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Abstract

Pancreatic cancer is an aggressive and intractable malignancy with high mortality. This is due in 

part to a high resistance to chemotherapeutics and radiation treatment conferred by diverse 

regulatory mechanisms. Among these, constituents of the nuclear envelope play a significant role 

in regulating oncogenesis and pancreatic tumor biology, and this review focuses on three specific 

components and their roles in cancer. The LINC complex is a nuclear envelope component formed 

by proteins with SUN and KASH domains that interact in the periplasmic space of the nuclear 

envelope. These interactions functionally and structurally couple the cytoskeleton to chromatin 

and facilitates gene regulation informed by cytoplasmic activity. Furthermore, cancer cell 

invasiveness is impacted by LINC complex biology. The nuclear lamina is adjacent to the inner 

nuclear membrane of the nuclear envelope and can actively regulate chromatin in addition to 

providing structural integrity to the nucleus. A disrupted lamina can impart biophysical 

compromise to nuclear structure and function, as well as form dysfunctional micronuclei that may 

lead to genomic instability and chromothripsis. In close relationship to the nuclear lamina is the 

nuclear pore complex, a large megadalton structure that spans both outer and inner membranes of 

the nuclear envelope. The nuclear pore complex mediates bidirectional nucleocytoplasmic 

transport and is comprised of specialized proteins called nucleoporins that are overexpressed in 

many cancers and are diagnostic markers for oncogenesis. Furthermore, recent demonstration of 

gene regulatory functions for discrete nucleoporins independent of their nuclear trafficking 

function suggests that these proteins may contribute more to malignant phenotypes beyond serving 

as biomarkers. The nuclear envelope is thus a complex, intricate regulator of cell signaling, with 

roles in pancreatic tumorigenesis and general oncogenic transformation.
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1. Introduction

Pancreatic cancer is among the most aggressive forms of cancer in the world with a higher 

occurrence observed in developed countries [1,2]. In the United States, pancreatic cancer is 

the third most deadliest form of cancer, with a 5-year survival rate of only 8.5% and an 

incidence that has slowly but steadily risen in the past 15 years [3,4]. Exocrine pancreatic 

cancers, often located at the head of the pancreas, account for ≈95% of all diagnosed cases 

with the most common type being pancreatic ductal adenocarcinomas (PDAC). Other less 

common tumors, i.e., pancreatic neuroendocrine tumors, account for less than 5% of cases 

and have a more favorable 5-year survival rate at (50–65%) [2,5]. Still, PDAC is often 

synonymous for pancreatic cancer since it influences the vast majority of the 

epidemiological data of this disease.

PDAC is characterized by a large, firm mass with poorly defined margins and protrusions 

that extend inside the pancreas [6]. This aggressive tumor produces a strong desmoplastic 

reaction that contributes to its pervasive chemoresistance [7,8]. Gross pathology of PDAC 

biopsies typically present as whitish masses, that in conjunction with other distinctive 

histological features (i.e., presence of infiltrative but well-differentiated neoplastic glands, 

luminal necrosis, perineural, and vascular invasion), support the diagnosis of pancreatic 

adenocarcinoma [6]. PDAC elicits vague symptoms during early stages, with the most 

common being anorexia, fatigue, and weight loss; moreover, an increase in the interval from 

symptom onset to diagnosis has been observed in late stage exocrine pancreatic cancer [9–

11].

There have been many established risk factors implicated in the risk of pancreatic cancer, 

including chronic diabetes mellitus, non-hereditary chronic pancreatitis, and some 

environmental risk factors, i.e., meat and fat high diets, obesity, alcohol, and tobacco use 

[12]. The genetic risk factors associated with pancreatic adenocarcinomas is a field that is in 

continuous growth and exploration [13–15]. Detailed in Table 1 are the most common 

somatic and germline mutations that have so far been detected in patients with PDAC. 

Dissecting the functional gene ontology of these genes implicates possible alternative 

pathways associated with pancreatic cancer that deserve exploration. The functional 

enrichment analysis of these common somatic and germline mutation genes contain 

functional terms common to both groups, being nucleoplasmic function and DNA regulation 

(Tables 2 and 3).

The development and progression of cancer has been attributed to: mitotic aberrations 

leading to aneuploidy; chromosomal abnormalities such as translocations, deletions, 

inversions, and duplications; and genome-wide chromothripsis [16]. Dysregulation of 

expression or regulation of tumor suppressors, oncogenes, and cell cycling controls can also 

initiate pathological signaling leading to oncogenesis [17–20]. Furthermore, epigenetic 

reader, writer, and eraser malfunction, with concomitant changes in chromatin structure, 

alters accessibility and disrupts proper programming [21]. Other nuclear regulatory 

modalities may play a role in cancer development given the emerging role of nuclear 

associated genes in pancreatic adenocarcinoma (Tables 2 and 3). Given the increased 

functional repertoire of the nuclear envelope in a variety of biological processes, nuclear 
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envelope-related mechanisms of oncogenesis and their relevance to cancer biology are of 

critical importance and consideration.

2. Chromatin Organization and Dynamics

In general, chromatin access is highly regulated, underscored by dynamic rates of 

heterochromatin maintenance, and relaxation that control cellular processes in regular 

development and cancer [22]. Mechanisms of chromatin organization and accessibility 

include soluble nucleoplasmic machinery and nuclear envelope-bound components, with 

discrete temporospatial regulatory events that can occur within specific subnuclear domains 

[23–26]. For example, chromosome territories are the dynamic three-dimensional volumes 

occupied by each chromosome within the nucleus [27,28]. These non-static volumes are 

subject to spatial shifting in response to mitotic signaling [29,30], cellular aging cues [31], 

and DNA damage [32,33]. Chromosome territory dynamics facilitate gene positioning for 

transcriptional control [34], as well as gene triage for DNA repair [35]. Gene regulation also 

occurs within the spaces separating chromosome territories, known as interchromatin 

domains or compartments [36–38]. Within these spaces, post-transcriptional processing 

centers, such as nuclear speckles, can assemble to regulate transcriptional splicing [39,40]. 

This can occur throughout the nucleus, coordinating discrete chromosome territories to 

facilitate cis-and trans-regulation [40]. Heterochromatic compaction is subject to 

mechanisms that control chromosome dynamics. Cycling between heterochromatic 

relaxation and maintenance insures efficient ad hoc access to specific gene programs while 

simultaneously restricting access to inactive genes [41–43]. In concert with nucleosomal 

sliding and eviction, chromatin structural remodeling emerges as a highly dynamic system 

of global gene regulation and expression control. A key function of these chromatin 

dynamics is to bring super enhancers in contact with target genes, facilitating distal gene 

regulation [44–46]. This can be disrupted in cancer, where dysregulation of enhancer 

accessibility can promote malignancy [47,48].

Normal cellular function is dependent on proper maintenance of these various mechanisms 

of chromatin control, and their disruption has significant consequences for development and 

oncogenesis. The nuclear envelope interacts with this machinery and contributes to the 

regulation of chromatin structure and dynamics in addition to its function as the specialized 

intermediary between extranuclear and intranuclear compartments [49,50]. In this regard, 

the nuclear lamina, the LINC complex, and the nuclear pore complex emerge as key 

regulators of chromatin accessibility and cellular function, with relevant implications for 

cancer biology [51,52].

As the barrier that physically and functionally sequesters chromatin from the cytoplasm, the 

nuclear envelope is the first regulatory entity that coordinates extranuclear stimulus with the 

nuclear response. It is a complex structure composed of two lipid bilayer systems, the inner 

nuclear membrane (INM) that immediately surrounds the chromatin, and the outer nuclear 

membrane (ONM) contiguous with the endoplasmic reticulum network (Figure 1). 

Interposed between the INM and ONM is the perinuclear space (PNS), which is functionally 

and topologically connected to the endoplasmic reticulum lumen [53].
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3. The Nuclear Envelope

3.1. LINC Complexes

The linker of nucleoskeleton to cytoskeleton (LINC) complex mediates cytoskeletal 

communication with the nuclear interior [54]. “Tire! core of the LINC complex structure is 

the interaction between SUN-Sadh, UNC-84) and KASH (Klarsicht, ANC-1, Syne 

homology) domain proteins localized to the inner tINM) and outer (ONM) nuclear 

membranes of the nuclear envelope, respectively (Figure 1) [55]. The C-termini of both are 

located in the periplasmic space where they interact to transmit biomechanical stimuli from 

the cytoplasmic milieu into the nuclear interior to adjust biophysical properties of the 

nucleus. This interaction is critical to regulate nuclear positioning and deformability 

required for cellular migration [54]. In addition, the interactions between the C-termini of 

the SUN and KASH (domain proteins maintain uniformity of the periplasmic space [56]. As 

v gene expression regulator, SUN domain transmembrane proteins in the INM interact with 

the nuclear lamina via their N-terminuses [57], which in turn interact with nuclear .ore 

complexes and chromatin [58,59].

The KASH domain proteins consist primarily of nesprins that are found in the ONM, 

whereas SUN domain proteins are transported to the INM by diffusing from the ONM 

through the nuclear pore complex (NPC) to finally reside in the INM [60]. Upon proper 

localization, the interactions between the KASH and SUN domain proteins couple cytosolic 

microtubule, actin, and plectin networks to the nuclear interior [61–63], and are 

determinants of nuclear envelope thickness [64]. This distance ranges from 30–50 nm and is 

possible because of the varying C-terminal lengths of the different SUN protein isoforms 

[64]. Binding of SUN and KASH domain proteins can occur in varying ratios, with as many 

as three KASH proteins able to simultaneously bind one SUN trimer [65].

Recent work suggests the intriguing possibility that biomechanical forces transduced by the 

LINC complex are capable of directly regulating the nuclear transport function of the 

nuclear pore complex [66–68]. Interactions of SUN1 and SUN2 with nuclear export factor 1 

(NXF1) as well as with components of the pre-export messenger ribonucleoprotein particle 

(mRNP) were disrupted following the SUN domain protein knockdown [68]. This caused 

mRNP accumulation within the nucleus, confirming the functional role of SUN domain 

proteins on nuclear export [68]. This wasfurther supported by evidence of SUN1 interactions 

with the nuclear basket nucleoporin NUP153, a critical component of the nuclear transport 

pathway [68].

Recent work suggests the intriguing possibility that biomechanical forces transduced by the 

LINC complex are capable of directly regulating the nuclear transport function of the 

nuclear pore complex [66–68]. Interactions of SUN1 and SUN2 with nuclear export factor 1 

(NXF1) as well as with components of the pre-export messenger ribonucleoprotein particle 

(mRNP) were disrupted following the SUN domain protein knockdown [68]. This caused 

mRNP accumulation within the nucleus, confirming the functional role of SUN domain 

proteins on nuclear export [68]. This wasfurther supported by evidence of SUN1 interactions 

with the nuclear basket nucleoporin NUP153, a critical component of the nuclear transport 

pathway [68].
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With respect to oncogenesis, it remains to be seen if the biophysical functions of the LINC 

complex contribute to oncogenic gene expression dysregulation per se, though reports 

suggest that cancer cell migration requires intact LINC complex structure and function [69–

71]. Recent work by Infante et al. demonstrated that interactions between nesprin-2 and the 

dynein adaptor Lis1 coordinate with an extracellular matrix “digest-on-demand” mechanism 

to regulate cancer cell invasion. In this manner, while not a mechanism for initiating 

genomic catastrophe that precedes oncogenic transformation, LINC complex biology 

contributes to metastasis and persistence of malignancy.

3.2. Nuclear Lamina

The nuclear lamina is located adjacent to the inner nuclear membrane of the nuclear 

envelope (Figure 1) and regulates cell signaling by coordinating the assembly of multiple 

protein complexes [72–74]. It participates in chromatin organization, repressive 

transcriptional control, and DNA replication [75–77]. In addition, the nuclear lamina 

provides structural support to the nucleus [78]. The meshwork pattern observed for the 

lamina is composed of either A/C or B-type lamins that impart different physical properties 

to the lamin network [79]. Several integral INM proteins are associated with the nuclear 

lamina. In addition to SUN-domain proteins described above, LEM domain proteins 

(LAP2B, emerin, and MAN1), and lamin-b receptor (LBR) are associated with the nuclear 

lamina and contribute to gene expression regulation and nuclear form and function [80].

Nuclear deformability reflects lamin composition, with lamin A/C as the main lamin isoform 

that provides biomechanical stiffness to the nucleus [81,82]. In studies using cells lacking 

the A/C isoform, nuclei were fragile, less resistant to strain, and were frequently misshapen. 

In contrast, lamin B1 deficiency exhibited normal nuclear mechanics and biophysical 

properties despite increased nuclear blebbing. This led to the conclusion that lamin B1 was 

critical for nuclear integrity, but not stiffness. In support of this, micromanipulation of 

isolated nuclei to simulate physiological distension revealed that lamin A/C behaves as a 

polymeric shell with strain-stiffening properties that provide resistance to deformation [83]. 

A tunable auxetic property appears to be a dynamic function of the nuclear lamina [84,85]. 

At the extreme opposite end of this dynamism, cells can assemble a transient perinuclear 

actin network to mechanically rupture the lamina without damaging the nuclear envelope 

[86]. This facilitates cell deformability without cell death, making cells resilient as well as 

competent for migration.

In oncogenic models, a dysfunctional lamina is associated with pathological disruption of 

the nuclear envelope, which can lead to micronuclei formation that precedes genomic 

instability and aneuploidy [87–89]. Micronuclei possess transcriptional competency and 

may initiate chromothripsis, potentiating the development of cancer [90,91]. Indeed, 

morphological changes to the nuclear envelope, as well as micronuclei formation, have been 

used as criteria to diagnose or predict cancer [92]. For example, micronuclei detection in 

peripheral blood lymphocytes have been proposed to serves as predictive biomarkers for 

pancreatic cancer [93].

Nuclear scaling and size regulation is also impacted by lamins [94]. In general, an inverse 

relationship exists between lamin expression and nuclear size [95]. For example, depletion 
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of lamin B1 increases the size of the lamina mesh and overall nuclear size in HeLa cells 

[96]. Abnormal lamin expression and/or localization that leads to enlarged nuclei is used as 

a cytopathological marker of cancer development and progression [52]. Thus, the nuclear 

lamina demonstrates roles in diagnosis and functional impacts on malignant growth, a 

characteristic exhibited by other NE components.

3.3. Nuclear Pore Complex

The NPC is a large multiproteinaceous structure that spans both membranes of the nuclear 

envelope (Figure 1) and regulates nucleocytoplasmic trafficking of molecules between 

nuclear and cytoplasmic compartments. The NPC is separated into three domains referred to 

as the cytoplasmic, central channel, and nucleoplasmic regions [97], and is composed of 

repetitive copies of ≈30 nuclear pore proteins, collectively termed nucleoporins. These are 

arranged in specific subcomplexes to form distinctive pore domains within each of the three 

regions [98,99]. These domains assemble to form a channel with a semipermeable hydrogel 

composed primarily of phenylalanine-glycine (FG) repeats [100,101]. A RanGTP/GDP 

cycle powers transport and acts in concert with soluble karyopherins to regulate molecular 

cargo transit [102].

NPC-mediated nuclear transport can drive cancer via mislocalization of cancer-related 

proteins [103] or through dysfunctional transport pathways. In general, a variety of import 

and export karyopherins, respectively termed importins and exportins, are overexpressed in a 

multitude of carcinomas [104]. This is advantageous as it offers candidates for therapeutic 

targeting [105–107], though rigorous characterization and testing are imperative to identify 

molecules with low to no adverse effects. Leptomycin B and its analog, selinexor, are 

inhibitors of exportin-1 (XPO1) that have been tested for their efficacy in treating pancreatic 

cancer [108,109]. Treatment of pancreatic cancer cell lines with these pharmacological 

inhibitors demonstrated effectiveness by deactivating NF-κB signaling and restoring tumor 

suppressive miR-145 [109,110]. In combination with gemcitabine, selinexor exhibited 

enhanced antitumor activity [111]. Recent identification of a novel karyopherin family 

member, KPNA7, is another potential target with pancreatic specificity. Initial reports 

identified overexpressed KPNA7 in multiple pancreatic cancer cell lines that implicated 

overactive transport of KPNA7 cargoes [112,113]. In an elegant series of experiments, 

Laurila et al. discovered that KPNA7 controlled pancreatic cancer cell proliferation by 

regulating p21 induction. This was supported by later work in which Vuorinen et al. 

demonstrated increased mitotic defects and nuclear deformation due to remodeling of the 

nuclear lamina and a shift in favor of lamin B1 [114].

Beyond anticipated roles in dysfunctional nuclear trafficking, a role for individual 

nucleoporins in cancer was discovered by the identification of nucleoporin fusion proteins in 

hematologic malignancies [115,116]. This early work identified fusions of NUP98 and 

NUP214 that led to a variety of de novo hematologic malignancies [117]. Further work 

identified other nups that promoted, as well as served as diagnostic markers, for a variety of 

other cancers [118–120]. To date, the individual nups associated with malignancy include 

NUP37, NUP88, NUP98, NUP160, NUP214, NUP358, and TPR [121–123].
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NUP37 overexpression in a model of hepatocellular carcinoma was associated with 

enhanced metastasis and invasion that decreased upon NUP37 knockdown [123]. NUP88 

was first identified as a marker for a variety of cancers, where its overexpression was 

diagnostic for tumorigenesis [119,120,124]. Recent identification of a phosphoregulatory 

function for NUP88 has been reported, where excess NUP88 inhibited dephosphorylation of 

vimentin in HeLa cells [118]. Dysregulation of the vimentin filament network can have 

consequences on pancreatic chemosensitivity, as vimentin is an active factor in the 

epithelial-to-mesenchymal transition that grants pancreatic tumors high chemoresistance 

[125,126]. NUP98, NUP160, and NUP214 have both been reported as fusion proteins with a 

variety of partners that lead to hematologic malignancies and angiosarcoma [117,122]. 

NUP358/RANBP2 also behaves as an oncogenic fusion protein [127], in addition to its 

transport associated mechanisms [128,129]. Novel functions for NUP358 were described in 

a recent report by Vecchione et al., where the authors discussed how NUP358 interacts with 

microtubules in a subset of colon cancer cells to promote their survival [130]. Similar to 

oncogenic mechanisms identified for the nups described above, TPR was identified in a 

variety of malignant fusion proteins that possessed constitutive tyrosine receptor kinase 

activity [131], whereas its overexpression promoted cancer cell survival through sustained 

mitosis. These examples demonstrate that a wide variety of mechanisms mediated by, or 

associated with nups can give rise to oncogenesis. Current work characterizing the 

expanding number and functional repertoire of nups that contribute to development may thus 

uncover novel mechanisms underlying general as well as tumor biology.

3.4. Potential Regulation of Epigenomic Dynamics by the Nuclear Envelope in the Setting 
of Pancreatic Cancer

An extant diversity of underlying epigenetic and epigenomic mechanisms drive pancreatic 

oncogenesis [132]. Among these, differential histone modifications can give rise to 

chromatin states that lead to the development of different subtypes of PDAC [21]. 

Methylation and acetylation states of various lysine residues on histone H3, i.e., H3K4, 

H3K9, and H3K27, as well as their localization within the nuclei, functionally and 

physically anchor discrete gene networks that establish pancreatic tumor aggression, 

metastasis, and resistance to therapy. The intimate relationship of histones, nuclear pore 

complexes, and nuclear lamina suggests a role for the nuclear envelope in regulating histone 

modification. This occurs in normal developmental processes mediated by lamina associated 

domains (LADs). Earlier work confirmed constitutive wild type LADs linked to 

transcriptional repression and histone H3 methylation [133,134]. This mechanism may have 

implications in chromatin remodeling that occurs in PDAC, as previous work identified 

lamin B1 overexpression in human pancreatic cancer associated with poor prognosis [135]. 

In pancreatic cancer cell models, lamin B1 knockdown significantly diminished proliferative 

aggressiveness and invasiveness [135]. Later independent work demonstrated that 

H3K27Me3 dispersed in a dramatic fashion from the nuclear periphery to the nuclear 

interior upon lamin B1 silencing [136], supporting the notion of the nuclear lamina playing a 

regulatory role in histone dynamics underlying oncogenesis.

Furthermore, the identification of enzymes such as histone deacetylases associated with 

individual nucleoporins supports the proposed regulatory roles of the nuclear envelope in 
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histone modification and chromatin accessibility [137]. As an additional modality, NUP 

fusions to histone readers, as in the case of NUP98-PHD finger protein fusions, result in the 

“reading” of H3K4Me3 that locks associated genomic loci in an active state [138]. This type 

of mechanism is critical for hematologic transformation and establishes a rationale for its 

potential role in other cancer types. Indeed, the functional precedence for this system of 

H3K4Me3 detection and regulation exists for wild type NUP98 [139], and is significant 

when considering that H3K4Me3 is critical for anti-apoptotic gene activation in PDAC 

[140].

Epigenetic/epigenomic modifications and their association with the nuclear envelope in the 

setting of pancreatic oncogenesis is underscored in the “Triple Code Hypothesis,” where 

crosstalk among genetics, epigenetics, and nuclear structure plays an important role in the 

evolution of PDAC [141]. In support of this, the nuclear envelope’s regulatory contributions 

are mediated by the nuclear lamina, nucleoporins of the nuclear pore complex, and by the 

LINC complex. Evidence for the latter suggests that the LINC complexplays a larger role in 

metastatic dissemination and cancer metabolism over direct epigenomic regulation 

[70,142,143]. However, these biophysical and biochemical functions downstream of 

epigenomic remodeling furthermore do not preclude its potential primary contribution to 

oncogenic chromatin dynamics. This was recently demonstrated in work by Aymard et al., 

where the authors identify an active role for the LINC complex in clustering double-stranded 

DNA breaks induced in active genes [144]. This is particularly relevant as these gene lesions 

are critical for initiating and promoting tumorigenesis, and account for a major subtype of 

PDAC [145]. In addition, independent work showed that the expression of spectrin repeat 

containing nuclear envelope protein 2 (SYNE2/Nesprin-2), a component of the LINC 

complex, is dysregulated in PDAC by small nucleolar noncoding RNA SNORA23, and is 

associated with increased tumor invasion and metastasis in mice [146]. Given these initial 

findings, future studies are critical to define the role of the LINC complex in the context of 

tumorigenesis and PDAC.

4. Summary and Future Directions

While individual components of the nuclear envelope described above possess the capacity 

to regulate nuclear function in discrete ways, functional crosstalk among these components 

is critical to maintain a normal phenotype. The nuclear envelope thus emerges as an intricate 

regulatory body that integrates an array of biomechanical and biochemical signaling 

pathways to modulate nuclear structure and function. For example, developmental 

disruptions in any of the LINC complex, nuclear lamina, or NPC proteins are related to a 

class of diseases termed laminopathies that can affect multiple physiological systems [147]. 

This observation, in line with the enriched functional bias of known pancreatic cancer genes 

towards nucleoplasmic function and DNA regulation described earlier, supports the notion 

that the nucleus may have more roles in pancreatic cancer biology that are unexplored.

The high mortality rate associated with pancreatic cancer is a conflation of strong 

chemoresistance and high metastasis [148], and this underscores the priority to identify and 

develop specific and robust treatments with improved therapeutic potential. Exploiting the 

unique regulatory biology of the nuclear envelope may offer unique strategies for the design 
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of novel therapeutic approaches to cancer. When considered in combination with extant 

treatment paradigms, such as cell cycle checkpoint inhibitors, oncolytic viruses, and 

pharmacological MEK antagonists [149], nuclear envelope interventions may contribute 

synergistic advantages to personalized cancer treatment regimens. Currently, 

immunotherapeutic approaches to pancreatic cancer are the most advanced paradigm being 

developed to address pancreatic malignancy [150] and involve the recruitment of activated 

T-cells. Adoptive T-cell therapy, or CAR-T cell therapy, has been promising in addressing 

hematologic malignancies [151,152] and has promise for treating pancreatic cancer. In this 

approach, chimeric antigen receptor (CAR) T-cells are autologously generated from 

extracted patient cells, then infused back into original donors. Despite the demonstrated 

success in a liquid tumor, challenges remain for its application to solid tumors. Progress in 

this field is ongoing, and it is anticipated CAR-T cell therapy has the potential to efficiently 

overcome the low immunogenicity of the pancreatic tumor microenvironment and facilitate 

its clearance and regression [149,153].

The functional priority of the nucleus associated with somatic mutations driving pancreatic 

malignancy provides the rationale to focus on nuclear elements that contribute to the 

pathology of pancreatic cancer. This is critical to developing novel strategies that synergize 

with current approaches to treat pancreatic malignancy. Thus, characterization of the nuclear 

envelope and its role with respect to oncogenesis will supplement the growing therapeutic 

armamentarium to address carcinomas and offers a body of knowledge that may be 

leveraged to overcome the innate resistance of pancreatic tumors.
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Figure 1. 
Landscape of the nuclear envelope. Schematic cross-section of a nuclear envelope 

illustrating the LINC complex, the nuclear lamina, and the nuclear pore complexes as they 

relate to one another. The LINC complex is connected to the cytoskeleton by the N-termini 

of the KASHdomain proteins with their C-termini embedded in the outer nuclear membrane 

(ONM) of the nuclear envelope. Within the perinuclear space (PNS), the KASH-domain C-

term interacts with the C-term of the SUN protein within the inner nuclear membrane 

(INM). From there, the nucleoplasmic portion of the LINC complex connects to the nuclear 

lamina that interacts with chromatin as well as the nuclear pore complex. The nuclear lamina 

is located adjacent to the INM on the nucleoplasmic face where it forms a dynamic 

meshwork that provides several structural properties to the nucleus, i.e., nuclear stiffness 

regulated by composition of the nuclear lamina (see text); it serves to anchor nuclear pore 

complexes (NPCs) through interactions with distinct nucleoporins (nups) in the nuclear 

basket portion of the NPC; and it functions as a repressive subnuclear compartment. The 

NPC is a large multiproteinaceous complex that spans the nuclear envelope where the ONM 

and INM meet and is the main transporter that facilitates nucleocytoplasmic transport 

between nuclear and cytoplasmic compartments (see text).
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