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Their findings align with other studies indicating that gut 
microecological alterations can affect immune response and 
brain-gut-bone interactions, fostering osteoporotic changes 
[5, 6]. In fact, mounting evidence suggests that gut microbes 
release extracellular vesicles and/or metabolites that can 
influence osteogenic differentiation [7, 8]. Gut barrier dete-
rioration (including diminished mucin, reduced tight junc-
tion proteins, and elevated IL-17) has been associated with 
bone degradation in obesity [9, 10]. Intriguingly, Yu-Han 
Lin and colleagues specifically correlated beneficial gut 
bacteria like Lactobacillus and Akkermansia with improved 
bone traits [4], including mineral density, trabecular integ-
rity, and balanced bone turnover. Consistent with these 
findings, probiotic Lactobacillus intake supports antioxi-
dant capabilities [11], curbing bone degradation, whereas 
reduced Akkermansia levels have been shown to accelerate 
bone loss [12].

Metabolomic analyses of serum profiles revealed that a 
disrupted L-carnitine metabolism, linked to gut microbiota 
dysbiosis, markedly contributes to bone deterioration [4]. 
L-carnitine supports mitochondrial fatty acid metabolism, 
necessary for osteogenesis [13]. Considering that low 
serum levels of L-carnitine represent a prevailing feature 
in patients with osteoporosis suggests its potential in miti-
gating bone loss. In agreement with these observations, 
L-carnitine is metabolized into trimethylamine (TMA) by 
gut microorganisms and flavin containing monooxygenase 
3 (FMO3) is known to oxidize TMA into TMAO [14], as 
shown in Fig. 1. These metabolomic findings underscore the 
complexity of the gut-bone connection.

Hence, TMAO seems to act as a functional gut-derived 
metabolite substantially contributing to osteoporotic 
changes in conditions of obesity and estrogen deficiency; 
in particular, TMAO promotes bone loss by tipping the bal-
ance toward osteoclast-mediated resorption. Little is known 
about the precise molecular effects of TMAO on bone turn-
over; of interest, TMAO has been suggested to shift bone 

Metabolic disorders are functionally linked to skeletal fra-
gility and early mortality in older adults [1]. For instance, 
obesity suppresses bone growth, over-stimulates glucocor-
ticoid activity and accelerates bone degradation; diabetes 
mellitus triggers inflammation and disrupts bone balance 
[1]. Recent observations suggest that imbalances within the 
microbiome can cause gut barrier deterioration, eventually 
leading to bone loss [2]. Trimethylamine N-oxide (TMAO), 
a metabolite produced by gut microbes (Fig. 1), raises oxida-
tive stress and inflammation in the bone, further increasing 
the risk of osteoporosis in obese individuals [2]. Addition-
ally, endoplasmic reticulum (ER) stress disrupts protein 
folding, initiating an unfolded protein response (UPR) that 
contributes to osteoporosis [3]. However, the exact role of 
TMAO in osteoblast activity and osteoporosis onset was 
hitherto quite unclear. In this sense, filling a long-standing 
knowledge gap in the field, in the current issue of CMLS, 
Yu-Han Lin and collaborators [4] demonstrate the catabolic 
effects of TMAO on bone maintenance during osteoporo-
sis caused by obesity or estrogen deficiency. They elegantly 
elucidate the molecular basis of the inhibitory effects of 
TMAO on osteoblasts, showing that it disrupts ER integrity 
and mitochondrial UPRmt, thereby accelerating cell aging 
and reducing the mineralized extracellular matrix [4].
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marrow mesenchymal stem cells toward fat rather than 
bone-forming cells [15]. TMAO activates PERK, disrupt-
ing ER stability and autophagy processes, eventually lead-
ing to osteoblast aging. Reducing PERK-mediated stress in 
osteoblasts was found to support cell survival under TMAO 
exposure, further highlighting its suppressive role in bone 
formation [4].

It is important to emphasize that the effects of TMAO 
on the synthesis of mineralized matrix components are con-
text-dependent. In cardiovascular tissues, TMAO promotes 
osteogenic activity by enhancing Runx2 transcription, lead-
ing to matrix calcification in vascular smooth muscle cells 
via NLRP3 inflammasome activation [16].

TMAO also triggers mitochondrial stress, which has been 
implied in regulating osteogenesis of aortic valve cells [17]. 
TMAO has been shown to impede a number of mitochon-
drial activities, including energy production, respiration, 
and oxidative phosphorylation [18]. Moreover, this micro-
bial metabolite may disrupt the mitochondrial UPR (UPRmt) 
by triggering misfolding of its key regulator ATF5 and can 

suppress mineralized matrix synthesis in models of osteo-
porosis [4]. Strikingly, rescuing UPRmt via nicotinamide 
ribose restores mitochondrial energy levels [4], enabling 
osteoblasts to produce mineralized matrix despite TMAO 
exposure, confirming that TMAO inhibits bone anabolism 
in osteoporosis. Consistent with these observations, UPRmt 
has been shown to support mitochondrial function and bone 
stem cell differentiation in response to metabolic stress [19, 
20].

Despite its novelty and potential translational relevance 
for clinicians, the work is not exempt from limitations. For 
instance, the authors did not rule out that other gut-derived 
metabolites could also impact osteoblast activity and bone 
homeostasis. Furthermore, TMAO might influence addi-
tional mitochondrial metabolic pathways, including the 
Krebs cycle, glycolysis, and/or fatty acid biosynthesis.

In conclusion, TMAO may hinder osteoblast function by 
inducing ER stress and misfolding of ATF5 in UPRmt; thus, 
gut dysbiosis and metabolic imbalances can promote bone 
loss. Further studies on gut microbiota transplantation may 

Fig. 1 Main molecular pathways leading to the biosynthesis of TMAO by the gut microbiome
γ-BB: γ-Butyrobetaine; FMAOs: Flavin monooxygenases; TMA: trimethylamine; TMAO: Trimethylamine N-oxide
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provide insights on its bone-protective effects, potentially 
slowing osteoporosis progression. Dedicated investigations 
are also warranted to determine whether these pathways are 
also present in other clinical conditions that have been previ-
ously linked to TMAO, including diabetes, atherosclerosis, 
thrombosis, heart failure, and metabolic syndrome [21–25].
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