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Abstract

Despite effective antiretroviral therapy (ART), HIV-associated neurocognitive disorders

(HAND) are found in nearly one-third of patients. Using a cellular co-culture system including

neurons and human microglia infected with HIV (hμglia/HIV), we investigated the hypothesis

that HIV-dependent neurological degeneration results from the periodic emergence of HIV

from latency within microglial cells in response to neuronal damage or inflammatory signals.

When a clonal hμglia/HIV population (HC69) expressing HIV, or HIV infected human pri-

mary and iPSC-derived microglial cells, were cultured for a short-term (24 h) with healthy

neurons, HIV was silenced. The neuron-dependent induction of latency in HC69 cells was

recapitulated using induced pluripotent stem cell (iPSC)-derived GABAergic cortical (iCort)

and dopaminergic (iDopaNer), but not motor (iMotorNer), neurons. By contrast, damaged

neurons induce HIV expression in latently infected microglial cells. After 48–72 h co-culture,

low levels of HIV expression appear to damage neurons, which further enhances HIV

expression. There was a marked reduction in intact dendrites staining for microtubule asso-

ciated protein 2 (MAP2) in the neurons exposed to HIV-expressing microglial cells, indicat-

ing extensive dendritic pruning. To model neurotoxicity induced by methamphetamine

(METH), we treated cells with nM levels of METH and suboptimal levels of poly (I:C), a

TLR3 agonist that mimics the effects of the circulating bacterial rRNA found in HIV infected

patients. This combination of agents potently induced HIV expression, with the METH effect

mediated by the σ1 receptor (σ1R). In co-cultures of HC69 cells with iCort neurons, the com-

bination of METH and poly(I:C) induced HIV expression and dendritic damage beyond lev-

els seen using either agent alone, Thus, our results demonstrate that the cross-talk between

healthy neurons and microglia modulates HIV expression, while HIV expression impairs this

intrinsic molecular mechanism resulting in the excessive and uncontrolled stimulation of

microglia-mediated neurotoxicity.
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Author summary

Now that HIV patients are living longer due to improved anti-retroviral therapy, the prev-

alence of HIV-associated neurocognitive disorders (HAND) is rising. HAND is linked to

chronic inflammation and microgliosis and is exacerbated by substances of abuse such as

methamphetamine (METH). Using co-culture models of neurons and microglia, we dem-

onstrate that healthy neurons can suppress HIV transcription in infected microglia over a

short-term (24 h). By contrast, damaged neurons reactivate latent HIV expression. Thus,

over a longer term (72 h), neurons lose the ability to suppress HIV expression, resulting in

enhanced neural injury. This damaging cycle of latency reversal and neuronal degenera-

tion can be exacerbated by METH and inflammation. Our results support the hypothesis

that the dendritic simplification and neuronal injury associated with HAND results from

viral reactivation induced by neuronal and microglial cross-talk and exogenous inflamma-

tory stimuli.

Introduction

Approximately 30% of the HIV-infected individuals on combination anti-retroviral treatments

(cART) display symptoms of cognitive impairment and central nervous system (CNS) pathol-

ogy, a syndrome known as HIV-associated neurocognitive disorders (HAND) [1–5]. While

the incidence of outright HIV-associated dementia (HAD), which is due to the neurological

damage induced by actively replicating HIV, has sharply declined due to effective cART, the

prevalence of the milder HAND conditions remains high [5, 6], and is expected to increase

further as the HIV infected population ages [7]. In the US, 10–15% of HIV patients acknowl-

edge METH use [8], which exacerbates the effects of HIV infection in the CNS [9, 10] due to a

combination of neurotoxic effects and the enhancement of HIV replication in microglia [11–

14]. There is compelling evidence that HIV exacerbates age-associated cognitive decline and

diminishes neuropsychological performance across multiple cognitive domains [7, 15].

HIV-1 replication in the CNS is initiated from invading monocytes and CD4+ T cells, and

then spreads to microglial cells and, arguably, astrocytes within the brain parenchyma [16–27].

Definitive evidence that HIV replicates in myeloid lineage cells within the CNS comes from

the observation that HAD patients harbor macrophage-tropic HIV-1 variants that grow selec-

tively in the CNS [21, 28–31]. A consequence of HIV-1 replication in longer-lived cell types in

the brain, including microglia, is that virus is depleted more slowly in the cerebrospinal fluid

(CSF) than virus in the peripheral circulation after the initiation of therapy [32]. Minimal viral

replication still persists in the CNS [33, 34], especially in microglia and perivascular macro-

phages [35], in part because not all anti-HIV drugs are able to cross the blood-brain barrier

with high efficiency. However, latent infections of microglial cells and astrocytes also appear to

contribute to the long-term persistence of HIV in the CNS [36–44].

Microglia constitute the first barrier of the innate immune response in the CNS [45]. They

constantly survey the brain parenchyma to detect physiological changes and then migrate to

regions of damage, where they become activated [46]. Normally, the activation of microglia in

response to inflammatory stimuli is characterized by a transition from a resting state (M0

cells) to an activated proinflammatory phenotype (M1 cells). It is generally believed that over-

activated microglia exacerbate neuronal injury through the synthesis and secretion of proin-

flammatory and cytotoxic factors [47, 48]. Therefore, in NeuroHIV, microglia-mediated neu-

ronal injury appears to result from excitotoxicity [49, 50], which disrupts the intrinsic
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molecular mechanisms that control ion homeostasis and energy production in neurons [51–

53].

HIV-1 neuropathology arises because of the combined neurotoxic effects of the viral pro-

teins and exaggerated inflammatory responses by microglial cells. The HIV proteins Tat [54–

67], gp120 [66, 68–71], Vpr [72, 73], and Nef [74–78] can directly induce neuronal damage.

Additionally, microglia can contribute to neurodegeneration through the release of cytokines

and toxins that damage neurons and astrocytes [79–81]. The natural control mechanisms pre-

venting over-activation of microglial cells are likely to be impaired as a consequence of HIV

infection. HIV-infected microglia respond vigorously to proinflammatory signals and produce

an excess of cytokines [37, 39]. Importantly, neuronal dysfunction does not correlate with the

number of HIV-infected cells or viral antigens in CNS [82, 83], but rather with elevated

inflammatory cytokine levels. Elevated TNF-α mRNA levels in microglia and astrocytes [82,

84] and high levels of IL-1β and TNF-α are seen in the CNS of patients with HAD [85, 86].

Similarly, increased IL-6 and IL-8 levels are found in the brains of HIV-1 infected patients [4,

87]. Immune-activated HIV-infected, brain-infiltrating macrophages and resident microglia

release high levels of neurotoxic cytokines such as TNF-α and IL-1β [88].

Co-culture systems have been used extensively to study neuron-glia interactions and,

because of the ability to measure the contribution of each cell type individually, are highly

valuable tools to understand neuronal-microglial cross-talk [89–96]. Here, we developed a

series of co-culture systems to study the impact of HIV expression in infected microglial cells

on their interactions with neurons. Using LUHMES-derived neurons, which have been exten-

sively use to study neurodegenerative processes because of their dopaminergic-like features

[97], and iPSC-derived primary neurons, in co-culture with hμglia/HIV as a platform to study

the effect of neuronal and microglial interactions on the regulation of HIV expression in the

CNS, we found unexpectedly that healthy neurons induce HIV silencing in microglia and pre-

vent spontaneous HIV reactivation in latent hμglia/HIV cells. By contrast, damaged neurons

increased HIV expression in microglial cells. In addition, we found that METH, which can

induce HIV expression in hμglia/HIV cells in a σ1R-dependent manner, sensitizes microglial

cells to proinflammatory agents and exacerbates neurodegeneration in the neuronal-microglial

co-cultures. We conclude that HIV expression disrupts the normal interplay between micro-

glia and neurons and thereby induces neurodegeneration.

Results

Establishment of a co-culture system between LUHMES-derived neurons

and μglia/HIV cells

We have shown previously that HIV readily establishes latency in immortalized human micro-

glial cells [36–39]. In order to understand how neuronal and microglial cross-talk regulates

HIV latency in the brain, we first established a co-culture system between LUHMES-derived

neurons and human microglia infected with HIV reporter viruses (Fig 1). Undifferentiated

Lund human mesencephalic (LUHMES) cells, obtained from ATCC (CRL-2927) and origi-

nally developed and characterized at Lund University (Lund, Sweden) [98, 99], carrying a vec-

tor expressing red fluorescent protein (RFP) to allow cell visualization were kindly provided by

Dr. Stefan Schildknecht (Konstanz, Germany) [100]. The cells were expanded in neuronal

growth medium (NGM) for 4 days. After 4-days, NGM was replaced by a modified neuronal

differentiation medium (mNDM), to inhibit the expansion of neuronal precursors and induce

differentiation into dopaminergic neurons [99]. After differentiation for 1 day, immortalized

human microglial cells (hμglia) infected with an HIV vector carrying a green fluorescence pro-

tein (GFP) reporter (e.g. HC69 cells) [36, 37, 39], were plated on top of the neurons, typically
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at a ratio of 3 microglia per 25 neurons (Fig 1). The co-cultures could be maintained for up to

96 h and HIV expression and neuronal damage quantitatively and qualitatively evaluated

using molecular, biochemical, flow cytometric, and morphologic endpoints.

A critical technical step in developing the co-culture system was to develop a culture

medium that maximized survival for both the neurons and the microglia (S1 Fig). We found

that a low concentration of fetal bovine serum (FBS 0.2%), was optimal to maintain microglial

viability, but higher concentrations of FBS were toxic for the neurons. To further preserve

microglial viability, the FBS was enriched with 1X insulin-transferrin-sodium selenite supple-

ment in the final mNDM formulation.

Neurons silence HIV in a density-dependent manner

We have previously shown that HC69 cells undergo spontaneous HIV reactivation due to

autocrine expression of TNF-α [39]. HIV reactivation could be potently repressed by addition

of the glucocorticoid receptor agonist dexamethasone (DEXA), which blocked both HIV and

Fig 1. Establishment of a neurons-hμglia/HIV co-culture system. The time line is indicated by the large black arrow, with the corresponding day number

shown in red. Undifferentiated, neuron precursor cells LUHMES/RFP are plated and allowed to expand for 2 days prior to transferring to the experimental

wells at 500,000 neurons per well of a six-well plate at day 0. After 2 days, the neuronal differentiation is initiated by adding modified neuronal

differentiation medium (mNDM). After differentiation for 1 day, 60,000 immortalized human microglial cells (hμglia/HIV) carrying a single round HIV

construct with a GFP reporter (diagrammed, bottom left) are added. The viability of the neurons and the expression levels of HIV are monitored for 3 days.

https://doi.org/10.1371/journal.ppat.1008249.g001
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proinflammatory cytokine production [39]. To determine the effect of neurons on spontane-

ous HIV expression, a mixed population of HC69 (hμglia/HIV cells) containing a combination

of both GFP+ and GFP- cells, were co-cultured with LUHMES-derived neurons, as described

above. Cultures were established at three different neuronal densities: 100 neurons per mm2,

(a ratio 10:6 of neurons:HC69 microglial cells), 300 neurons per mm2 (25:6, neurons:HC69),

and 600 neurons per mm2 (50:6, neurons:HC69). HIV expression was then evaluated after 24

h, using microglia cultured without neurons as a control. Flow cytometry and fluorescence

microscopy (Fig 2A) analyses demonstrated that HIV expression declines as the ratio of neu-

rons:microglia is increased. The impact of neurons on HIV expression was evaluated over a

time course ranging from 0 to 36 h (Fig 2B). At 36 h, the percent of HIV expression (Y-axis)

was reduced significantly from ~45% in HC69 cells cultured without neurons (red line and

squares) to ~25% when 100 neurons per mm2 were present (a 10:6 ratio). At higher ratios

there was a further reduction to ~8%. There was no significant neurotoxicity in these co-cul-

tures, with neuron viability remaining above ~90%, as measured by the resazurin assay (Fig

2C).

The gating strategy used to measure GFP expression in the microglial cells (CD14+ cells) by

flow cytometry, and avoid counting neurons, is shown in S3 Fig. Gating on hμglia in the FSC

vs. SCC scatter plot resulted in ~100% CD14+ cells and can be used instead of staining for

CD14.

In control experiments, to rule-out the possibility that the observed decreased in GFP

expression in HC69 cells exposed to neurons was due to microglia-specific cell death or toxic-

ity, we measured both the growth rate and the level of toxicity of the microglial population in

the presence and absence of neurons. After 24 h co-culture, there was no statistically signifi-

cant difference in cell growth or toxicity level (Y-axis) between microglia cultured in the pres-

ence of neurons and control cultures at any of the three neuronal densities used (X-axis) (S2

Fig).

iPSC-derived GABAergic cortical and dopaminergic neurons induce HIV

silencing

To demonstrate that primary neurons are also capable of silencing HIV, HC69 cells were co-

cultured with iPSC-derived GABAergic cortical (iCort), dopaminergic (iDopaNer), or motor

(iMotorNer) neurons at a ratio of 50 neurons:6 microglia (Fig 3), which was the proportion of

LUHMES cells to microglia that caused the greatest suppression of HIV expression. As shown

in Fig 3, the cortical and dopaminergic neurons, but not motor neurons, attenuated HIV

expression in HC69 cells, as shown by both fluorescence microscopy (Fig 3A) and flow cytom-

etry (Fig 3B). HIV expression in HC69 cells was reduced from 52.34 ± 6.09% to 16.36 ± 3.44%

(p< 10−7), after co-culture with iPSC-derived cortical neurons. Similarly, dopaminergic neu-

rons decreased HIV expression in HC69 cells to 26.34 ± 8.84% (p< 10−7). HIV expression was

not significantly inhibited by motor neurons (Fig 3B).

To verify the differentiation of the neurons, iPSC-derived neurons were analyzed by immu-

nocytochemical detection using phenotype-specific antibodies against GABAergic, dopami-

nergic, and cholinergic neuronal markers, respectively, glutamate decarboxylase (GAD65/67),

dopaminergic transporter (DAT), and acetylcholinesterase (AchE) (Fig 3C). The pan-neuro-

nal marker beta-TUJ [101, 102] (S4 Fig), dendritic marker MAP2 [103] (S5 Fig), and neuronal

receptor marker CXCR3 [104] (S6 Fig) were used as positive controls. As expected, the three

iPSC cell lineages, as well as LUHMES-derived neurons, stained positive for these proteins.

The microglial marker CD11b/c [105–107] was used as a negative control and, as expected, all

the neurons were CD11b/c-negative (S7 Fig). LUHMES-derived neurons stained positive for
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Fig 2. LUHMES-derived neurons inhibit HIV expression. 60,000 HC69 (hμglia/HIV) cells were plated in the absence or presence of increasing densities of LUHMES-

derived neurons (Cells/mm2). The level of HIV expression was evaluated after 24 h by flow cytometry and fluorescence microscopy. (A) Flow cytometry profiles from

representative single cultures (top) and microscopy (bottom). In the histograms GFP+ cells are indicated in bright green. Microglia were identified by phase contrast

microscopy and are outlined by the white contours on the micrographs. (B) Progressive inhibition of HIV expression (Y-axis) at increasing neuronal densities during a

time-course of 36 h (X-axis). The error bars represent the SD of n = 3 independent experiments. (C) Resazurin assay to evaluate neuronal viability. The resazurin

reduction values (Y-axis) were normalized to the control culture of neurons alone. Each colored symbol represents one experiment. There was no statistically significant

(N.S.) differences in cell viability in these experiments.

https://doi.org/10.1371/journal.ppat.1008249.g002
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all three phenotype-specific markers GAD65/67 (S8 Fig), DAT (S9 Fig), and AchE (S10 Fig).

iPSC-derived GABAergic cortical neurons strongly expressed GAD65/67, a specific marker of

inhibitory GABAergic neurons [108], and only expressed DAT or AchE at low levels (Fig 3C

and S8–S10 Figs). iPSC-derived dopaminergic neurons strongly expressed DAT, a dopami-

nergic neuron-specific marker [109, 110], and had reduced levels of AchE, and very low levels

of GAD65/67 (Fig 3C and S8–S10 Figs). iPSC-derived motor neurons were positive for AchE

Fig 3. iPSC-derived neurons repress HIV expression. (A) 60,000 hμglia/HIV HC69 cells were plated in the presence of 0.5 x 106 LUHMES-derived neurons (as positive

control) or 0.5 x 106 iPSC-derived GABAergic cortical (iCort), dopaminergic (iDopaNer) or motor neurons (iMotorNer). HIV expression was evaluated after 24 h by

fluorescence microscopy. Microglia identified by phase contrast microscopy are outlined by the white contours. (B) Flow cytometric analysis of microglial cell GFP

expression. The p-values of pair-sample, Student’s t-tests comparing the microglial cells cultured alone or in the presence of neurons are shown. Individual independent

experiments are color coded (n = number of independent samples). N.S.: non-significant. (C) Identification of differentiation of iPSC-derived neurons. Super-imposed

images of DAPI stained nuclei (blue) and Alexa-Fluor 488 stained neuronal antigens (green) are shown. Neurons were stained with antibodies against GAD65/67, DAT,

and AchE and Alexa Fluor 488-conjugated anti-rabbit secondary antibody.

https://doi.org/10.1371/journal.ppat.1008249.g003
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[111–113] and practically negative for DAT or GAD65/67 (Fig 3C and S8–S10 Figs). The rela-

tive level of expression of these neuronal markers are summarized in Table 1.

Only neurons are able to induce efficient HIV silencing in microglial cells

In order to address the specificity of neurons in inducing HIV latency in infected microglial

cells, HC69 cells were co-cultured in the absence or presence of two non-neuronal cell lines,

293T cells and primary human foreskin fibroblasts (HFF) (S11 Fig). After co-culture for 24 h,

293 T cells and HFF failed to significantly decrease HIV expression in HC69 cells, as measured

by flow cytometry (profiles (S11A Fig). Quantitation of three similar experiments (S11B Fig)

showed that a slight decrease in HIV expression induced by HFF cells was not significant. Sim-

ilarly, there was no significant toxicity detected in these co-cultures (S11C Fig), as measured

by the resazurin assay. DEXA, a known inducer of HIV latency in microglial cells, was used as

a positive control [39].

Similarly, neither iCort nor LUHMES neuronal cells were able to significantly reduce HIV

expression in THP-1/HIV (A3) cells, a monocytic cell line [37], or Jurkat/HIV (2D10), a T-cell

line [114] (S12 Fig). The ERK kinase inhibitor U0126, which has been shown to block HIV

expression [115], was used as positive control in these experiments.

Human iPSC-derived neurons can induce HIV latency in infected human

primary microglia

In order to verify that primary neuronal cells are also able to induce HIV latency in infected

primary microglial cells, we co-cultured both HIV-infected human primary microglial cells

and iPSC-derived microglial cells with either primary neurons or iPSC-derived GABAergic

cortical neurons. The primary and iPSC-derived microglial cells were infected with VSVG-

HIV-GFP viruses using the protocols we established for immortalized human microglial cells

[36–39]. To confirm latency in the primary microglial cells, the cells were cultured in presence

DEXA, to induce HIV silencing, and reactivated with TNF-α, to induce any silenced provi-

ruses in the culture (Fig 4). Both primary microglial (MG) (Fig 4A) and iPSC-induced

microglial (iMG) (Fig 4B) cells can be readily infected with VSVG-HIV-GFP viruses. Approxi-

mately 40% of the MG cells and 30% of the iMG cells expressed HIV (GFP) at 72 h post infec-

tion (hpi). After treatment with DEXA for 24 h, virtually none of the infected MG or iMG cells

expressed HIV. Treatment of the infected cells by TNF-α for 16 h increased the proportion of

GFP+ cells in the culture by 25 to 50%.

The availability of HIV-infected primary MG and iMG cells permitted us to perform co-

culture experiments in an entirely primary cell context using human primary neurons (Pri-

mary HN) and iCort neurons (Fig 5). The cells were cultured at a ratio of 50 neurons:6 micro-

glia. Because of the limited numbers of cells that were available this experiment was performed

semi-quantitatively using fluorescent microscopy. Nonetheless it is evident that Primary neu-

rons were able to reduce HIV expression in both primary MG (Fig 5A) and iMG cells (Fig 5B)

by more than 90%. The iCort neurons were able to reduce HIV expression both primary MG

(Fig 5A) and iMG cells (Fig 5B) by more than 50%.

We have reported previously that HIV expression increases spontaneously in cultured

hμglia/HIV cells due to autocrine production of TNF-α, potentially a consequence of the lack

of neuronal inhibitory signals [39]. Because neurons were able to inhibit HIV expression in

HC69 cells, at least in the short-term (Figs 2 and 3), we investigated whether neurons would

also prevent spontaneous viral reactivation. A population of GFP- cells were prepared by cell

sorting from the mixed HC69 cell population, and co-cultured in the absence or presence of
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LUHMES-derived neurons. Viral transcription was then evaluated using flow cytometry and

fluorescence microscopy (Fig 6).

In the absence of neurons, there was a 13% increase in GFP+ cells (from ~9% to ~22%) after

72 h, indicating the emergence of HIV from latency. In the presence of neurons, viral rebound

was inhibited and GFP levels remained at ~8% as seen by the representative flow cytometry

Table 1. Level of expression of neuronal markers in different neuronal cell types.

Marker LUHMES Cortical Dopaminergic Motor

beta-TUJ +++ ++ +++ +++

MAP2 +++ +++ +++ +++

CXCR3 + +++ +++ ++

CD11b/c - - - -

GAD65/67 +++ +++ + +

DAT +++ + +++ +

AchE +++ + ++ +++

https://doi.org/10.1371/journal.ppat.1008249.t001

Fig 4. Human primary and iPSC-derived microglia infected with VSVG-HIV-GFP can establish latent infections. (A) Human

primary microglial (MG) cells. (B) iPSC-derived microglial (iMG cells). Each cell type was infected with VSVG-HIV-GFP viruses for 72 h

and GFP-expressing cells visualized by fluorescence microscopy. The infected cells were then either treated with DEXA (1 μM) for 24 h or

with TNF-α (200 pg/mL) for 16 h and the proportion of GFP-expressing cells measured by fluorescence microscopy.

https://doi.org/10.1371/journal.ppat.1008249.g004
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profiles (Fig 6A) and microscopy (Fig 6B). Quantitation of multiple experiments (Fig 6C)

showed that in the absence of neurons, HIV expression increased, on average, from

7.73 ± 2.59% at 24 h to 26.40 ± 6.79% (p< 10−3) at 72 h, whereas in the presence of neurons,

HIV expression remained at basal levels and did not vary significantly (N.S.). Neuronal viabil-

ity, as measured using the resazurin reduction method, was unaffected after 24 h of co-culture

Fig 5. Primary neurons silence HIV expression in primary microglia. (A) Human primary microglial (MG) cells. (B) iPSC-derived

microglial (iMG cells). For each cell type, 60 x 103 cells were plated in the absence or presence of 0.5 x 106 human primary neurons

(Primary HN) or iPSC-derived GABAergic cortical neurons (iCort). HIV expression was evaluated after 24 h by fluorescence microscopy.

Microglia identified by phase contrast microscopy are outlined by the white contours. Healthy neurons prevent spontaneous HIV

reactivation in GFP- cells.

https://doi.org/10.1371/journal.ppat.1008249.g005
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with HC69 cells. There was a significant decrease in neuronal viability to 54.00 ± 10.20%

(p< 10−3) at 72 h (Fig 6D). For comparison, the neuronal toxin MPP+ decreased neuronal via-

bility to 28.40 ± 11.89% (p< 10−3). The increased neuronal toxicity at 72 h (Fig 6D) maybe

Fig 6. Neurons prevent HIV emergence from latency. (A) Flow cytometry profiles of representative single cultures. hμglia/HIV HC69 cells were sorted into a GFP- cell

population and cultured in the presence or absence of neurons. GFP expression was measured after 24 h or 72 h. (B) Microscopy of HC69 cells unexposed or exposed to

neurons for 24 or 72 h. Microglial cells are outlined by a white dashed-line. (C) Quantitation of GFP expression. (D) Resazurin assay to evaluate neuronal viability. The

resazurin reduction values (Y-axis) plotted are referenced to the control culture (neurons only), set at 100%. MPP+ was used a positive control for resazurin reduction. For

both (C) and (D), the p-values of pair-sample t-tests of multiple experiments (n = number of independent samples) comparing the unexposed vs. the exposed cells are

shown. N.S.: non-significant. Individual experimental series are color-coded.

https://doi.org/10.1371/journal.ppat.1008249.g006
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due to the partial inhibition of HIV expression, which may be sufficient to induce neuronal

damage.

In order to rule-out the possibility that the observed block to HIV spontaneous reactivation

in HC69 cells exposed to neurons was due to microglia-specific cell death or toxicity, we mea-

sured both the growth rate and the level of toxicity of the microglia population at 24 and 72 h.

At both time-points, no statistically significant (N.S.) difference was observed in cell growth or

toxicity level (Y-axis) between microglia cultured in the absence of neurons and microglia cul-

tured in the presence of neurons (X-axis) (S13 Fig).

Neuronal damage induces HIV expression

In the previous experiments, we showed that both LHUMES-derived and primary neurons

can block HIV expression in microglial cells. To evaluate whether neuronal damage could

reverse this repressive signal, HC69 cells sorted into GFP− and GFP+ subpopulations and co-

cultured for 24 h with either healthy neurons or neurons damaged by treatment with 0.05%

trypsin [36] (Fig 7). Flow cytometry analysis of GFP expression in CD14+ cells from a repre-

sentative experiment showed that, as expected, co-culture with healthy neurons slightly

decreased HIV expression in the GFP− cells from ~15% to ~10% (Fig 6A). By contrast, co-cul-

ture with damaged neurons had the opposite effect and increased GFP expression to ~19%.

The healthy neurons strongly decreased HIV expression in GFP+ cells (from ~78% to ~34%),

whereas damaged neurons slightly increased it (from 78% to ~90%). Quantitation of multiple

independent experiments (S14 Fig) indicated that healthy neurons reduced HIV expression in

GFP− cells from 13.99 ± 3.14% to 11.05 ± 2.50% (p< 10−3), whereas damaged neurons

increased it up to 23.28 ± 1.68%; p< 0.05). In contrast, healthy neurons decreased HIV expres-

sion in GFP+ cells (from 77.03 ± 9.84% to 44.99 ± 8.98% (p = 0.003)), whereas damaged neu-

rons had no effect (88.11 ± 7.52%; N.S.).

To further investigate the effect of damaged neurons in modulating HIV expression in

infected microglia, we systematically varied the ratio of healthy and damaged neurons. As

shown in Fig 2 and Fig 7B, increasing the proportion of healthy neurons resulted in the pro-

gressive silencing of HIV and decreased from 44.14 ± 1.82% to a minimum of 11.19 ± 0.87%.

By contrast when 0.6 x 105 HC69 cells were co-cultured in the presence of 0.5 x 106 damaged

LUHMES-derived neurons, HIV expression increased from 44.14 ± 1.82% to 65.94 ± 4.06%

(p = 0.0011). The inductive effect of the damaged neurons was ameliorated by the addition of

healthy neurons. For example, when the co-cultures included 0.5 x 103 damaged and 0.3 x 106

healthy neurons, HIV expression decreased to 46.19 ± 0.41%. Similarly, when the co-cultures

included 0.5 x 103 damaged and 0.5 x 106 healthy neurons, HIV expression decreased to

29.15 ± 7.88%.

In a complementary set of experiments (Fig 7C), 0.6 x 105 HC69 cells were co-cultured for

24 h with different ratios of damaged (D) and healthy (H) neurons at a fixed concentration of

0.5 x 106 neurons. In the presence of 0.5 x 106 damaged neurons, HIV expression increased

from 34.31 ± 4.55% to 59.65 ± 9.37% (p = 0.026), consistent with the previous results. As the

proportion of healthy neurons in the co-culture increased and the number of damaged neu-

rons decreased, HIV was progressively silenced. For example, at a ratio of 3:2 damaged to

healthy neurons, HIV expression remained unchanged (32.76 ± 3.82%) compared to the con-

trol microglial cells (Day 0). At a ratio of 2:3 damaged to healthy neurons, HIV expression sig-

nificantly decreased 24.97 ± 4.66% (p = 0.040). At a 1:4 ratio, HIV expression decreased to

13.85 ± 2.31% (p = 0.027), which was close in value to 10.99 ± 2.06% (p = 0.025) seen in the

absence of damaged neurons. Thus, damaged neurons present microglial activation signals

that enhanced HIV expression.
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Fig 7. Effect of healthy neurons vs. damaged neurons on HIV expression. (A) Representative flow cytometry profiles. hμglia/HIV HC69 cells were sorted into GFP-

and GFP+ cells. Each population was expanded for 48 h prior to collection and co-cultured with either healthy neurons or damaged neurons at a ratio of 50:6. GFP (X-

axis) and CD14 (Y-axis) expression, and the percentage of GFP+ cells that were CD14+ is shown. Isotype controls for the anti-CD14 antibody were performed for both the

GFP+ and GFP- populations (left). (B) Quantitation of GFP expression. 60 x 103 HC69 cells were co-cultured in the presence of an increasing number of healthy (H)

neurons in the absence damaged (H) neurons (X-axis) for 24 h prior to measuring GFP expression (Y-axis) (left). In parallel experiments, microglial cells were co-

cultured with increasing numbers of healthy (H) neurons in the presence of 500 x 103 damaged (D) neurons (right). (C) Quantitation of GFP expression. 60 x 103 HC69

cells were co-cultured in the presence of 500 x 103 total neurons at the indicated ratios of damaged (D) to healthy (H) neurons (X-axis) for 24 h prior to measuring GFP

expression (Y-axis). Diamonds of similar color represent an individual experimental series. (n = number of individual samples). The p-values of paired-sample t-tests

comparing the unexposed vs. exposed cells are shown. N.S.; non-significant.

https://doi.org/10.1371/journal.ppat.1008249.g007
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HIV expression rebounds in longer-term cultures with neurons

We next examined the effect of neurons on HIV expression in HC69 cells over a culture period

of 4 days. A co-culture of LUHMES-derived neurons and GFP+ HC69 cells was established,

and HIV expression and neuronal viability were monitored after 24, 72, and 96 h by micros-

copy and flow cytometry. As described above (Figs 2 and 3), neurons induced HIV to enter

latency in a significant population of HC69 HIV-expressing cells after 24 h, as demonstrated

by reductions in the number of green, GFP+ cells (Fig 8A & 8B). At 24 h, neuronal viability, as

measured by resazurin reduction, was comparable to time zero (Fig 8B; ~100%). After 72 h,

the number of GFP+ cells increased from ~30% to ~50% (Fig 8B), and this correlated with a

reduction of neuronal viability (resazurin ~65%) and the relative proportion of live neurons

counted (down to ~50%). By 96 h, the proportion of GFP+ cells increased reaching ~60% (Fig

8B), while resazurin reduced the proportion of neurons to ~45% and percent of live neurons

to ~30% (Fig 8B).

HIV expression in microglial cells induces neuronal damage

In order to demonstrate that the neuronal damage in the longer-term co-culture experiments

was, at least in part, the result of the HIV expression, LUHMES-derived neurons were co-cul-

tured (10:1 ratio) in the absence or presence of either C20 cells (the uninfected parental cell

line) or HC20 cells (a mixed population of C20 cells infected with the HIV reporter) [36, 37].

After 96 h, neurons in the co-cultures were detected by immunocytochemistry with either

anti-beta-TUJ antibody or anti-MAP2 antibody (Red), cultures were then stained with DAPI

(Blue) (Fig 9). The green (GFP) cells are HC20 cells induced to express HIV. In the cultures

with HC20 cells, there was relatively little reduction in the number of beta-TUJ positive cells

compared to control C20 cells, indicating preservation of axons. By contrast, there was a

marked reduction in intact dendrites as assessed by reductions in microtubule associated pro-

tein 2 (MAP2) immunoreactivity in neurons exposed to HIV-infected microglial cells, indicat-

ing extensive dendritic pruning.

Western blot analyses were also conducted to assess the extent of neuronal damage (S15

Fig). In these experiments, LUHMES-derived neurons were co-cultured in the absence or

presence of C20 cells or HC69 cells, a clonal derivative of HC20 cells [36]. To maximize HIV

expression, the HC69 cells were pre-treated with TNF-α or poly (I:C), a TLR3 agonist that

mimics the effects of circulating bacterial rRNA and potently induces HIV by activation of

IRF3 [37]. High levels of expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid receptor (AMPA receptor) [116–118], increased the phosphorylation of MAP2 (p-MAP2)

[119, 120] and decreased phosphorylated synapsin I (p-synapsin) [121], which are both associ-

ated with neurodegeneration. Analysis of representative western blots showed no statistically

significant (N.S.) difference between the effect of pre-activated C20 and pre-activated HC69

cells (S15B Fig), despite apparent increases in the expression of AMPA receptors in the pres-

ence of pre-activated microglia (S15A Fig). p(S136)-MAP2 levels increased more strongly

with both TNF-α- and poly (I:C)-pre-activated HC69 than with similarly activated C20 cells

(S15A Fig). p(S136)-MAP2 levels also showed significantly greater induction with TNF-α-pre-

activated HC69 cells than with TNF-α-pre-activated C20 cells (p = 0.027). Similarly, poly (I:

C)-pre-activated HC69 showed higher p(S136)-MAP2 levels than poly (I:C)-pre-activated C20

(p = 0.020). In contrast, p-synapsin levels (S15A Fig), were significantly lower in neurons

exposed to TNF-α-pre-activated HC69 compared to C20 cells (p< 0.0001), but not altered

when comparing neurons exposed to poly (I:C)-pre-activated HC69 or C20 cells (N.S.). Inter-

estingly, based on the resazurin reduction method (S15C Fig), TNF-α- or poly (I:C)-pre-
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activated HC69 cells induced significantly more neuronal damage than TNF-α-pre-activated

C20 cells (p = 0.048 and p = 0.030, respectively).

We also observed extensive neuronal damage following HIV induction when LUHMES-

derived neurons were co-cultured (10:1 ratio) with rat-derived microglia CHME-5 cells [36].

Co-culture experiments were performed using either uninfected CHME-5 cells, cells that were

latently-infected with the HIV reporter, or latently infected cells that were induced by treat-

ment with TNF-α (100 ng/mL) (S16A Fig). After 48 h, the co-cultures were immunostained

with anti-MAP2 antibody (Red) and the nuclei were visualized with DAPI (Blue). Green

(GFP) cells are activated CHME-5/HIV. When neurons were co-cultured with uninfected

CHME-5 cells, activation with TNF-α induced relatively little neuronal injury, as evidence by

the reduced number of MAP2 immunoreactive neuronal dendrites. However, when neurons

were co-cultured with CHME-5/HIV cells, addition of TNF-α greatly exacerbated neuronal

damage, as evidenced by marked dendritic pruning compared to CHME-5 cells in the pres-

ence of TNF-α.

A similar effect was observed when we measured the effect of TNF-α-pre-activated CHME-

5 and CHME-5/HIV cells on neuronal viability by measuring the relative number of healthy

neurons visually and manually counted in time-lapse experiments. CHME-5/HIV cells, which

are a rat cell model for HIV latency [36], decreased neuronal viability from 100% to ~35%

(pink), compared to the co-cultured with CHME-5 cells (down to ~75%; blue) or neurons

alone (black), where viability remained above 90% for the duration of the experiment (S16B

Fig).

METH induces HIV expression in hμglia/HIV cells in a σ1R-dependent

manner

We have shown previously that high concentrations of METH induce HIV reactivation in rat

CHME-5/HIV cells [13]. To test the ability of METH to reactivate HIV in hμglia/HIV cells,

Fig 8. HIV expression rebounds in microglia exposed to neurons. (A) Super-imposed phase contrast and fluorescence images of HC69 GFP+ cells exposed to

neurons for 24, 72, or 96 h. Microglial cells are outlined by the white contours. (B) Quantitation of GFP expression (red), relative resazurin reduction (blue), and

relative live neuron counts (purple), Y-axis, vs. Time, X-axis. Error bars: standard deviation (n = 3).

https://doi.org/10.1371/journal.ppat.1008249.g008
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HC69 cells were incubated with 50 to 500 μM METH (Fig 10). These concentrations are in

excess of the 100 nM to 10 μM METH levels seen in chronic drug abusers [122], but were cho-

sen to evaluate the maximal level of METH that did not induce cytotoxicity. At the high

METH concentrations, over a 96 h time course there was a progressive increase in HIV expres-

sion, as demonstrated by the levels of GFP+ cells in the population (Fig 10A).

HIV was not reactivated during the first two days at any of the tested drug concentrations

but became evident after 3 days at METH concentrations above 100 μM (Fig 10A). At 50 μM

(blue circles and line), there was no effect on HIV reactivation (Fig 10A) or cell viability as

assessed by propidium iodide (PI) exclusion (Fig 10B) compared to untreated controls during

the course of the 5 days (0 μM; red squares and line). At 100 μM (yellow triangles and line),

HIV reactivation was higher than in controls from day 3 (Fig 10A), but viability was somewhat

compromised compared to untreated cells (Fig 10B; ~ 91% vs. ~ 86% at day 3, ~ 89% vs. 81%

at day 4, and ~ 93% vs. 73% at day 5). At 300 μM and 500 μM METH, HIV reactivation was

maximal (Fig 10A) but cell viability was compromised. Flow cytometry histograms for cells

treated with 300 μM METH from a similar experiment are shown in S17 Fig. No activation

Fig 9. Activated human microglia/HIV induce neuronal damage. LUHMES-derived neurons were co-cultured with hμglia clone C20 or mixed population of cells that

had been infected with HIV (HC20). Top: The neurons or co-cultures were stained with anti-beta-TUJ antibody (Red). Bottom: Neurons were co-cultured with C20 or

HC20 cells and stained with anti-MAP2 (Red). Green: GFP expression in activated HC20 cells. Red: Alexa Fluor 488 antibodies were used as secondary antibodies. Blue:

DAPI stained cell nuclei.

https://doi.org/10.1371/journal.ppat.1008249.g009
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Fig 10. METH-mediated reactivation of HIV. (A) Effect of METH on HIV reactivation. (B) Cell viability. HC69 cells were incubated for 1, 2, 3, 4 or 5 days (X-axis)

with indicated concentrations of METH prior to flow cytometry analysis and PI exclusion cell viability assay (Y-axis). Error bars represent standard deviations of three or

more experiments. (C) σ1R mediates METH effect on HIV reactivation. HC69 cells were either untreated (Control) or treated with BD1047, rimcazole, or SM-21 prior

to exposure to 300 μM of METH (+ METH) or untreated (- METH). Diamonds of similar color represent an individual experimental series. (n = number of individual

samples). The p-values of pair-sample t-tests comparing the unexposed vs. the exposed cells are shown. N.S.: non-significant. (D) METH sensitizes hμglia for poly (I:C)-

mediated HIV reactivation at low doses. HC69 cells were treated with increasing concentrations of METH (Control; 0, 1, 5, 50, 100 and 500 nM, and 1, 5, 10, 50 and

100 μM; X-axis, log scale) for 72 h prior to exposure to poly (I:C) (50 ng/mL). Parallel experiments were performed in the presence of BD1047 (10 μM). Error bars

represent standard deviation of three or more experiments.

https://doi.org/10.1371/journal.ppat.1008249.g010
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was observed after 24 h (from ~7% to ~4% GFP+) (S17B Fig), compared to the untreated con-

trols; however, by 96 h, ~32% of the cells became GFP+ (S17B Fig) compared to ~ 9% in the

control cells (S17A Fig). In control experiments, potent proviral reactivation was seen at each

time point using TNF-α (at 100 pg/mL; ~ 90%) (S17C Fig) or poly(I:C) (at 100 ng/mL; ~68%)

(Fig 8D).

Several studies have suggested that METH exhibits significant affinity for the σ1R. For

example, BD1047, a specific inhibitor of the endoplasmic membrane-bound σ1R, was found to

reduce neuronal injury in METH-exposed hippocampus [123]. More recently, it has been

reported that σ1R antagonists attenuated METH-induced hyperactivity and neurotoxicity

[124], and that σ1R is involved in METH-mediated microglial activation [125]. HC69 cells

were exposed to METH at 300 μM, the dose found to be more effective at inducing HIV reacti-

vation with low cell toxicity (Fig 10A & 10B), in either the absence or presence of BD1047

(10 μM), a σ1R antagonist [126], rimcazole (10 μM), a σ1R and σ2R antagonist [127], and SM-

21 maleate (10 μM), a σ2R antagonist [128]. As shown in Fig 10C, BD1047, which by itself had

no effect on HIV expression compared to controls, inhibited METH-mediated HIV reactiva-

tion from 19.44 ± 1.22% down to 5.66 ± 0.89% (p = 0.02). Rimcazole did not significantly

reduce HIV expression and SM-21 maleate had no apparent effect.

We reasoned that in HIV-infected individuals who utilize METH, they are also invariably

exposed to chronically increased levels of microbial products, such as LPS and bacterial rRNA,

and proinflammatory cytokines due to damage to the gut permeability barrier [129, 130]. To

mimic these conditions, we evaluated the impact of METH on HIV expression in microglial cells

in the presence of two pro-inflammatory agents, TNF-α and poly (I:C). As shown in S18 Fig,

pre-treatment by 100 μM METH for 72 h sensitized HC69 cells to HIV reactivation in response

to sub-saturating concentrations of poly(I:C) (50 ng/mL), but not for sub-saturating concentra-

tions TNF-α (20 pg/mL). In this experiment, METH combined with poly(I:C) reactivated ~77%

of the cells, compared to ~38% of the cells after treatment by poly(I:C) alone (p = 0.01).

Because of the synergy observed between METH and poly (I:C), we performed another sim-

ilar experiments using a broad range of METH concentrations spanning the exposure doses

seen in drug abusers (1 nM to 100 μM) in the absence or presence of 50 ng/mL of poly (I:C).

As a control for the impact of METH on the cells, parallel samples were treated with BD1047.

As shown in Fig 10D, even at nM concentrations, METH (red squares and line) sensitized

HC69 cells for poly (I:C)-mediated HIV reactivation (yellow triangles and line; from ~28% to

~29% at 1 nM, ~31% at 5 nM, ~32% at 50 nM, 34% at 100 nM, and 35% at 500 nM). At higher

METH doses, the sensitization effect was more pronounced (to ~35% at 1 μM, ~40% at 5 μM,

~44% at 10 μM, ~52% at 50 μM, and 74 at 100 μM). As expected, the inhibitor BD1047

(10 μM) abrogated the effect of METH (Fig 10D).

METH induces HIV expression in neuronal mixed-glial co-cultures

We hypothesized that METH-induced neurodegeneration is exacerbated due to a combination

of its direct activation effect on HIV expression and indirect effects due to neuronal damage.

To test our hypothesis, HC69-iCort neuronal co-cultures, as described above (Fig 3), were

exposed to METH 100 nM, a dose shown to slightly synergized with poly(I:C) for HIV reacti-

vation in HC69 cells (Fig 10D), in the absence or presence of poly(I:C) 50 ng/mL for 96 h

prior to evaluating GFP expression and toxicity. In the presence of METH, HIV reactivated in

a significant proportion of HC69 cells (Fig 11A). GFP expression increased from 4.27 ± 1.88%

to 10.22 ± 2.06%, p< 0.001 (Fig 11B), whereas toxicity decreased from 100% to 77.60 ± 5.01%,

p = 0.016 (Fig 11C). In the absence of neurons (Fig 10D), we did not observe this effect sug-

gesting that METH-mediated neuronal damage, evidenced by the increased dendritic
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Fig 11. Exposure of co-cultures to combinations of METH- and Poly (I:C) induce extensive neuronal damage. (A) Microscopy of HC69 cells co-cultured with iCort

neurons for 96 h in the presence and absence of 100 nM METH and 50 ng/ml Poly (I:C). Top: Phase contrast image. Middle: GFP positive microglial cells. Bottom:

Neurons were stained with anti-MAP2 (Red). Green: GFP expression in activated HC69 cells. Red: Alexa Fluor 488 antibodies were used as secondary antibodies. Blue:

DAPI stained cell nuclei. (B) Induction of GFP expression in HC69 cells co-cultured with iCort neurons for 96 h and then measured by flow cytometry. Cells were

treated with 100 nM METH or 50 ng/ml Poly (I:C) or a combination of 100 nM METH or 50 ng/ml Poly (I:C). Error bars represent standard deviations of three

experiments. (C) Resazurin assay to evaluate neuronal viability. The resazurin reduction values (Y-axis) plotted are referenced to the control culture (untreated HC69

cells), set at 100%. The p-values of pair-sample t-tests of multiple experiments comparing the control vs. the METH exposed cells and Poly (I:C) treated cells vs. the

METH plus Poly (I:C) treated cells are shown. Error bars represent standard deviation of three experiments.

https://doi.org/10.1371/journal.ppat.1008249.g011
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fragmentation and toxicity (Fig 11A & 11C), induces HIV emergence from latency. Poly (I:C),

by itself, also increased the number of HIV-expressing HC69 cells in co-cultures with GFP

expression increasing up to 26.04 ± 4.60% (Fig 11B), while increasing dendritic fragmentation

(Fig 11A) and neurotoxicity with only 61.79 ± 10.30% surviving (Fig 11C). This result suggests

that the neuronal toxicity induced by poly(I:C) is directly related to release of HIV and pro-

inflammatory agents from the induced microglial cells. The combination of METH and poly(I:

C) further significantly induced HIV expression and dendritic damage compared to cells

treated with poly(I:C) alone (Fig 11A). The combination of METH and poly(I:C) increased

GFP expression up to 33.61 ± 6.83% (Fig 11B, p = 0.03) and decreased resazurin reduction to

53.16 ± 8.73% (Fig 11C, p = 0.019).

We also established a co-culture between primary mouse neurons and microglial cells car-

rying the HIV reporter (HC69) or uninfected control (C20) cells. HC69 cells treated with

300 μM METH for 3 days displayed increased HIV expression when co-cultured with neurons

compared to cultures not exposed to METH. As shown in S19 Fig, when neurons were co-cul-

tured with HC69 cells, METH exposure induced reductions in dendritic diameter and there

was evidence of increased dendritic fragmentation compared to C20 or HC69 cells in the

absence of METH (S19 Fig).

Finally, in similar experiments using LUHMES-derived neurons co-cultured with either C20

or HC69 cells (S20 Fig), we used the resazurin method to assess neuronal viability after treatment

of microglial cells with a variety of inflammatory or anti-inflammatory agents. Reactivation of

HIV by TNF-α (20 pg/mL) or poly(I:C) (50 ng/mL) decreased neuronal viability by 15–25% in

C20 cell co-cultures. In combination with METH, neuronal viability was further decreased (by ~

30%) (S20A Fig). These neurotoxic effects were significantly enhanced when HC69 cells were

used in the co-cultures. Neuronal viability was decreased down to ~ 60% after activation by TNF-

α or poly(I:C) and, reduced to ~ 50% when METH was combined with TNF-α (similar to METH

alone) or to ~ 30% with poly(I:C) (S20A Fig). In control experiments assessing neuronal damage

in the absence of microglia, toxicity was slightly less than that observed in the co-cultures with

C20 cells (S20A Fig). By contrast, the neurotoxin MPP+ reduced neuronal viability to ~ 25%.

In comparison, dexamethasone (DEXA), which we have shown can potently repress HIV

expression in microglial cells [39], was neuroprotective (S20B Fig). We attribute DEXA’s neu-

roprotective effects to its ability to restrict HIV reactivation and thereby limits HIV-induced

bystander neuronal injury [39].

In a parallel experiment, METH (300 μM) reduced neuronal viability by about 30% in C20

cell co-cultures (p = 0.025), compared to losses of about 50% in the HC69 cell co-cultures

(p = 0.005) (S20A Fig). However, the selective σ1R antagonist BD1047, which by itself had no

apparent effect on neuronal viability, largely negated the neurotoxic effects of METH in C20

and HC69 cell co-cultures (S20B Fig). This finding indicates that METH acts through specific

σ1Rs to reactivate HIV and trigger neurotoxicity in neuronal-microglial co-cultures.

We conclude that METH can exacerbate the neuronal damage seen in the presence of HIV-

infected microglial cells through a combination of direct neurotoxic effects that activate the

HIV transcription in infected microglial cells and by potentiating HIV reactivation responses

to pro-inflammatory agents.

Discussion

Microglial dysregulation by HIV results in synaptodendritic injury and

neuronal losses

HAND remains a significant clinical problem as it manifests in approximately 30–50% of

cART-treated patients, despite peripheral viral suppression [5]. Pathophysiologically, HAND

Neurons Regulate HIV Latency in Microglial Cells

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008249 December 30, 2019 20 / 43

https://doi.org/10.1371/journal.ppat.1008249


is driven by the sustained, low-level production of HIV proteins and proinflammatory toxins

in microglia that result in synaptodendritic injury, reductions in CNS connectivity with

accompanying neurobehavioral and cognitive declines [131–134]. The poor CNS penetration

and consequently reduced effectiveness of certain ART drugs creates an environment where

HIV replication is favored and has also been linked to the development of HAND [135].

In normal situations, activation of microglia in response to inflammatory stimuli is charac-

terized by a transition from a resting state (M0 or M2 cells) to more activated cells (M1 cells).

Although Ransohoff has argued that this model is an oversimplification [136], we believe it

remains a useful broad classification of glial activation states. In contrast to other cells of the

immune system, strict limitations on the activity of stimulated microglial cells are imposed to

avoid an exaggerated response during infection and injuries. These mechanisms result both in

the production of anti-inflammatory cytokines and inhibitory proteins, and attenuated pro-

duction of pro-inflammatory cytokines through finely coordinated cell signaling and tran-

scriptional programs such as the Nurr1/CoREST transrepression pathway [137, 138]. It is

generally believed that over-activated microglia (constitutive M1 cells) exacerbate neuronal

injury through the synthesis and secretion of cytotoxic factors, which increase excitotoxic syn-

aptic transmission and damage healthy neurons [47, 48]. Therefore, microglia-mediated neu-

rotoxicity, appears to be the result of excessive and uncontrolled stimulation [49, 50], and/or

impaired functionality of intrinsic molecular mechanisms [51–53], which are likely to be fur-

ther impaired as a consequence of HIV infection.

Neuronal-microglial communication is now realized to be far more dynamic than previ-

ously thought, and neurons play key roles in regulating microglial responses [139, 140]. For

example, neurons regulate microglia through the CX3CL1 (expressed by neurons)/CX3CR1

(expressed in microglia) axis [141–145], and through the neuronal surface proteins CD200,

CD47 and CD22, which bind to their cognate receptors CD200R, CD172 and CD45, respec-

tively, on microglia [146].

Importantly, neuronal dysfunction in HAND does not correlate with the number of HIV-

infected cells or viral antigens in CNS [82, 83], but rather with elevated inflammatory cytokine

levels. These observations have led to some investigators to minimize the importance of viral

persistence as part of the etiology of NeuroHIV [82, 84–86, 88].

Microglial-neuronal crosstalk regulates HIV latency

In-vitro neuron-glia co-culture strategies have been widely used to gain an in-depth under-

standing of regulatory interactions between neurons and microglia [90–96]. Here, we describe

a co-culture method between primarily LUHMES-derived neurons and immortalized human

microglia infected with an HIV reporter construct. To confirm these observations in the most

realistic cell systems available, we have also co-cultured primary or iPSC-derived neurons with

primary or iPSC-derived microglia.

Using these systems, we have observed, unexpectedly, that neurons can silence HIV expres-

sion in infected microglia and prevent spontaneous reactivation of latent virus. Interestingly,

iPSC-derived GABAergic cortical and dopaminergic neurons, but not motor neurons, were

capable of mediating HIV silencing, recapitulating the effect of LUHMES-derived neurons.

One plausible explanation for the neuronal specificity regulating HIV silencing is that dopa-

minergic and GABAergic cortical neurons, but not cholinergic motor neurons, are able to syn-

thesize and release anti-inflammatory compounds such as glucocorticoids (or neurosteroids).

Glucocorticoids (GC) play a key role in countervailing inflammation in the CNS and can pro-

tect the brain against excessive innate immune responsiveness [39, 147–152]. The hypotha-

lamic-pituitary-adrenal (HPA) axis rapidly increases the release of circulating glucocorticoids
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in response to various cytokines such as TNF-α and IL-1β. Consequently, by binding to the

glucocorticoid receptor (GR), GCs and their analogues such as dexamethasone (DEXA)

repress transcription of the inflammatory genes by blocking recruitment of NF-κB and AP-1

to their promoters [39, 153]. Consistent with these mechanisms, activation of the GR by

DEXA in hμglia/HIV cells promotes HIV latency because it reduces microglial pro-inflamma-

tory responses, whereas down regulation of the GC receptor by shRNA leads to HIV reactiva-

tion [39]. Other possible explanations include the loss of essential neuronal proteins that

promote microglial inactivation. Further studies are warranted to determine the level of

expression of C200, CD47, CD22, and CX3CL1 on GABAergic cortical, dopaminergic and

motor neurons, which could further explain the selectivity of GABAergic cortical and dopami-

nergic neurons to silencing HIV.

While healthy neurons can promote HIV silencing, damaged neurons reactivate microglial

cells and enhance HIV transcription, resulting in further neuronal deterioration and the

increased expression of damage-associated molecular patterns (DAMPs). Therefore, we

hypothesize that the “off” signals that keep microglia in check [146] also inhibit viral expres-

sion in infected microglia. Thus, neuronal DAMPs can trigger low, persistent levels of viral

expression/reactivation resulting in sustained cycles of microglial activation, inflammation,

HIV reactivation, and the production of more DAMPS from injured bystander neurons.

In our co-culture experiments, we have observed that in after several days in culture with

neurons HIV-expressing infected microglia induce excessive neuronal damage due to initia-

tion of a vicious cycle of enhanced neuronal damage leading to enhanced microglial activation.

After an initial period when the healthy neurons can repress HIV reactivation, a vicious cycle

becomes established where damaged neurons induce HIV expression, leading to further neu-

ronal damage. The results presented here, and our previous work, support the hypothesis that

HIV expression in infected microglia leads to an enhanced response to inflammation and peri-

odic cycles of neuronal damage [36, 37, 39] (Fig 12). One implication of this hypothesis for the

etiology of HAND is that multiple pro-inflammatory episodes that are damaging to neurons

lead to increased HIV expression and creation of a constitutively M1 state for microglial cells

in the brain.

Primary human microglia are efficiently infected by replication competent R5 HIV

(AD8gNef-GFP), and primary macaque microglia with replication competent SIV 17E-Fr par-

ticles [36, 154]. Unfortunately these cells loose the CD4 receptor upon passaging making it

technically impossible to obtain sufficient susceptible primary microglia to perform studies of

the type shown here. Therefore, for most of our studies we have relied on the HC69 clonal pop-

ulation of immortalized human microglial cells bearing an HIV construct (hμglia/HIV) [36,

37, 39] as a proxy. HC69 bears an HIV construct that lacks Gag, Pol and other accessory viral

proteins. We have also previously shown that the proviral integration site of the HC69 cells

was sequenced and located within the host genome, demonstrating that HC69 is a single inte-

grant and, as expected from the extensive studies characterizing HIV proviral integration sites,

the provirus was located in the introns of host genes [39]. There is extensive evidence that

these reporters, which we used extensively to study HIV transcription in T-cell systems [155–

157] and microglial cells [36–39] accurately reflect the transcriptional state of the virus since

GFP expression is strictly dependent upon Tat activation in this system. We therefore believe

that the neuronal silencing we have observed is the result of blocking of signaling pathways

that activate HIV expression. It is also important to note that even microglial cells carrying

defective proviruses can induce extensive neuronal damage once they become activated. The

degree of neurotoxicity is likely to increase in the context of replication competent viruses.
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METH exacerbates neuronal damage and enhances HIV reactivation

METH dependence is one of the most common co-morbid conditions among the HIV-

infected population [158], and several studies clearly demonstrate that HIV patients who

abuse METH have exacerbated neurocognitive impairments [159, 160]. Acute use of METH

can lead to psychological and behavioral abnormalities [161–164], while the deleterious effects

of chronic METH use on neurons have been well documented in rodents, non-human pri-

mates [165–167], and humans [168]. Strong clinical evidence indicates that METH-induced

immune activation in the CNS in combination with HIV effects increase neuronal injury in

individuals with both risk factors [124, 125, 169, 170].

Fig 12. Disruption of microglial cell-neuron communication drives HIV replication in the brain and leads to neuronal degeneration. Healthy neurons

suppress HIV expression in microglia. Although the mechanisms are not fully understood, HIV silencing correlates with establishment of a resting (M0) state. This

is likely to be mediated by glucocorticoids (GC) and the fractalkine (CX3CL1) system. Inflammatory cytokines such as TNF-α and IL-1β, or TLR agonists such as

LPS and microbial metabolites, including rRNA fragments, activate microglia (M1) and induce HIV transcription. The production of inflammatory cytokines and

HIV proteins then leads to further neuronal damage. METH, acting through the σ1R receptor on microglia and DAT on neurons, works in concert with the pro-

inflammatory agents to further disrupt normal cell physiology and enhance HIV transcription. Thus, inflammation can initiate a vicious cycle of neuronal damage/

microglial cell activation leading to HIV reactivation.

https://doi.org/10.1371/journal.ppat.1008249.g012
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It is now widely recognized that microglia-mediated inflammation is critical in METH-

induced neurotoxicity [171–174], and that microgliosis is the result of METH abuse that per-

sists long after abstinence [175, 176]. Acute exposure of hμglia/HIV cells to high concentra-

tions of METH does not induce immediate viral expression, as seen when latently infected

cells are exposed to pro-inflammatory molecules such as TNF-α and poly (I:C). However, a

significant level of HIV reactivation is observed after 96 h, suggesting that indirect autocrine

mechanisms have been activated. Experiments performed with physiological concentrations of

METH in drug abusers (for example at 100 nM; [122]) indicate that this low concentration is

enough to induce HIV expression in microglia co-cultured with neurons as well as neuronal

damage. Under this condition, inflammation, represented by activation of TLR3 on microglia,

we found further increased HIV expression and exacerbation of neuronal damage.

We also demonstrated that METH acts through a specific receptor, σ1R, to reactivate HIV

and trigger neurotoxicity in neuronal-microglial co-cultures. The selective σ1R antagonist

BD1047 not only fully ameliorated METH-induced HIV reactivation, it also significantly

reduced bystander neurotoxicity at 24 h. By contrast, the selective σ2R antagonist, SM-21

failed to restrict METH-induced increases in HIV expression. This finding indicates that

METH acts through specific σ1R to reactivate HIV and trigger neurotoxicity, and strongly sug-

gests σ1R is a key molecular site of METH and HIV comorbid interactions in neuroHIV. Since

METH can act on both microglia and neurons through different receptors, a wide number of

different molecular mechanisms can potentially play a role in regulating neuron-microglia

communication in the context of METH abuse. Further experiments investigating these mech-

anisms are warranted, and they should include evaluation of the ON/OFF signaling through

knock-out/knock-down strategies. Nonetheless, based on our findings and the work of others

on the impact of METH on HIV replication [10, 14], it seems clear that chronic METH abuse

enhances HIV-induced neuro-inflammation both through direct effects on σ1R-expressing

microglia, and through indirect effects due to the induction of neuronal damage, leading to

enhanced neurodegeneration, and an exacerbation of disease progression.

Conclusions

Although systemic inflammation and antiretroviral and other drug toxicities are likely to con-

tribute to the development of HAND, substantial evidence indicates that microglia, together

with perivascular macrophages, are the main cellular reservoirs for HIV within the CNS paren-

chyma, and also contribute to HIV-related neuropathology and neurologic disorders. We have

developed a reliable co-culture method to study the interactions between neurons and micro-

glia and how inter-cellular signaling can regulate HIV latency in microglial cells. Our key

observations are: First, that neurons can suppress viral expression, which likely involves

repression of HIV through the GR. Second, that HIV-expressing infected microglia induce

excessive neuronal damage, due to initiation of a vicious cycle of enhanced neuronal damage

leading to enhanced microglial activation. Third, σ1Rs modulate the deleterious effects of

METH on HIV reactivation and neurotoxicity. These results support the hypothesis that neu-

rological complications of HAND result from the periodic emergence of HIV from latency

within microglia in response to neuronal damage or inflammatory signals.

Bidirectional, interdependent cross-talk between neurons and microglia is therefore crucial

in driving HIV infectivity in the CNS, and we believe that interrogating these signals is needed

to identify basic mechanisms underlying the development of HAND. The recognition that

HIV expression disrupts the normal interplay between microglia and neurons (i.e. the M0 to

M1 transition cycle) and thereby exacerbates neurodegeneration should lead to the develop-

ment of therapeutic anti-inflammatory strategies. Additionally, we believe that the screens of
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receptor agonists and antagonists will help identify potentially novel therapeutic strategies to

improve the clinical management of HAND, especially in HIV-infected individuals who abuse

METH.

Materials and methods

Establishment of co-culture between LUHMES-derived neurons and

hμglia/HIV

Primary human microglia are efficiently infected by replication competent R5 HIV

(AD8gNef-GFP), and primary macaque microglia with replication competent SIV 17E-Fr par-

ticles [36]. However, due to the scarcity of primary microglia, for most of our studies here, we

have use the HC69 clonal population of immortalized human microglial cells bearing an HIV

construct (hμglia/HIV) [36, 37, 39] as a proxy for infected primary microglia. HC69 bears an

HIV construct that lacks Gag, Pol and other accessory viral proteins. We have previously

shown that the proviral integration site of the HC69 cells was sequenced and located within

the host genome, demonstrating that HC69 is a single integrant and, as expected from the

extensive studies characterizing HIV proviral integration sites, the provirus was located in the

introns of host genes [39].

Undifferentiated, neuron precursor cells LUHMES/RFP, developed [100] and kindly pro-

vided by Dr. Stefan Schildknecht at the laboratory of Dr. Marcel Leist (Konstanz, Germany),

contain a lentiviral construct bearing the sequence of red fluorescent protein (RFP) that allows

visualization of neurite growth and its disturbance by toxicants. These cells were plated and

allowed to expand for two days prior to transferring to the experimental wells at 500,000 neu-

rons per well of a 6-well plate, or another quantity specified in the Figure Legends, for differen-

tiation into dopaminergic neurons. One day after the neuronal differentiation process started,

60,000 immortalized human microglial cells bearing an HIV construct (Proviral HIV Struc-

ture) (hμglia/HIV; [36, 37, 39, 177]) were added. After 2 days, the classical dopaminergic

markers are still in the induction phase, therefore LUHMES-derived neurons are still not con-

sidered full dopaminergic cells. After 3 days, these cells can then be considered maturing neu-

rons, since they start producing classical markers of dopaminergic neurons, reaching their full

mature status by day 6 [100, 178]. For the next 3 to 4 days, assays were performed to evaluate

the viability of the neurons. All co-cultures with CHME-5 cells lasted only 48 h.

Where indicated, primary or iPSC-derived neurons were also used in co-culture with

hμglia/HIV HC69, primary or iPSC-derived microglial cells. Primary human neurons (HN)

and microglia were obtained from ScienCell Research Laboratories (CA), whereas human

iPSC-derived microglia (Tempo-iMG), cortical (Tempo-iCort), dopaminergic (Tempo-iDopa-

Ner), and motor (Tempo-iMotorNer) neurons were obtained from Tempo Bioscience (CA).

These cells were plated, allowed to differentiate and maintained in culture on mouse laminin-

coated plates or on Matrigel matrix (Corning), as directed by the manufacturer.

Neuronal, microglia, and co-culture media

For expansion of undifferentiated, neuron precursors cells LUHMES/RFP [100], we used

DMEM-F12 (ScienCell, Cat. #09411) supplemented with 1X N2 supplement (ThermoFisher

Scientific, Cat. #17502048), 40 ng/mL bFGF (ThermoFisher Scientific, Cat. #13256029), 1%

penicillin streptomycin (Gibco, Cat. #15070–063), and 250 ng/mL amphotericin B (Gibco,

Cat. #15290018). For differentiation of LUHMES/RFP into dopaminergic neurons,

DMEM-F12 was supplemented with 1 mM dibutyryl cAMP (StemCell Technologies, Cat.

#73886), 1 μg/ml tetracycline (Sigma-Aldrich, Cat. #87128), 2 ng/mL GDNF (Sigma-Aldrich,
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Cat. #SRP3309), 1% P/S, and 250 ng/mL amphotericin B. As recommended by the manufac-

turer, primary human neurons were grown in Neuronal Medium (NM, ScienCell Cat. #1521),

primary human microglia in Microglia Medium (MM, ScienCell Cat. #1901), iPSC-derived

microglia in DMEM/F-12 (LifeTech) supplemented with 1X N2 supplement (LifeTech), 0.5X

NEAA (LifeTech), 2 mM L-Glutamine or 1X GlutaMax (LifeTech), 100 ng/mL GM-CSF

(Peprotech), and 50 ng/mL IL-34 (Peprotech), iPSC-derived cortical neurons were grown in

neurobasal-based medium supplemented with 1X B27 (LifeTech), 1X essential amino acids

(LifeTech), 1X GlutaMax (LifeTech), and 10 μM all-trans-retinoic acid (Sigma Aldrich), iPSC-

derived dopaminergic neurons also in neurobasal-based medium supplemented in 1X B27

(LifeTech), ascorbic acid (0.2 μM, Sigma Aldrich), cAMP (5 μM, Sigma Aldrich), and TGF-β3,

recombinant human BDNF and GDNF (all at 10 ng/ml, Peprotech), and iPSC-derived motor

neurons in DMEM/F12:neurobasal medium (50:50), supplemented with 1X B27 (LifeTech),

1X N2 (LifeTech), GlutaMax (0.5 mM (LifeTech), cAMP (5 μM, Sigma Aldrich), and recombi-

nant human SHH, BDNF, GDNF, and CNTF (all at 10 ng/ml, Peprotech).

Unless otherwise noted, microglial cells (hμglia C20 and hμglia/HIV HC69; [36, 37, 39])

were cultured, as previously reported [39], in BrainPhys medium (StemCell Technologies, Cat.

#05790) containing 1X N2 supplement, 1X penicillin streptomycin, 100 μg/mL normocin

(InvivoGen, Cat. #ant-nr-1), 25 mM glutamine (Gibco, Cat. #25030081), 1% fetal bovine

serum (FBS; Gibco, Cat. #10438026), and 1 μM DEXA (freshly added to the cell culture)

(Sigma-Aldrich, Cat. #D4902). For the co-culture of microglia with neurons, the specific neu-

ronal medium was used supplemented 1X insulin-transferrin-sodium selenite media supple-

ment (Sigma-Aldrich, Cat. #I1884-1VL) and 0.2% FBS. Where indicated, METH, poly (I:C),

alone or in combination were added to the HC69/primary HN co-cultures prior to collection

of supernatant, and fixation for 15 min in 4% paraformaldehyde. MAP-2 was detected using

rabbit anti-MAP-2 primary antibodies (1:500 dilution; Chemicon/EMD Millipore, Billerica,

MA) followed by secondary goat anti-rabbit antibodies conjugated to Alexa Fluor-594 (red).

Table 2 summarizes the composition of these formulations.

The reference for the culture of the other cell lines used as control, 293T cells, primary

human foreskin fibroblasts, THP-1/HIV (A3) cells, and Jurkat/HIV (2D10) cells, are given in

the corresponding figure legend.

To obtain damaged neuronal cells, cultured LUHMES-derived neurons were treated with

0.05% trypsin, followed by 1–3 min vortex, and cell death was verified by propidium iodide

staining, as previously described [36]; at least 90% of cells were positive.

Chemicals & reagents

To drive HIV emergence from latency and/or HIV expression increase, we used TNF-α (Invi-

trogen, Cat. #PHC3015), poly(I:C) (InvivoGen, #tlrl-pic), and METH (Sigma-Aldrich, Cat.

#51-57-0) alone or in combination at the concentrations stated in the corresponding Figures

and/or Figure Legends. To study the involvement of the σ receptors in METH-mediated HIV

reactivation, BD1047 (Tocris, Cat. #0956), rimcazole (Tocris, Cat. #1497), and SM21 (Tocris,

Cat. #0751) were used at the concentrations specified in the Figure Legends.

SDS-PAGE/Western blot analysis

For determining the total expression of AMPA and phosphorylation of MAP2 and synapsin in

LUHMES/RFP-derived neurons untreated or treated with TNF-α (10 pg/mL) or poly(I:C) (10

ng/mL) unexposed or not to C20 or HC69 cells untreated or treated with similar amount of

TNF-α or poly (I:C), whole cell extracts (WCE) were prepared from 5 X 105 neurons collected

by gentle shaking and added to RIPA buffer (25 mM Tris, pH 7–8, 150 mM Na, 0.1% SDS,
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Table 2. Medium composition for the growth and maintenance of LUHMES and microglial cells, and the co-culture between LUHMES-derived neurons and

microglia.

Cells Microglia or Neuronal Growth

Medium (NGM)

Neuronal Differentiation

Medium (NDM)

Modified Neuronal Differentiation Medium

(mNDM) or Co-culture Medium

Immortalized Microglia BrainPhys (w/o phenol)

1x N2

1x P/S

100 μg/mL normocin

2.5 mM glutamine

0.2%x FBS

1 μM dexamethasone

None None

Primary microglia Microglia Medium (MM,

ScienCell Cat. #1901)

None None

iPSC-derived microglia DMEM/F-12 (LifeTech) 1X N2

supplement

0.5X NEAA

2 mM L-Glutamine

100 ng/mL GM-CSF

50 ng/mL IL-34

None None

LUHMES DMEM-F12

1% N2 supplement

40 ng/mL bFGF

1% Pen/Strep

250 ng/mL amphotericin B

DMEM-F12

1 mM dibutyryl cAMP

1 μg/mL tetracycline

2 ng/mL GDNF

1% P/S

250 ng/mL amphotericin B

None

Primary human neurons None Neuronal Medium (NM,

ScienCell Cat. #1521)

iPSC-derived cortical neurons None Neurobasal

1X B27

1X non-essential amino acids

1X GlutaMax

10 μM all-trans-retinoic acid

None

iPSC-derived dopaminergic neurons Neurobasal Medium

1X B27

0.2 μM ascorbic acid

5 μM cAMP

10 ng/mL TGFbeta3

10 ng/mL rhBDNF

10 ng/mL rhGDNF

10 μM cytosine arabinofuranoside

Neurobasal Medium

1X B27

0.2 μM ascorbic acid

5 μM cAMP

10 ng/mL TGFbeta3

10 ng/mL rhBDNF,

10 ng/mL rhGDNF

None

iPSC-derived motor neurons None 50:50 DMEM/F12: Neurobasal

Medium

1X B27

1X N2

0.5 mM GlutaMax

5 μM cAMP

10 ng/mL rhSHH

10 ng/mL rhBDNF

10 ng/mL rhGDNF

10 ng/mL rhCNTF

None

Immortalized microglia-LUHMES-derived

neuronal co-culture

None None NMD

Insulin-transferrin-sodium selenite (Sigma-

Aldrich I1884-1VL)

0.2% FBS

Primary or iPSC-derived microglia-

primary or iPSC-derived neurons

None None 1:1 microglia medium/neuronal medium

https://doi.org/10.1371/journal.ppat.1008249.t002
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0.5% sodium deoxycholate, 1% Triton X-100). Protein concentration in WCE was measured

by Bradford assay, and protein solutions were subjected to SDS-PAGE/Western blot using

anti-glutamate receptor 1 (AMPA subtype) antibody [EPR5479] (Abcam, Cat. #ab109450),

anti-MAP2 (phospho S136) antibody [EPR2361] (Abcam, Cat. #ab96378), and anti-synapsin I

(Abcam, Cat. #phospho S9) antibody (Abcam, Cat. #ab194778). β-tubulin III (beta-TUJ) is a

microtubule element of the tubulin family found exclusively in neurons [101, 102], therefore,

we used anti-beta-TUJ (Abcam, Cat. #ab18207) as loading control. These primary antibodies

were bound by the appropriate IRDye 800CW secondary antibody, and the membranes were

scanned and analyzed using the Odyssey Infrared Imaging System (LI-COR Biosciences, NE).

Flow cytometry and microscopy

As previously [36, 37, 39, 177], quantitation of GFP-expressing cells was carried out by fluores-

cence-activated cell sorting (FACS or flow cytometry) analysis using the LSRFortessa instru-

ment for cell sorting, the FACSDiva software (BD, NJ) for data collection, and the WinList 3D

software for data analysis, gating neurons separated from the microglia. To confirm microglia

identity, we used anti-CD14-PE conjugated antibody (eBioscience, Cat. #12–0149), since we

have shown that the CD14 receptor, a marker of monocytes, macrophages and dendritic cells

[179], is present in the totality of the hμglia cells [36].

For phase contrast and fluorescence microscopy, we used the services of CWRU Visual Sci-

ences Research Center core (grant #p30-15411373). In brief, a Leica DMI6000 Widefield

Microscope with a QImaging EXI Aqua camera was used with a 1000 ms exposure time for

FITC (488) to capture GFP fluorescence from HIV-expressing hμglia/HIV cells, and a 100 ms

exposure time for the TxRed (546) to capture RFP fluorescence from neurons.

For neuronal cells immunostaining, we used anti-beta-TUJ (D71G9), XP rabbit (Cell Sig-

naling Technology, #5568), anti-MAP2 rabbit (Cell Signaling Technology, #4542), anti-

CXCR3 rabbit (Novus Biologicals, #NB10056404), anti-CD11b/c (Novus Biologicals,

#NB11040766), anti-GAD 65/67 rabbit (Millipore, #AB1511), anti-dopamine transporter

(DAT) (Millipore, #MAB369), and anti-acetylcholinesterase monoclonal (AchE) (Thermo,

#MA3-042) antibodies. As secondary antibodies, Alexa Fluor 488 anti-rabbit or 594 anti-

mouse were used.

Neuronal viability assay

For viability of neuronal cells, we performed the in-vitro toxicology assay, based on resazurin

reduction, following the instructions of the supplier (Sigma-Aldrich, Cat. #TOX8). Briefly,

resazurin dye was added at a final concentration of 10% (v/v) to each well and incubated with

the cells for ~2 hours, before transferring 100 μL of each well’s supernatant to individual wells

of a 96-well flat-bottom plate, and measuring absorbance (endpoint) at 600 nm and 690 nm

(final absorbance = absorbance at 600- absorbance at 690). Healthy cells are able to reduce the

dark blue resazurin dye, turning the solution to a lighter pink color. The lighter the dye the

healthier and more viable the cells are, since they undergo more metabolic activity, which

reduces the dye to a lighter pink color and, therefore, absorbance is lower. Quantitation was

then calculated in percent using untreated neurons as reference. We also used healthy cell

counting per field as endpoint for cell neuronal viability.

Supporting information

S1 Fig. Optimal co-culture medium. LUHMES-derived neurons (red) and microglial cells,

C20 (blue) and HC69 (green), were independently cultured in the presence of the indicated

medium formulations (X-axis) and cell viability (Y-axis) was measured by the resazurin
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method.

(TIF)

S2 Fig. Microglia growth and viability is not affected in co-culture with neurons in a short-

term. (A) Growth rate. 60,000 hμglia/HIV HC69 cells were plated in the presence of increasing

density of LUMHES-derived neurons (X-axis). After 24 h (short-term), neurons were killed

with 0.25% trypsin for 30 seconds, and washed away with PBS prior to further trypsinization

for 5 minutes to recover microglial cells. Cells were counted (Y-axis). (B) PI exclusion assay

for measuring viability (Y-axis; right panel). N.S.: not significant.

(TIF)

S3 Fig. Flow cytometry gating strategy for measuring CD14- and GFP-expressing hμglia/

HIV cells. Flow cytometry profiles representing single cultures. The distinct populations of

HC69 (μglia) and neuronal cells are indicated on the far-left flow cytometry profiles. Top flow

cytometry profiles represent cells bound to isotype control; bottom profiles represent cells

bound to anti-CD14 antibody. Anti-CD14 bound population is shown on the Y-axis, and

GFP-expressing cells are shown on the X-axis in the CD14 vs. GFP graphs. The population of

CD14-expressing cells is shown in orange and the populations of GFP-expressing cells are

shown in green.

(TIF)

S4 Fig. beta-TUJ immunochemistry. LUHMES- and iPSC-derived neurons were stained with

antibody against beta-TUJ (green). Alexa Fluor 488 anti-rabbit was used as secondary anti-

body. DAPI (blue) indicates nuclear staining.

(TIF)

S5 Fig. MAP2 immunochemistry. LUHMES- and iPSC-derived neurons were stained with

antibody against MAP2 (green). Alexa Fluor 488 anti-rabbit was used as secondary antibody.

DAPI (blue) indicates nuclear staining.

(TIF)

S6 Fig. CXCR3 immunochemistry. LUHMES- and iPSC-derived neurons were stained with

antibody against CXCR3 (green). Alexa Fluor 488 anti-rabbit was used as secondary antibody.

DAPI (blue) indicates nuclear staining.

(TIF)

S7 Fig. CD11b/c immunochemistry. LUHMES- and iPSC-derived neurons were stained with

antibody against CD11b/c. Alexa Fluor 488 anti-rabbit was used as secondary antibody. DAPI

(blue) indicates nuclear staining.

(TIF)

S8 Fig. GAD65/67 immunochemistry. LUHMES- and iPSC-derived neurons were stained

with antibody against GAD65/67 (green). Alexa Fluor 488 anti-rabbit was used as secondary

antibody. DAPI (blue) indicates nuclear staining.

(TIF)

S9 Fig. DAT immunochemistry. LUHMES- and iPSC-derived neurons were stained with

antibody against DAT (green). Alexa Fluor 488 anti-rabbit was used as secondary antibody.

DAPI (blue) indicates nuclear staining.

(TIF)

S10 Fig. AchE immunochemistry. LUHMES- and iPSC-derived neurons were stained with

antibody against AchE (red or green). Alexa Fluor 488 anti-rabbit (green) or Alexa Fluor 594
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anti-mouse was used as secondary antibodies. DAPI (blue) indicates nuclear staining.

(TIF)

S11 Fig. 293T cells and human foreskin fibroblasts failed to induce HIV latency in HC69

cells. (A) 60,000 hμglia/HIV HC69 cells were plated in the absence or presence of 0.5 x 106

293T cells or human foreskin fibroblasts (HFF), both grown in DMEM/10% FBS, or DEXA

(positive control). The co-culture medium was the immortalized microglia medium (Table 2).

HIV expression was evaluated after 24 h by flow cytometry. Flow cytometry profiles represent-

ing single cultures indicate the proportion of the CD11b/c-expressing cells (total microglia; Y-

axis) that expresses GFP (X-axis). (B). Flow cytometric analysis quantification of microglial

cell GFP expression in three similar experiments. The p-values of pair-sample, Student’s t-tests

comparing the microglial cells cultured alone or in the presence of cells are shown. Individual

independent experiments are color coded (n = number of independent samples). N.S.: non-

significant. (C) PI exclusion assay to evaluate co-culture viability. Viability values (Y-axis)

were normalized to the control culture of HC69 cells alone. Each colored symbol represents

one experiment.

(TIF)

S12 Fig. Neurons failed to induce HIV latency in THP-1/HIV and Jurkat/HIV cells. 60,000

THP-1/HIV (A3) and Jurkat/HIV (2D10) cells, grown as previously described [37], were

plated in the absence or presence of 0.5 x 106 iCort or LUHMES-derived neurons, or U0126

(positive control). NDM (Table 2) was co-culture medium. HIV expression was evaluated after

24 h by fluorescence microscopy (A) and flow cytometry. (B). Flow cytometric analysis of GFP

expression in three similar experiments: the p-values of pair-sample, Student’s t-tests compar-

ing the A3 and 2D10 cells cultured alone or in the presence of neurons are shown. Individual

independent experiments are color-coded (n = number of independent samples). N.S.: non-

significant.

(TIF)

S13 Fig. Microglia growth and viability is not affected in co-culture with neurons. (A)

Growth rate. 60,000 hμglia/HIV HC69 cells were plated in the presence of 0.5 x 106 LUMHES-

derived neurons (X-axis). After either 24 h or 72 h, neurons were killed with 0.25% trypsin for

30 seconds, and washed away with PBS prior to further trypsinization for 5 minutes to recover

microglial cells. Cells were counted (Y-axis; left panel). (B) PI exclusion assay for measuring

viability (Y-axis; right panel). N.S.: not significant.

(TIF)

S14 Fig. Quantitation of the effect of healthy neurons vs. damaged neurons on HIV expres-

sion. (A) hμglia/HIV HC69 cells were sorted into GFP- cells. The population was expanded for

48 h prior to collection and co-cultured with either healthy neurons or damaged neurons (X-

axis) at a ratio of 50:6. (B) GFP+ cells. Quantitation of GFP expression (Y-axis). Diamonds of

similar color represent an individual experimental series. (n = number of individual samples).

The p-values of pair-sample t-tests comparing the unexposed vs. the exposed cells are shown.

N.S.: non-significant.

(TIF)

S15 Fig. HIV induces neuronal damage signals. A. Western blot analysis. LUHMES-derived

neurons were unexposed (-Microglia) or exposed to either C20 or HC69 cells in the absence or

presence of either TNF-α or poly(I:C) for 48 h. Whole cell extracts were prepared from neu-

rons and subjected to SDS-PAGE/Western blot analysis. Western blot membranes were blot-

ted against anti-AMPA, anti-p-MAP2, and anti-p-synapsin antibodies, using anti-β-tubulin III
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as loading control. Approximate molecular weights are indicated in KDa. B. Quantitation of

AMPA, p-MAP2, and p-synapsin band intensity. Numbers were plotted in Relative Intensity

(Arbitrary Units; Y-axis) vs. experimental treatments (represented by a specific color; X-axis),

graphs for each AMPA, p-MAP2, and p-synapsin. C. Resazurin reduction assay. The resazurin

reduction values (Y-axis) plotted are referenced to the control culture (neurons only), set at

100%, next to the other experimental treatments (X-axis). For (B) and (C), the p-values of sta-

tistically significant pair-sample t-tests (at the 0.05 confidence level, where the difference of the

sample means is significantly different from the test difference of zero) of three experiments

(n = 3) comparing the neurons exposed to C20 and either TNF-α or poly(I:C) with the neu-

rons exposed to HC69 and either TNF-α or poly (I:C), respectively. N.S. stands for non-signifi-

cant. Similar geometric figures represent a unique experiment.

(TIF)

S16 Fig. Activated rat CHME-5/HIV cells exacerbate neuronal damage. A. LUHMES-

derived neurons were co-cultured or not with CHME-5 or CHME-5/HIV cells for 48 h. TNF-

α (100 ng/mL) was added or not, as indicated. The neurons or co-cultures were stained with

anti-MAP2 antibody followed by anti-rabbit Alexa Fluor 594 antibody (red) and DAPI for

nuclear visualization. Green (GFP) depicts activated CHME-5/HIV cells. Dendrites and

microglia are indicated by the white lines. B. LUHMES-derived neurons were co-cultured

with CHME-5 (blue squares) or CHME-5/HIV (red triangles) cells that had been pre-activated

with 100 ng/mL of TNF-α. Neurons alone (black circles) were used as control. Time-lapse

images were taken every four hours, at the indicated time points, from 0 to 48 h (X-axis). The

number of healthy neurons was counted in every field the relative number of viable neurons

quantified (Y-axis).

(TIF)

S17 Fig. METH-mediated reactivation of HIV. Flow cytometry profiles representing single

cultures of HC69 cells were incubated for 24, 48 or 96 h. (A) Untreated. (B) 300 μM METH.

(C) 100 pg/ml TNF-α. (D) 100 ng/mL poly (I:C). GFP+ cell populations were measured by

flow cytometry and indicated in bright green.

(TIF)

S18 Fig. METH sensitizes hμglia for poly (I:C)-mediated HIV reactivation. HC69 cells were

either untreated (- METH) or treated with METH 300 μM for 72 h prior to exposure to either

TNF-α 20 pg/mL) or poly(I:C) (50 ng/mL) for another 24 h. Diamonds of similar color repre-

sent an individual experimental series. (n = number of individual samples). The p-values of

pair-sample t-tests comparing the unexposed vs. the exposed cells are shown. N.S.: non-signifi-

cant.

(TIF)

S19 Fig. HIV exacerbates METH-mediated neuronal damage. Human neuronal and glial

mixed-cultures containing astrocytes (Advanced Biosci. Resources) were maintained for 17

days in vitro (DIV) in BrainPhys supplemented with insulin-transferrin-sodium selenite prior

to co-culture with either C20 or HC69 cells in either the absence or presence of 300 μM

METH for 72 h. Top: brightfield. Middle: Green fluorescence channel. Bottom: Green (GFP+

cells). Red (MAP2, neuronal dendrites). Blue (DAPI, all nuclei).

(TIF)

S20 Fig. Effect of METH, TNF-α and poly(I:C) on neuronal damage. LUHMES-derived

neurons were either cultured alone (red) or co-cultured with either C20 (blue) or HC69

(green) cells in either the absence (control) or presence of (A) TNF-α, poly (I:C), METH,
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METH + TNF-α or METH + poly (I:C), or (B) METH, BD1047, METH + BD1047 or DEXA

for 72 h (X-axis) prior to neuronal survival quantitation by the resazurin method (Y-axis).

MPP+ was used as positive control for neuronal damage.

(TIF)
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