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Explainable AI-prioritized plasma and fecal
metabolites in inflammatory bowel disease
and their dietary associations

Serena Onwuka,1 Laura Bravo-Merodio,1,2,3 Georgios V. Gkoutos,1,2,3 and Animesh Acharjee1,2,3,4,*

SUMMARY

Fecal metabolites effectively discriminate inflammatory bowel disease (IBD) and show differential asso-
ciations with diet. Metabolomics and AI-basedmodels, including explainable AI (XAI), play crucial roles in
understanding IBD. Using datasets from the UK Biobank and the HumanMicrobiome Project Phase II IBD
Multi’omics Database (HMP2 IBDMDB), this study uses multiple machine learning (ML) classifiers and
Shapley additive explanations (SHAP)-based XAI to prioritize plasma and fecal metabolites and analyze
their diet correlations. Key findings include the identification of discriminative metabolites like glycopro-
tein acetyl and albumin in plasma, as well as nicotinic acid metabolites andurobilin in feces. Fecal metab-
olites provided a more robust disease predictor model (AUC [95%]: 0.93 [0.87–0.99]) compared to
plasma metabolites (AUC [95%]: 0.74 [0.69–0.79]), with stronger and more group-differential diet-
metabolite associations in feces. The study validates known metabolite associations and highlights the
impact of IBD on the interplay between gut microbial metabolites and diet.

INTRODUCTION

Inflammatory bowel disease (IBD), which primarily includes ulcerative colitis (UC) and Crohn’s disease (CD), is characterized by chronic

gastrointestinal conditions that collectively affect approximately 5 million individuals as of 2019.1 Despite the rising global prevalence rates

of IBD,2 its etiology remains elusive, with the main regulator of IBD pathogenesis believed to be the adaptive immune system as the main

mediator of gut inflammation.3–6 This immune response is inherently linked to the genetic makeup of an individual; however, studies show

varying proportions of heritability.7–10 Studies have also strongly linked IBD development with factors such as the gut microbiome,11 the use

of antibiotics,12 and diet.12 Unraveling such biological complexity necessitates targeted-omics studies, with metabolomics recently helping

to identify distinct disease-related patterns13–17 and key differences between individuals with IBD and those without.18–20 These differences

have been observed as alterations in fecal short-chain fatty acids21 and serological lipids, such as cholesterol levels and its lipoprotein

levels,22,23 and as changes in amino acid profiles, generally increased in feces21,24 and decreased in serum or plasma,25,26 as well as en-

ergy-related metabolites.27,28

As metabolomics is used to unravel these intricacies of IBD, it is increasingly being assessed in clinical practice, with AI-basedmodeling of

metabolomics data integration helping identify potential metabolic markers that could be leveraged for therapeutic purposes. Promising

studies have shown the power of machine learning (ML) in predicting IBD diagnosis, remission responses, and surgery risk,29–32 but in order

for these approaches to be properly translated into clinical practice, issues regarding model interpretability and explainability need to be

tackled. The better the performance of a model, the greater tendency for it to be increasingly complex, like in the case of ensembles and

deep learning models, and not intrinsically interpretable, as in decision trees models. Therefore, balancing model performance with

complexity is essential,33,34 with post-hoc explainability techniques,35 also known as explainable AI (XAI),36 emerging as key resources.

The application of XAI in biomedical research particularly saw a surge in 2020, correlating to the rise of COVID-19 globally.35 However,

the utilization of XAI in ML-based studies on IBD pathogenesis is an area that has received limited exploration and investigation.

Further, AI-identified important metabolites in IBD are also likely intertwined with diet, as the nutrients consumed by an individual play a

crucial role in modulating numerous metabolic processes within the organism,37 and numerous studies have explored the relationship

between diet and IBD. Diets rich in fiber have been linked to a lower risk of either the development of IBD or recurrence of symptoms after

remission,38–40 while western-style diets characterized by high consumption of refined carbohydrates, redmeat, high-fat foods, and ultra-pro-

cessed foods have been found to elevate the risk of IBD.41–43 Additionally, dietary interventions for remission, including enteral nutrition for

induction44–46 and specific carbohydrate diets47–50 for maintenance, have been explored as strategies for managing IBD. However, despite
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this wealth of research on diet associations with IBD, there exists a notable gap in understanding the interactions of diet directly with meta-

bolic processes in IBD.

This study aims to fill these gaps by leveraging two publicly available datasets: the UK Biobank (UKBB)51 and the HumanMicrobiome Proj-

ect Phase II IBD Multi’omics Database (HMP2)52 for metabolomics-based IBD prediction, applying XAI, and exploring the relationships be-

tween key metabolic profiles and dietary intake in IBD and non-IBD individuals. Results will potentially reveal important biomarkers for IBD,

improve understanding of complex model predictions in IBD, and offer a nuanced understanding of the intricate relationship betweenmeta-

bolism, diet, and IBD pathogenesis. Ultimately, these findings may pave the way for the development of more targeted and effective inter-

ventions for individuals affected by IBD.

RESULTS

Baseline data characteristics

A total of 1,461 and 52 samples were excluded for the UKBB and HMP2 cohort, respectively (Figure 1), with an average of 5.1 (SD = 1.4) sam-

ples per individual in the latter cohort. Baseline demographic characteristics of the resulting 2,676 samples of the UKBB, and 494 samples of

the HMP2, are shown in Table 1. About one-third of the UKBB samples (768 samples) belonged to the IBD class, while an equivalent propor-

tion of the HMP2 cohort consisted of non-IBD samples (128 samples). The median ages were 59 and 21 for the UKBB and HMP2 cohorts,

respectively. They both had a gender distribution split of approximately 50% (52.1% females in the UKBB plasma dataset; 49.0% females

in the HMP2 feces dataset), with over 90% belonging to the white race in both cohorts, and within each class. In the HMP2 cohort, more

than half of the IBD samples consisted primarily of individuals who had received a diagnosis within the past year. Conversely, an equivalent

proportion of the UKBB IBD samples consisted of individuals who had been diagnosed at least 6.7 years ago.

Model performance

TheUKBBmetabolomedata of 37 featureswere used to train the four classifiers used in this study: extremegradient boosting (XGBoost), light

gradient boosting machine (LGBM), random forest (RF), and least absolute shrinkage and selection operator (LASSO) regularization. The

plasma metabolites of the UKBB cohort did not generally yield good model performances. LASSO emerged the top among the four classi-

fiers, achieving an area under the curve (AUC) test score of 0.74 (95% CI: 0.69–0.79), while the other ML methods scored about 0.67 (Figure 2).

With an optimal grid alpha value of 0.001, LASSO performed excellently in identifying individuals without IBD, having a specificity of 0.97 (Ta-

ble 2). However, it was not effective in capturing all true IBD cases, as only about 14% of the IBD samples were correctly predicted (recall =

0.143). However, when it did predict IBD, there was an approximate 69% likelihood that it was truly IBD (precision = 0.688).

Among the HMP2 data, all the classifiers trained on the 160 fecal metabolites performed well. However, LASSO notably performed the

least (AUC = 0.86), with all ensemble methods achieving about the same AUC score of 0.93 (Figure 2). Considering the performance of

the ensembles across the other metrics, LGBM emerged as the preferred classifier, yielding an AUC test score of 0.93 (95% CI: 0.87–0.99)

with the following optimal hyperparameters: ’colsample_bytree’ = 0.8, ’learning_rate’ = 0.1, ’max_depth’ = 20, ’num_leaves’ = 31, and ’sub-

sample’ = 0.8. This indicates that themodel was effective at distinguishing between IBD and non-IBD cases, with an F1 score of 0.94 reflecting

a balance between precision and recall (Table 2). Out of all positive predictions, up to 89% were truly IBD, with the model exceptional in

capturing true IBD cases with a 99% recall rate. Nevertheless, themodel’s specificity score of 0.65 suggests that its ability to accurately identify

non-IBD cases was limited. Essentially, the model had more errors in correctly identifying non-IBD cases than in missing IBD cases.

4137 samples
(2099 IBD, 2038 non-IBD)

3815 samples
(1907 ibd, 1908 non-ibd)

2676 samples
(768 ibd, 1908 non-ibd)

Food Questionnaire
Incomplete entry
(322 excluded)

Developed IBD after baseline
(1139 excluded)

UK Biobank

546 samples
(411 IBD, 135 non-IBD)

509 samples
(381 ibd, 128 non-ibd)

494 samples
(366 ibd, 128 non-ibd)

Food Questionnaire
Incomplete entry

(37 excluded)

Developed IBD after baseline
(15 excluded)

HMP2 IBDMDB

1461 samples excluded 52 samples excluded

BA

Figure 1. Sample exclusion flowchart

The filtering process of samples of (A) the UKBB cohort and (B) the HMP2 cohort, based on their respective exclusion criteria.
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Feature selection and interpretation

Following model predictions, Shapley additive explanations (SHAP) was applied to interpret such predictions, focusing on the contributions

of the top 20 features at local and global levels. In the UKBBmodel, the top 20 out of the 37 metabolites contributed 99.6% of the cumulative

absolute mean SHAP values, resulting in a top-to-bottom ratio of 44.51. SHAP local impact and global importance plots were generated for

these features (Figure 3). Overall, these topmetabolites includedmarkers of inflammation (GlycA), lipoprotein subclasses (S-LDL-FC, XL-HDL-

FC, and XXL-VLDL-TG), fatty acids (omega-3 and LA), amino acids (glycine and valine), energy metabolism (glucose and acetone), and waste

product creatinine. Notably, GlycA emerged as the most discriminative metabolite with a substantial lead over the next two closely ranked

features, S-LDL-FC and albumin, as observed in the global importance plot (Figure 3B). These results are complimented by the LASSO anal-

ysis in R that showGlycA, albumin, S-LDL, as well as omega-3 and glycine, to be the top features of the 400 bootstrappedmodels (Figure S1).

Analyzing the local model impact plot (Figure 3A), higher values of GlycA, glycine, glucose, and creatinine were observed to drive the model

toward prediction of the positive class, IBD. Contrarily, IBD prediction was driven by lower values of S-LDL-FC, omega-3, and albumin.

In the HMP2model, the top 20metabolites out of the total 160 contributed 60% of the cumulative absolutemean SHAP values, with a top-

to-bottom ratio of 81.09. Amongmany other classes, thesemetabolites included vitamin B3 compounds (nicotinuric acid [NUA], N1-methyl-2-

pyridone-5-carboxamide [NMPC], 1-methylnicotinamide [1-MNA], and nicotinamide [NAM]), and lipids (a lysophosphatidylcholine [C18:1

LPC-P], a sphingomyelin [C16:0 SM], and a phosphatidylcholine [C36:2 PC]). Remarkably, NUA emerged as the most discriminatory by an

extrememargin (Figure 3D), with elevated levels driving IBD prediction (Figure 3C). Interestingly, no non-IBD sample contributed to IBD pre-

diction, while a mix of non-IBD and IBD samples having low NUA values contributed to non-IBD prediction (Figure S2). Similar to NUA, most

other top metabolites like pyridoxine, and n-acetylputrescine (N-AcPut) had higher values associated with IBD. In contrast, elevated levels of

features like urobilin and hydroxycotinine drove prediction of the negative class, non-IBD. Complementary to these results, six of the top 20

SHAP-ranked metabolites, NUA, pyridoxine, N-AcPut, urobilin, C16:0 SM, and hydroxycotinine, were among the features of the 400 boot-

strapped LASSO models in R that appeared the most, based on a threshold (Figure S1).

Diet-metabolite correlations

After the top SHAP-ranked features were correlated with their corresponding dietary components for each case-control group, the diet-

metabolite correlations were found to be similar across both groups in the UKBB cohort. As depicted in Figures 4A and 4B, individuals

with IBD had 36 correlations, while those without had 32, all being significant. Moreover, 90% of the correlations fell within the range of

(�0.091, 0.109) for the IBD group, and (�0.094, 0.094) for non-IBD group. Dietary wise, omega-3 fatty acid had the strongest correlation across

both groups, displaying significantly moderate correlation levels with oily fish, with levels up to three times higher than average in each group

(in IBD: r = 0.365, and in non-IBD: r = 0.367; false discovery rates [FDR] < 0.001; refer to Table S4 for all correlation and FDR values). Similarly,

across both groups, glycine was significantly negatively correlated with red meat intake (processed, pork, lamb, and beef), although weak.

However, there was a considerable difference; certain food-metabolite correlation patterns observed were stronger among those without

disease. Particularly, among non-IBD individuals, omega-3 and XL-HDL-FC exhibited a pattern opposite to that of creatinine and XXL-

VLDL-TG across processed meat, bread, fruit and vegetable intake. For instance, XL-HDL-FC in the non-IBD group was negatively correlated

with bread (r =�0.156, FDR < 0.001) while creatinine showed a positive correlation (r = 0.182, FDR < 0.001). However, among individuals with

IBD, these correlations were notably diminished, with only creatinine showing significant associations across the aforementioned food

groups.

In contrast to the minor variations observed across both IBD and non-IBD groups in plasma metabolite and diet interactions, the differ-

ences in fecal-diet interactions in the HMP2 cohort weremuchmore pronounced. In this cohort, the non-IBDgroup hadmore correlations (R =

159) compared to the IBD group (R = 111). Individuals without IBD exhibited correlations stronger than those with IBD (Figures 4C and 4D),

although only 22 out of the 156 correlations were significant, while in just over half of the 111 IBD correlations, 65 were significant. However,

this is likely due to IBD samples being about three times the amount of non-IBD samples. Nonetheless, most correlations within this cohort

Table 1. Baseline demographic characteristics

UKBBa Cohort Characteristics HMP2b Cohort Characteristics

Total Non-IBD IBD p value Total Non-IBD IBD p value

Participants 2676 1908 768 494 128 366

Median age (years) 59.0 (52.0–64.0) 59.0 (52.0–64.0) 60.0 (51.0–64.0) 0.42 23.0 (14.0–43.0) 23.0 (13.0–55.0) 22.0 (15.0–41.0) 0.83

Female participants (%) 1394 (52.1) 985 (51.6) 409 (53.3) 0.47 242 (49.0) 56 (43.8) 186 (50.8) 0.20

Whitec race (%) 2569 (96.0) 1827 (95.8) 742 (96.6) 0.36 445 (90.1) 123 (96.1) 322 (88.0) 0.01

Median years since

diagnosis (IQR, years)

6.7 (3.0–11.3) 0.0 (0.0–12.0)

aUKBB: UK Biobank.
bHMP2: Human Microbiome Project Phase II.
cFor UKBB, this includes ‘‘British,’’ ‘‘any other white ethnicity,’’ and ‘‘Irish;’’ For the HMP2, this includes only ‘‘White.’’
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were stronger than the correlations observed in the UKBB cohort, with 90% of the HMP2 correlations falling within the range of (�0.139, 0.149)

for the IBD group, and (�0.224, 0.191) for the non-IBD group. Another notable difference was metabolites expressing opposing or non-exis-

tent associations for the same food group between IBD and non-IBD. For instance, while fish was significantly positively correlated with

1-MNA in the IBD group (r = �0.285, FDR < 0.001), it showed non-significant negative association in the non-IBD group (r = 0.192; refer to

Table S5 for all correlation and FDR values). Further, water with pyridoxine (r = 0.371, FDR < 0.001) and cadaverine with vegetables (r =

�0.371, FDR < 0.001), which tied for strongest correlation among the non-IBD samples, exhibited either weak or invalid correlation values

among the IBD samples (both r = 0.065). Beyond these overview distinctions, there were a few diet-metabolite associations that remained

similar across both groups, albeit with varying strengths. For instance, NMPC was significantly inversely correlated with soft drink consump-

tion in both groups (IBD: r =�0.183 and non-IBD: r =�0.323, 0.001 < FDR% 0.01), and hydroxycotinine demonstrated negative correlations

with beans intake (IBD: r =�0.136, 0.01% FDR < 0.05 and non-IBD: r =�0.188). Further, somemetabolites clustered in both groups, like lipid-

related metabolites, C18:1 LPC-P and C16:1 SM and some vitamin B3 metabolites, NMPC and 1-MNA, indicating that they undergo similar

metabolic patterns in association with diet, regardless of how different the associations may be with disease or without.

DISCUSSION

Model performance

In the UKBBdata, LASSOoutperformed the otherMLmethods, whichwere all ensembles. This is likely due to a number of possibly redundant

features included in the ensemblemodels, whichwere assigned zero weights in the LASSOmodel, which automatically filters out highly corre-

lated variables.On the other hand, all the ensemblemethods each outperformed LASSO inHMP2, highlighting the possible non-linear nature

of the associations between outcome and features.

Discriminatory plasma metabolites

SHAP XAI successfully explained the prediction of both cohort models and revealed the highly influential features of these models. The top

features of the UKBB model included GlycA, albumin, sub-classes of high and low-density lipoprotein cholesterol forms, and omega-3 fatty

Figure 2. Model performance comparison

The AUCtest-ROC curves of the optimized classifiers for (A) the UKBB data and (B) the HMP2 data, with the blue dashed line representing a model performance

that had no skill at all for comparison, are illustrated here (ROC, receiver operating characteristic; XGB, extreme gradient boosting; LGBM, light gradient

boosting machine; RF, random forest; LASSO, least absolute shrinkage and selection operator). Data are represented as ‘‘mean (confidence interval).’’ See

also Figure S1.
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acid. However, the model’s average AUC score (0.74) implies that these features are not very effective for classifying IBD within this cohort,

which could indicate an insufficiency of these NMR-identified plasma metabolites to distinguish properly between IBD and healthy individ-

uals, particularly in older adults. However, as the results are not as low as chance (0.50), it is reasonable to suggest that these highlighted key

metabolites are involved in IBD pathogenesis, with findings validated by the existing literature in the following text.

For instance, a prior study also identified significantly elevated levels of GlycA, a well-established stable inflammatory marker,53–55 in in-

dividuals with active IBD compared to controls.56 Similarly, decreased levels of albumin, which has been stated to be an inverse biomarker for

systemic inflammation,57 align with the UKBBmodel’s prediction of IBD. However, it is important to note that these two inflammatorymarkers

are inclined to predict as IBD, only individuals with active IBD or individuals without IBD but are undergoing systemic inflammation at the time

of testing.

Similar misclassificationsmay have occurred with other influential metabolites, such as LDL-C (S-LDL-FC), also known as ‘‘bad’’ cholesterol,

where varying study findings suggest mixed LDL-C profiles in individuals with IBD, with some showing low levels,58,59 and others indicating

high levels.60,61 However, the lower levels of HDL-C (XL-HDL-FC), or ‘‘good’’ cholesterol, observed in IBD predictions is common.58–61

Although for both lipoprotein cholesterols, the changes between the healthy and diseased were noticed more prominently with CD than

with UC.58–61 Nonetheless, lipoprotein cholesterol levels being associated with IBD, and cholesterols having been associated with cardiovas-

cular risk,62–64 add to the increasing number of findings linking IBD to cardiovascular disease risk.65–67 This suggests some shared lipid me-

tabolisms underlying both disease types.

Further, in line with previous studies,68,69 lower levels of omega-3 fatty acid were found to be associated with IBD. However, these results

are inconclusive concerning the role of omega-3 in IBD individuals. While it is known that omega-3 boosts one’s immunity,70 it has been

potentially linked to a decreased risk of developing IBD71,72 and among IBD patients, has been linked to reduced intestinal inflammation71;

it has also been speculated that the ratio of omega-3 to omega-6 is more crucial than the level of omega-3 itself.68 Further, it is unclear if

depleted levels of omega-3 are causal, elevated levels provide protection, or supplementation is truly helpful for all individuals with IBD

or only a subset of them.71,73

Discriminatory fecal metabolites

While the plasma metabolites were not as effective in distinguishing between both healthy and diseased, the fecal metabolites in the HMP2

cohort showed much greater capabilities. Although achieving an AUC score of 0.93, higher than commonly published metabolomics-based

predictions,74–76 may be inflated due to there being much more IBD than non-IBD samples, the high performance still underscores the po-

tential importance of fecal metabolites in the pathogenesis or diagnostic assessment of IBD. This high discriminatory score prompts further

investigation into the specific metabolites and underlying biological mechanisms driving this predictive power. Insights from the SHAP algo-

rithm unveiled several metabolites that exhibited higher discriminatory abilities where variations in their levels—both high and low—were

generally associated with class predictions. These key metabolites included metabolites of vitamin B3, phospholipid metabolites, and

urobilin.

Vitamin B3, mainly represented as NA, with NAM as its main metabolite, is present in the body mainly through diet, and to a lesser extent,

synthesized de novo. Fecal levels of NA have been found to be reduced in both CD and UC patients, compared to healthy controls, although

more pronounced in CD patients.77 However, diminished levels of its metabolites (NUA, NMPC, 1-MNA, andNAM) were notably influential in

predicting non-IBD cases. While low values contributed to IBD prediction, elevated levels were also involved, but increasingly so in the case

of NUA.

The elevatedNUA levels that strongly drove IBD prediction has been previously discovered to be due to a confounding drug effect.78 Only

individuals with IBD displayed increased NUA levels (Figure S2). Further literature research then revealed that the NUA levels in the HMP2

cohort were confounded by intake of the 5-aminosalicylic acid (5-ASA) drug, the common first line of treatment for IBD patients,79,80 as

only individuals that took it displayed increased NUA levels.78 Knowing this, the classifiers were re-run on the HMP2 data without considering

NUA, and the ensemble models actually performed better on average, with the top classifier achieving an AUC score of 0.95 (Figure S5). This

suggests that the potential bias introduced by NUA led to a slight decrease in model performance. However, the analysis without NUA was

Table 2. Performance metric scores of the UKBB and the HMP2

Dataset (matrix) Classifier Test AUC (%) Specificity (%) Recall (%) Precision (%) F1 (%)

UKBB (plasma) XGB 0.675 0.969 0.175 0.692 0.280

LGBM 0.676 0.963 0.227 0.714 0.345

RF 0.664 0.974 0.188 0.744 0.301

LASSO 0.739 0.974 0.143 0.688 0.237

HMP2 (feces) XGB 0.928 0.654 0.959 0.886 0.921

LGBM 0.928 0.654 0.986 0.889 0.935

RF 0.928 0.615 0.973 0.877 0.922

LASSO 0.858 0.692 0.890 0.890 0.890
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kept supplementary as model performance was not significantly impacted. Further, in this way, post-hocmeasures are minimized, prioritizing

realism and generalizability.

Nonetheless, higher levels of fecal NMPCand 1-MNAbeing associatedwith IBDprediction could be due to increased levels of NAM,81,82 a

degradation product of nicotinamide adenine dinucleotide (NAD).83,84 NA and NAM metabolism, which involves NAD turnover that is

increased in IBD,85 is currently a therapeutic target ofmanipulation for IBDpatients,86 asmultiple studies show the involvement of thesemeta-

bolic processes and pathways with IBD.81,87–89

Figure 3. SHAP-based feature selection and model interpretation

This figure showcases ranked SHAP summary plots of model predictions. (A) and (B) depicts LASSO-based plots of the UKBB cohort, and (C) and (D) depicts

LGBM-based plots of the HMP2 cohort. The features shown are the top 20 metabolites of each model based on SHAP values. In the local importance

summary plot for SHAP values (left), the samples are represented as the colored dots, with the color determined by the value it has for that feature. A

positive SHAP value corresponds to a positive impact on the model, driving the algorithm toward prediction of the positive class, and vice versa. In the

global importance summary plot for mean absolute SHAP values (right), features higher in rank correspond to a greater number of samples with SHAP values

significantly deviating from zero, either positively or negatively (LASSO, least absolute shrinkage and selection operator; LGBM, light gradient boosting

machine). Note: (A) and (B) illustrate summary plots for prediction non-specific to class, as linear models typically output a single set of SHAP values, while

(C) and (D) represent a tree model, which produce class-specific SHAP values and thus, are specific to the positive class, IBD. See also Figures S1 and S2.
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Phospholipid metabolites and urobilin were key discriminators as well. In line with existing studies,75,90 higher LPC (C18:1 LPC-P) was

associated with IBD classification, with higher concentrations consistently shown to promote inflammation, injuring endothelial cells91 and

damaging the epithelial barrier.92 Furthermore, elevated fecal levels of SM (C16:1 SM) were predictive of IBD, consistent with prior research

showing increased SMs in IBD patients.19,93 Additionally, high urobilin levels were associated with non-IBD prediction, which is line with a

previous study that found L-urobilin to be the most discriminative metabolite for the colitis phenotype in rats, with much higher concentra-

tions being associated with the healthy, while non-existent in the colitis rats.94 Moreover, urobilin emerged the top discriminator when NUA

was not considered (Figure S5). Nonetheless, with a recent study suggesting an elevated ratio of fecal sphingolipids to L-urobilin as an IBD-

associatedmarker warranting further investigation,74 it may be the ratio to SMs and not the concentration in and of itself that is discriminatory.

Reasons for the disparity between the plasma and fecal metabolites

There was notable discrepancy in performance between fecal metabolites (AUC = 0.93) and plasma metabolites (AUC = 0.74). Insights

obtained from the LASSO modeling in R (Figures S1 and S5) also complement the ensemble results from python; the stronger association

with IBD was found to be with the fecal metabolites of HMP2 as opposed to the plasma metabolites of the UKBB, evidenced by more

features selected above the bootstrap threshold, as well as higher AUC values (mean: 0.896 G 0.025 vs. 0.652 G 0.017) in the 400 different

bootstraps.

Figure 4. Diet-metabolite associations

This figure shows diet-metabolite heatmaps of the SHAP-calculated top 20 metabolites for the (A) IBD class of the UKBB, (B) non-IBD class of the UKBB, (C) IBD

class of the HMP2, and (D) non-IBD class of the HMP2. Circles are color-coded to represent Spearman correlation values, with the circle size indicating the

strength of correlation. Significance levels are denoted by asterisks (***: FDR < 0.001, ** 0.001 % FDR < 0.01, *: 0.01 % FDR < 0.05). The metabolites on the

x-axis are ‘‘ward’’ clustered. See also Figures S4 and S5.
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The difference between the predictive capabilities of the plasma and fecal metabolites can be attributed to a number of biological factors,

associated with cohort differences. One could be age differences. Elderly individuals, of which the UKBB comprises, regardless of disease may

exhibit similar metabolic patterns in the blood, particularly with cell membrane related lipids such as phospholipids,95 decreasing the discrimina-

tory potential of the plasmametabolites. Moreover, the gut microbiome’s pivotal role in IBD,96 with its functions in inflammation regulation con-

cerning the gastrointestinal tract97 andoverall gut health, render fecal metabolites as themore potentmarkers for IBDdiagnosis. To buttress this

point, just recently, Raygoza et al. show that the composition of the gutmicrobiome is linked to the future development of IBD, particularly CD.98

Diet-metabolome associations

The interplay between the metabolome and diet has been extensively studied,99 and also between diet and IBD as a whole,100 as mentioned

in the introduction. However, there are gaps in understanding how the presence of IBD alters the metabolism of ingested food.

In the UKBB cohort’s plasma analysis, increased consumption of oily fish, notably rich in long-chain omega-3 polyunsaturated fatty acids,

was associated with increased omega-3 levels in both groups.Moreover, the consumption of redmeat has also been associatedwith reduced

levels of glycine in the plasma.101–103 Studies also confirm the intake of fibers (fruit and vegetable), being positively correlated with omega-3

andHDL-C104–106 and negatively with creatinine107 observed among the non-IBDgroup. Considering that both groups had similar food intake

distributions (Figure S3), and the overall metabolite profiles between the two groups did not generally exhibit visibly significant differences

(Figure S4), a potential explanation for the slightly stronger correlation observed among those without IBD, could be the heterogeneity within

the IBD cohort in terms of disease activity. A median time since diagnosis of 7 years, with the interquartile range going from 3 to 11 (Table 1),

suggests varying disease activity levels. The subset of individuals with a longer disease history, potentially experiencing higher disease activ-

ity, could contribute to the observed metabolic profiles. During active IBD, or flare-ups in the case of inactivity, the body may respond to di-

etary intake in a distinct manner compared to those without active disease or without IBD. As this only possibly applies to a subset or multiple

subsets within the whole IBD cohort, this variation could explain the weaker correlations observed within the IBD group.

In the HMP2 cohort however, the correlations were generally stronger than the ones observed in the UKBB, which is not surprising consid-

ering the well-established bidirectional relationship between the gut microbiome and diet.108–111 Further, there were only a few consistent

diet-metabolite associations shared between the diseased and non-diseased groups of the HMP2 cohort among the top 20metabolites, and

the most prominent are currently not confirmed in literature (e.g., NMPC with soft drinks, and hydroxycotinine with beans). Further, differ-

ences across both groups wasmuchmore numerous among the fecal metabolites. This divergence extended beyond slightly diminished cor-

relation strengths to near-zero or opposite correlation strengths. For instance, the relationship between fish intake and urobilin varied signif-

icantly, being positively associated among those with IBD but negatively among non-IBD samples, with similar strengths observed (0.216 vs.

�0.177; refer to Table S5 for all correlation and FDR values). This underscores the notion that disease, in this case, IBD, exerts a biological

influence on how individuals respond to diet. Just as explained with the plasma metabolites, the reduced strengths of correlation when

compared to the healthy could also be due to differential responses to dietary intake due to different activity states of IBD. However, as

IBD is also an immune-mediated disease, its presence may diminish diet-metabolite correlations more significantly than if it was absent in

an individual, as the gut microbiome also regulates the immune system and affects systemic immune responses.112–114 Overall, considering

the plasma and fecal dietary associations, the differential responses to diet when compared to the healthy, and even within IBD, possibly due

to differing disease activity states, buttresses the need for more personalized approaches to dietary therapies for IBD management.

Limitations of the study

This study is not without limitations. The inclusive diagnosis of individuals using ICD-9 and ICD-10 codes in the UKBB, without accounting for

comorbidities, introduces potential confounding factors that may have impacted the model’s predictive accuracy, as these additional con-

ditions might have strongly affected the metabolisms of some participants. The large UKBB sample size, while beneficial, may not have fully

counteracted the effects of these confounding comorbidities. Another challenge arises from sample imbalance in both the UKBB and HMP2

cohorts, potentially introducing bias in model training and evaluation, particularly for the smaller HMP2 dataset, where the total number of

samples was relatively small. This could be why the AUC score, which assesses a model’s ability to predict the positive class, IBD, was higher

than expected (AUC = 0.93) considering that IBD is a multifactorial disease. Nonetheless, variations in the timelines of dietary information

between the two datasets, an average of the past year for the UKBB compared to the past week for the HMP2 cohort, may have impacted

the representativeness of subjects’ dietary habits during metabolic profiling, contributing to weaker correlations in plasma metabolites

compared to fecal metabolites. Finally, the use of food questionnaires introduces a potential source of human error, as data accuracy relies

on participants’ recall and honesty.

Conclusion

Overall, our study addresses gaps in IBD research and lays a foundation for future studies by advancing our understanding of IBD pathogen-

esis through several key avenues. By leveraging the largely sampled UKBB data of over 2,500 individuals, to the best of our knowledge, this

study represents the first-ever published comprehensive machine learning analysis of the plasma metabolome of IBD patients in the UKBB,

offering unique insights. Further, by analyzing the well-documented fecal metabolites of the IBD samples of another major cohort, the HMP2,

valuable contrasts are made available. Additionally, contributing to the work of developing diagnostic ML models drives us closer to devel-

oping an effective algorithm that predicts IBD before its onset, presenting a promising avenue for transforming patient care as more diverse

risk factors such as smoking habits, and the presence of anti-saccharomyces cerevisiae antibodies in the blood are incorporated. Moreover,
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the use of XAI in the predictive models offers transparency, facilitating translation into clinical practice. Finally, the exploration of dietary as-

sociations illuminates the complex interplay between gut microbial metabolites and dietary factors in IBD, enhancing our understanding of

disease mechanisms, and facilitating the development of targeted interventions.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr Animesh Acharjee (a.

acharjee@bham.ac.uk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� This paper analyzes existing, publicly available data. Accessibility details for these datasets are listed in the key resources table.
� This paper does not report original code. Derivative codes generated for this study have been deposited at Zenodo and is publicly

available as of the date of publication. The DOI is listed as a citation in the key resources table.
� Additional information needed to reanalyze the data presented in this paper can be obtained from the lead contact upon request.

METHOD DETAILS

Study design and participants

The blood-based metabolomics data in this study was retrieved from the UKBB. The UKBB is a large-scale cohort study conducted between

2006 and 2010, involving 500,000 consenting participants aged 40 to 69 from across the UK who provided detailed health information, and is

approved by the North West Multi-centre Research Ethics Committee amongst others. At the data retrieval stage, 4,137 plasma samples

(2,099 IBD and 2,038 healthy controls—no reported ICD-10 diagnosis—matched based on age and sex) were extracted from the UKBB.

Matching was done using the ‘‘nearest’’ method which utilizes a greedy search to match each sample with their nearest neighbour. The dis-

tance was calculated using the Mahalanobis distance, which estimates the distribution closest for each point.115 This procedure was

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Plasma metabolomics data UK Biobank51 UK Biobank: 31224;

Fecal metabolomics data HMP2 IBDMDB52 https://ibdmdb.org/results

Software and algorithms

Codes generated for this study This paper142 Zenodo: https://doi.org/10.5281/zenodo.11411432;

R R Core Team116 https://cran.r-project.org/

tidyverse Wickham et al.139 https://github.com/tidyverse/tidyverse

missForest Stekhoven & Bühlmann121 https://github.com/stekhoven/missForest

caret Kuhn124 https://github.com/topepo/caret

glmnet Friedman, Hastie & Tibshirani143 https://github.com/cran/glmnet

Python Van Rossum et al.130 https://www.python.org/downloads/

xgboost Chen & Guestrin126 https://github.com/dmlc/xgboost

lightgbm Ke, Meng, Finley, Wang,

Chen, Ma, Ye & Liu T127
https://github.com/microsoft/LightGBM

sklearn.ensemble.RandomForestClassifier Pedregosa et al.131 https://github.com/scikit-learn/scikit-learn

sklearn.linear_model.Lasso Pedregosa et al.131 https://github.com/scikit-learn/scikit-learn

shap Lunderg & Lee134 https://github.com/shap/shap

pingouin Vallat136 https://github.com/raphaelvallat/pingouin

matplotlib Hunter137 https://github.com/matplotlib/matplotlib

seaborn Waskom138 https://github.com/mwaskom/seaborn
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performed in R (v4.2)116 using the Matchlt package.117 IBD diagnosis was defined by corresponding International Disease codes (ICD-9: 555,

556; ICD-10: K50, K51) which included both Crohn’s disease (CD) and ulcerative colitis (UC). Self-reported cases of IBD (1461, 1462, 1463) were

also considered.

The fecal-based metabolomics data in this study was gotten from the HMP2 IBDMDB. As part of the Integrative HumanMicrobiome Proj-

ect, which is carried out under the National Institute of Health (NIH), the IBDMDB followed 132 consenting subjects over a year to generate

comprehensive longitudinal molecular profiles of host and microbial activity during IBD. In this cohort, 546 fecal samples (411 IBD samples

encompassing bothCD andUC, and 135 control samples) were retrieved from the stools of 106 individuals, with an average of 5.6 samples per

person (SD = 1.2), having been followed longitudinally for up to one year each.

The datasets of both cohorts were filtered to retain only individuals with complete data for their corresponding food questionnaire. Indi-

viduals who developed IBD after baseline were excluded in both cohorts, considering ‘Age at recruitment’ (Code: 21022) for the UKBB and

‘age at consent’ for the HMP2 as the baseline ages. These included IBD participants that had a history of disease of varying years (‘Median

years since diagnosis’ in Table 1). Following filtering, multiple samples per participant within the HMP2 cohort of fecal samples were retained

where applicable. This approach allowed for data to be maximally utilized while avoiding disproportionate emphasis on specific features, as

temporal changes in the microbiome are more frequent and pronounced in IBD.52

Metabolite data pre-processing

Prior to any data processing, the UKBBdataset consisted of 168metabolites including lipids and lipoproteins, fatty acids, and small molecules

such as amino acids and metabolites related to fluid balance, inflammation, and glycolysis (refer to Table S1 for detailed information). The

HMP2 dataset contained 176 metabolites which consisted of phospholipids, amino acids and derivatives, carnitines, and more (refer to

Table S2 for detailed information). While the UKBB metabolomics data was generated using nuclear magnetic resonance (NMR),118 the

HMP2metabolomics data was generated using liquid chromatography mass spectrometry (LC-MS).119 Among the four LC-MSmethods, me-

tabolites derived from the HILIC-pos method were specifically selected. The data generation and quantification processes of the UKBB and

HMP2 metabolomics data have been detailed elsewhere.52,120

All pre-processing stepswere performedusing R (v4.3.0).117 Imputation of themissing values, which accounted for less than 1%of the data,

was employed on the UKBB datasets using ‘‘missForest’’ R package (v1.5).121 The 8.69% of the HMP2 data that were missing were imputed

with half of the minimum positive value for each column according to common practices.122 As per common metabolomics procedures,122

pareto scaling was applied to both datasets tomitigate the influence of larger features while retaining cross-feature variance. Subsequently, a

log2 transformation was conducted to address heteroscedasticity from the data and rectify skewed data distribution.123 To avoid errors in the

log transformation for zero values, a pseudo-count of 1 was added to all values, since there were only a few zeros present in the UKBB dataset

(< 1%) and none in the HMP2. Prior to removing the highly correlated features, features that represented sums of other cells and particle sizes

were removed to enhance the efficiency of correlation analysis. The exclusion of sum-related features and particle sizes ensured that well-es-

tablished features, such as sub-classes of HDL-C, were retained if possible, when found to be highly correlated with these metabolites. The

highly correlated features of the remaining 156 featureswere then filtered out at a threshold of 0.9 based on the Spearman correlationmethod

performed using the ‘‘caret’’ R package (v6.0.94).124 The resulting pre-processed datasets, derived from both UKBB (2676 samples x 37 fea-

tures) and HMP2 (494 samples x 161 features) sources, were utilized for subsequent statistical analysis and machine learning tasks.

Diet data pre-processing

The UKBB dietary data encompassed a food frequency questionnaire (FFQ) about average diet intake in the past 12months. The UKBB codes

and corresponding names of these food groups are contained in Table S3. Two types of features were observed. The values of the numerical

features (fruit, vegetables, coffee, tea, water, bread, and cereal intake) were used as is. Similar to a method applied by another study in

handling the FFQ data in the UKBB,125 the frequency of the categorical features (processed and non-processed meat, and cheese intake)

were assigned weights: never (0), less than once a week (0.07), once a week (0.14), two to four times a week (0.43), five to six times a week

(0.79), once or more daily (1). This yielded 18 final diet features: 9 numerical and 9 weighted categorical. For the HMP2, the diet data consisted

of a food questionnaire assessing food consumption frequency in the past week (Table S3). Weights were assigned as follows: no consump-

tion (0), consumed {within the past [four to seven days (0.2), two to three days (0.56)], yesterday, one to two times (0.9), yesterday, three ormore

times (1)}. Refer to Figure S3 for the boxplots of food intake frequency distributions in each group for the UKBB and HMP2 cohorts.

ML classification of IBD and non-IBD

This study tested four machine learning methods, XGBoost,126 LGBM,127 RF,128 and LASSO129 in classifying disease and non-disease.

XGBoost, LGBM, and RF make use of an ensemble of classification trees and combine the predictions frommultiple individual decision trees

to make more accurate and robust predictions, hence making them suitable for disease classification tasks. LASSO, on the other hand, is a

popular regularization algorithm for logistic regression that helps reduce the feature space and highlight key associations.

All machine learning analysis carried out in python (v3.9.13)130 was done using the ‘‘scikit-learn’’ module (v1.0.2).131 The metabolomics da-

tasets underwent an initial 80-20 train-test split. The optimization of training sets was performed using grid search (‘‘GridSearchCV’’) over pre-

defined parameter grids of the various ML models to be tested. Stratified k-fold cross-validation with 5 folds was employed within the grid

search ensuring robust model assessment and hyper-parameter tuning. The optimal grid model of each classifier was the model with the
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highest average validation AUC score. The best classifier of each dataset, based on the highest test AUC score metric, was passed into the

SHAP explainer.

Using the same test and train split data produced from python, LASSO regularization129 was implemented with bootstrapping and out-of-

bag sample assessment of themodels132,133 in R to investigate its robustness and assess the stability of the top features. With the training set,

400 bootstraps were run with the ‘glmnet’ package in R, with LASSO (alpha = 1). Lambda was optimized using 10-fold cross-validation, with

lambda chosen to be that which produces the highest AUC by 1 standard deviation. Evaluating the model at this lambda, the top features,

which were chosen as those appearingmore times than a threshold (average between the fourth and fifth quantile), and their coefficients were

extracted and visualized (see Figures S1 and S5).

Running the explainable AI on the best classifier

Following training and testing, the best classifier and test set were introduced to the SHAP (SHapley Additive exPlanations) tool in Python

(‘‘shap’’ v0.41.0).134 Metabolites with the highest impact were identified using SHAP global importance plots. SHAP local impact plots that

illustrate the contribution of each top metabolite to sample predictions were also generated. SHAP elucidates the contribution of each

feature to the model’s predictions, employing concepts from cooperative game theory to quantify feature importance.135 This approach

not only enhances model interpretability but also provides insights into the decision-making process, thereby increasing transparency in

the model’s output.

Statistical analysis of the top metabolites

The top 20 metabolites based on SHAP-based ranking were then spearman-correlated with diet features using the ‘‘pingouin’’ Python pack-

age (v0.5.3).136 The results were visualized on a circle-style heatmap generated using ‘‘matplotlib’’ in Python (v3.5.2).137 Metabolites on the

x-axis were clustered using the ‘ward’ method in the ‘‘seaborn’’ Python package (v0.11.2).138 Correlation values with absolute values above

0.1 were counted as valid. Only valid correlation values were considered significant, that is, their false discovery rates (FDR) being less

than 0.05. Further, to visualize how well each top feature predicted the samples, faceted boxplot distributions of the SHAP values of IBD

and non-IBD samples for the top metabolites of both cohorts were generated (Figure S2). Additionally, in order to also visualize the differ-

ences inmetabolite profiles between the IBD and non-IBD classes, faceted boxplot distributions of both IBD and non-IBDgroups of these top

metabolites were generated using R packages, with differential metabolites calculated using theWilcoxon rank sum test (Figure S4). All box-

plots were created using the ‘‘ggplot2’’ R package (v3.4.2), located in the ‘‘tidyverse’’ library,139 and transformed into publishable-ready plots

using ‘‘ggpubr’’ R package (v0.6.0.999).

QUANTIFICATION AND STATISTICAL ANALYSIS

In this paper, all pre-processing analysis on themetabolomics and diet data was done in R (v4.3.0), while themachine learning and explainable

AI tasks were performed in Python (v3.9.13).

Significance was determined by P-values adjusted for FDRs according to the Benjamini-Hochberg principle140 because it is less strict;

values falling below the critical FDR of 0.05 were considered significant. Significance stars were displayed on plots, when applicable, accord-

ing to the significance level (***: FDR < 0.001, ** 0.001% FDR < 0.01, *: 0.01% FDR < 0.05).

In theML tasks, the datasets were stratified by the target class when splitting between test and train, and across folds. The performances of

themodels in python were represented as themean AUC score across the folds with the 95% confidence interval, while the LASSO regression

task in R was represented as mean AUC score with SD and ages of the participants represented as median and SD (Table 1). Only individuals

with complete diet data were included, as well as only those that already had IBD at baseline.

Differences between the IBD and non-IBD groups were calculated using either theWilcoxon rank sum test or the Chi-square test, depend-

ing on the nature of the data (refer to Table 1; Figure S4). Although both transformed datasets had a normal distribution, confirmed by the

shapiro-wilk,141 non-parametric tests like theWilcoxon rank sum test and spearman-based correlation methodwere used due to their robust-

ness to outliers and independence from specific distributional assumptions.
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