but 
also SCD. Interestingly, selection of transduced 
HSCs was also obtained when cells were drug-
treated before transplantation. These data suggest 
that coexpression of MGMT allowed autologous, γ-
globin vector-transduced ß-thalassemic HSCs to be 
enriched to therapeutic levels through either pre or
post-transplantation selection. 

Imren and colleagues engrafted immunodeficient 
mice with human cord blood cells infected with a 
lentiviral vector encoding an anti-sickling ß-globin 
transgene35,72. After 6-months, half of the human 
erythroid and myeloid progenitors regenerated in 
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the mice containing the transgene, and erythroid 
cells derived in vitro from these cells produced high 
levels of the ß-globin protein. In addition, these 
authors investigated the integrated proviral copies 
showing that 86% of the proviral inserts had 
occurred within genes, including several genes 
implicated in human leukemia. These findings 
indicate effective transduction of very primitive 
human cord blood cells achieving robust and 
erythroid-specific production of therapeutically 
relevant levels of ß-globin protein. The frequency 
of proviral integration within genes observed in this 
study and the data from Miccio and coworkers that 
indicate that selected erythroblasts were derived 
from progenitors harboring proviral integrations 
more favorable to high levels of vector expression, 
indicate that regulated hematopoiesis might require 
additional safety modifications to prevent potential 
genotoxic effects35,72,68. This risk is inherent to the 
integration of foreign genetic material and the risk 
of insertional oncogenesis has been established both 
in mice and humans73-78. 

In light of these results, genetic elements with 
enhancer-blocking properties, such as insulators, 
could increase the safety of the clinical trails. These 
elements have been investigated to shelter the 
vector from the repressive influence of flanking 
chromatin by blocking interactions between 
regulatory elements within the vector and 
chromosomal elements at the site of integration79-81. 
This property of insulators can also be harnessed to 
diminish the risk that the vector will activate a 
neighboring oncogene82,83. The initial studies 
indicated that inclusion of the cHS4 insulator 
element into the 3′ LTR of recombinant murine 
leukemia virus increases the probability that 
randomly integrated proviruses will express the 
transgene46,84-86. Puthenveetil and coworkers tested 
a lentiviral vector carrying the human ß-globin 
expression cassette flanked by a chromatin insulator 
in transfusion-dependent human ß-thalassemia 
major cells87. Using this vector, they demonstrated 
normal expression of human ß-globin in erythroid 
cells produced in vitro. They also observed 
restoration of effective erythropoiesis and reversal 
of the abnormally elevated apoptosis that 
characterizes ß-thalassemia. The gene-corrected 
human ß-thalassemia progenitor cells were also 
transplanted into immune-deficient mice, where 
they underwent normal erythroid differentiation, 
expressed normal levels of human ß-globin, and 
displayed normal effective erythropoiesis 3 to 4 
months after xenotransplantation. Based on all these 
preclinical studies on mouse models of ß-

thalassemia and SCD, clinical trials have been 
proposed or are underway53. Figure 1A depicts this 
approach.

Alternatively, the homologous recom-bination
pathway can be harnessed to avoid random 
integration. Zinc-finger nucleases (ZFNs) can been 
used to enhance the frequency of gene 
correction88,89. However, achieving the full potential 
of ZFNs for genome engineering in human cells 
requires their efficient delivery to the relevant cell 
types. Lombardo and colleagues exploited the 
infectivity of integrase-defective lentiviral vectors 
(IDLV) to express ZFNs and provide the template 
DNA for gene correction in different cell types90. 
IDLV-mediated delivery supported high rates (13–
39%) of editing at the IL-2 receptor common γ-
chain gene (IL2RG) across different cell types as 
well as human embryonic stem cells (5%), allowing 
selection-free isolation of clonogenic cells with the 
desired genetic modification. Therefore, this 
technique opens new and exciting possibilities. By 
modifying the ZFN binding specificity and 
selecting an appropriate donor sequence, one could 
target the IDLV-ZFN system to any individual site 
in the human genome avoiding random integration 
(Figure 1B) and, potentially, genome toxicity88-91.

However, there are current obstacles to 
successfully apply this therapeutic approach to 
humans. Some of them include the need for 
improved efficiency of gene delivery, insertion of 
the gene into non-oncogenic sites and the potential 
negative or positive contributions of the ß-
thalassemic genotype and potential modifiers to the 
effectiveness of the gene transfer1. Original studies 
in animal models utilized mice with deletions of the 
ß-globin genes. These mutations do not reflect the 
phenotypic variability observed in ß-thalassemic 
patients. Thus, there is a gap in knowledge between 
our understanding of the primary mutation, the 
corresponding phenotype, and the approach to cure 
an individual patient based on his/her genotype (i.e.
understanding of the disease and its treatment by 
genetic modalities). To date this variability has not 
been addressed and no studies have focused on the 
efficacy of gene therapy in relation to the different 
genotypes of the patients. Although gene therapy is 
an area of active clinical investigation, the 
aforementioned obstacles limit its use in the 
management of thalassemia. Nonetheless, as we 
showed in our review the successful transfer of 
globin genes into hematopoietic cells of humans has 
been demonstrated and is encouraging.
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Figure1. Schematic representation of the gene therapy approach mediated, respectively, by  (A) gene transfer into hematopoietic 
stem cells (HSC) using integration competent lentiviral vector (B) gene transfer into HSC by integrase defective lentiviral v
ZFN: zinc finger protein. (C) Stem cell therapy by reprogramming of adult cells to stem cells. iPS: Induced Pluripotent Stem Cel
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thalassemia. After transduction of the patient cells 
with a lentiviral vector that express a snRNA 
targeting the mutant RNA, the levels of correctly 
spliced ß-globin mRNA and adult hemoglobin were 
approximately 25-fold over baseline108. Similarly, 
the correct splicing pattern was restored in a mouse 
model of IVS2-654 thalassemia. This was achieved 
by delivery in vivo of a splice-switching 
oligonucleotide, a morpholino oligomer conjugated 
with an arginine-rich peptide. Repaired ß-globin 
mRNA restored significant amounts of hemoglobin 
in the peripheral blood of the IVS2-654 mouse, 
improving the number and quality of erythroid 
cells107. 

Another approach showing a great potential for 
the treatment of genetic disorders characterized by 
to premature termination codons (PTCs) is the use 
of drugs to induce stop codon readthrough. These 
modified RNA would protected against non-sense 
mediated mRNA decay (NMD) and allow 
production of a protein109. Aminoglycoside 
antibiotics can decrease the accuracy in the codon-
anticodon base pairing, inducing a ribosomal read 
through of premature termination codon. These 

findings have led to the development of a 
pharmacologic approach to treat thalassemic 
patients carrying the ß0-39 mutation, which 
introduces a PTC in codon 39 of the ß-globin gene 
and is one of the most frequent thalassemic 
mutations in the Mediterranean littoral1. 
Aminoglycosides and analogous molecules were 
tested in their ability to restore ß-globin protein 
synthesis on human erythroid cells (K562) carrying 
a lentiviral construct containing the ß0-39 globin-
gene110. Treatment of these cells with geneticin 
(G418) and other aminoglycosides restored the 
production of ß-globin110. Moreover, after FACS 
and high performance liquid chromatography 
(HPLC) analyses, G418 was also demonstrated to 
partially correct the biological function of the ß0-39 
globin mRNA in erythroid precursor cells from ß0-
39 homozygous thalassemia patients111. This study 
strongly suggests that ribosomal read-through 
should be considered a novel approach for treatment 
of ß0 thalassemia caused by premature stop codon 
mutations and NMD. 
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