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To identify sources of inter-subject variation in vaccine responses, we performed high-frequency sampling of
human peripheral blood cells post-vaccination, followed by a novel systems biology analysis. Functional
principal component analysis was used to examine time varying B cell vaccine responses. In subjects
vaccinated within the previous three years, 90% of transcriptome variation was explained by a single
subject-specific mathematical pattern. Within individual vaccine response patterns, a common subset of 742
genes was strongly correlated with migrating plasma cells. Of these, 366 genes were associated with human
plasmablasts differentiating in vitro. Additionally, subject-specific temporal transcriptome patterns in
peripheral blood mononuclear cells identified migration of myeloid/dendritic cell lineage cells one day after
vaccination. Upstream analyses of transcriptome changes suggested both shared and subject-specific
transcription groups underlying larger patterns. With robust statistical methods, time-varying response
characteristics of individual subjects were effectively captured along with a shared plasma cell gene signature.

P
andemic and seasonal influenza causes significant morbidity and mortality worldwide. A key strategy in
preventing influenza infection is vaccination, which induces B cells to differentiate through several stages
into plasmablasts and long-lived plasma cells. These cells produce protective antibodies (immunoglobulin)

against hemagglutinin (HA) capsid proteins1. The World Health Organization (WHO) defines effective influenza
vaccine responses as 28-day post-vaccine antibody hemagglutinin inhibition assay (HAI) titer $ 15402. However,
influenza vaccines produce highly variable B cell responses among individuals3, making it difficult to predict who
will achieve protective antibody titers and when.

Advances in data-driven personalized medicine, as applied to vaccine immunobiology, require new statistical
methods that are able to capture immune response features common across subjects (e.g. consensus gene
expression patterns) and patient-specific patterns which differ between subjects. This is especially true in vaccine
studies. For example, recent studies on transcriptome patterns in vaccine responses have used sparse sampling
(i.e. microarray analysis of PBMC on days 0, 3, and 7), and analytic methods that do not involve time series
analysis4–6. In this report, we describe a robust systems biology approach using functional principal component
analysis to identify common and subject-specific time-varying gene signatures within the trivalent influenza
vaccine (TIV) immune response.

In a memory response to influenza vaccination, resting memory B cells differentiate through proliferating
plasmablast states to terminally differentiated non-proliferating plasma cells7. Migrating through peripheral
blood to bone marrow and spleen, virus-specific antibody-secreting cells (ASC) appear 5–9 days post-vaccina-
tion8. Vaccine or influenza exposure induces memory B cells producing cross-reactive antibodies to similar
influenza strains, termed heterosubtypic immunity9. The presence of heterosubtypic immunity alters the speed
and strength of TIV responses. Previous systems biology vaccine response analyses have sampled subjects on a
single day empirically described as the peak B cell response10,4. Such approaches lack the structure to capture peak
responses or the statistical power to separate time varying gene signatures from inter-subject variation. Our
approach is fundamentally different. Our goal was instead to identify differences in the character of the tran-
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scriptome responses of individuals using high-frequency sampling
and an analytical method designed to characterize temporal patterns
in complex systems. In contrast to other studies10,4, we were not
trying to predict who responded to the vaccine. Rather, our goal
was a deeper understanding of the time varying, vaccine specific,
transcriptome response, and to determine if the B and plasma cell
gene expression patterns varied as a function of pre-existing vaccine
antigen memory. Systems analysis of high-frequency time course
data requires more samples per subject, but better defines peak and
time varying B cell immune responses.

To separate concensus from subject-specific time-varying B cell
transcriptome responses to influenza vaccination, we performed
high-frequency (daily) sampling of serum, peripheral blood mono-
nuclear cells (PBMC), B cells and plasma cells from 14 human sub-
jects over 11 days post-TIV administration. Our approach combined
time-series transcriptome analysis, flow cytometry, ELISPOT, ELISA,
and HAI assays with computational analysis to identify time-varying
RNA biomarkers associated with robust B cell responses. To identify
subject-specific gene expression signatures, we used functional prin-
cipal component analysis (FPCA), a statistical dimension reduction
method for high frequency time series data similar to principal com-
ponent analysis for single time-point data11,12. In essence, the differ-
ential expression of each gene is determined by its own signal-to-
noise ratio. The major temporal variation in the RNAseq time-series
data can be characterized by a few representative patterns called
eigenfunctions. Each gene expression curve is approximated by a
linear combination of these eigenfunctions, enabling a flexible and
parsimonious representation of time-series data. This method
accommodated individuality in vaccine response by identifying
time-varying transcriptome patterns unique to each subject. For a
detailed explication of FPCA, and underlying statistical theory, please
see the specific section in Supplementary Methods.

This approach identified a peripheral blood B cell transcrip-
tome signature in previously vaccinated subjects that was strongly
correlated with migrating plasma cells observed with cytometry.
Upstream analysis of significant gene sets revealed common immu-
nological dynamics between subjects as well as unique vaccine res-
ponse features in individuals. At the subject level, these responses
were associated with robust protective antibody responses and a
prior history of influenza vaccination. Eigenfunctions calculated
for PBMC gene expression also demonstrated an early wave of mye-
loid/dendritic cell lineage migration peaking 24 hours post-vaccina-
tion. Additional eigenfunctions identified transcriptome changes
unique to each individual, commonalities between subject-specific
signatures, and their relative contribution to the overall vaccine
response.

Results
Heterogeneous antibody responses to TIV vaccination. We
vaccinated three cohorts of 3–6 subjects (n 5 14 subjects) with the
2010–2011 TIV. Subjects reported mixed vaccine histories, with two
subjects reporting no influenza vaccination in three consecutive
years prior to the study, and three subjects reporting receiving all
available influenza vaccines. Two of study vaccine strains, A/
California/7/2009 and B/Brisbane/60/2008 were included in recent
vaccines (Supplementary Table S1).

For analysis, peripheral blood was drawn during the week prior to
vaccination (pre-V), immediately before vaccination (day 0), daily
for days 1–10 and on day 21 post-vaccination. HAI and isotype-
specific ELISA assays were performed on serum samples. (Fig. 1,
Supplementary Fig. S1). No two subjects had identical changes in
HAI titers. One subject had no pre-vaccine immunity (HAI , 1540),
and five subjects had pre-vaccine immunity (HAI $ 1540) to all
three viral strains (Fig. 1, Supplementary Table S2). At day 21, all
14 subjects had immunity to A/California, 12 had immunity to A/
Perth and 13 had immunity to B/Brisbane.

Differences in gene expression correlate with vaccine history and
response. B cell samples (days 0–10) were analyzed by RNAseq, flow
cytometric and ELISPOT (880 samples) (Supplementary Fig. S1).
Due to cost, RNA Seq analysis was performed on PBMC and B cell
enriched samples from one contemporaneous cohort of five subjects,
days 0 to 10 (110 samples). S01 RNA was used for RNA Seq pilot
studies. We selected a single cohort of subject samples for RNA Seq
analysis. Each gene was tested for differential change from day 0 to
day 10 using FPCA-based significance testing13 and a permutation
test coupled with multiple-testing correction to control the false
discovery rate (FDR , 0.05)14. A deviation in a gene expression
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Figure 1 | Hemagglutinin Inhibition Activity of Daily Serum Samples.
Blood was drawn one day within a week prior to vaccination (pre-V), at

vaccination (day 0), daily days1 to 10, and day 21 after vaccination. Serum

samples showed heterogeneous humoral responses to the three virus types

in the vaccine, A/California/7/2009 (A/California), A/Perth/16/2009 (A/

Perth), and B/Brisbane/60/2008 (B/Brisbane). With immunity classified as

an HAI titer . 1540, S06 was not previously immune to any of the three

viruses. S05, who had reported not being vaccinated in the previous three

years, was immune to A/California only. S01, S07, and S10 were initially

immune to all three viruses and the other subjects showed a mix of initial

immunity. At day 21, all subjects except S08 and S12 qualified as immune.

See also Supplementary Figure S1 and Supplementary Tables S1 and S2.
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curve from a flat line indicates a significant temporal pattern in
transcriptomic variation.

Intra-subject variation in differentially expressed genes was mod-
erate (p-values in Supplementary Table S3). S02 had the largest
number of significantly time-varying genes (5580 genes) while S06
had few (2 genes). For better comparison with other subjects, 1600
genes with the highest signal to noise ratio were added to the analysis
of S06. After excluding genes with less than a 1.2-fold-change from
baseline, the numbers of temporally differentially expressed genes
still varied greatly: S02 (5256 genes), S03 (1309 genes), S04 (2147
genes), S05 (1603 genes) and S06 (1053 genes). Notably, 742 genes
were common to three of five subjects.

We next used FPCA to identify the major variations in tem-
poral RNA expression patterns of the differentially expressed genes
for each subject, which were then represented by eigenfunctions
(Fig. 2a, complete list of significantly time-varying genes in Supple-
mentary Table S3). For three subjects (S02, S03, S04), 90% of tran-
scriptome variation could be accounted for by a single eigenfunction.
All three of these subjects had a previous history of influenza vac-
cination, pre-vaccine immunity to at least one viral vaccine strain by
WHO criteria, and strong antibody responses by HAI titer (Fig. 2b,
p-values in Supplementary Table S2) and vaccine-specific ELISA
(Fig. 2c, p-values in Supplementary Table S2).

Cellular responses were seen by FACS in the appearance of vac-
cine-specific ASC (Fig. 2d), and migrating CD27hiCD38hiCD20lo

CD1381 plasma cells and CD27hiCD38hiCD20loCD1382 plasma-
blasts (Fig. 2e, p-values in Supplementary Table S4). In semi-
quantitative ELISPOT data, (Supplementary Fig. S2), we found
secretion-rate profiles typical of activated ASC15, with high-rate vac-
cine-specific IgG-secreting cells appearing at peak responses.

Subject-specific dynamics were seen in vaccine response charac-
teristics at multiple levels. S02 had a sharp peak in cellular and RNA
changes at day 5, whereas S03 and S04 had more gradual changes.
These subjects met serum and cellular criteria for robust memory B
cell responses to TIV. However, with some evidence of de novo
reactivity to A/California, and without specific clone data, we prefer
the term ‘‘predominantly recall’’ responses.

In two subjects (S05, S06), 90% of the variation in gene expression
could be explained by two eigenfunctions, indicating two distinct
temporal patterns of gene expression. S06 had a linear trend in some
genes and S05 had multimodal eigenfunctions. These subjects
reported no influenza vaccination in the previous three years and
developed de novo immunity to at least two vaccine-specific viruses
by WHO HAI criteria. Acknowledging the difficulties in defining an
influenza response in adults as truly naive, we prefer the term ‘‘pre-
dominantly de novo’’ responses.

Taken together, results from the high frequency sampling data
show coordinated and dynamic vaccine-response changes at serum,
cellular, and transcriptomic levels, as well as inter-subject variations
in immunological response characteristics. Features of time-varying
transcriptome profiles independently identified subjects with signifi-
cant pre-vaccine B cell memory. Also, high-frequency sampling pro-
vided the resolution to discern unique expression dynamics across
assays for each subject.

Transcriptome changes in the B cell predominantly recall respon-
se were consistent with late B cell differentiation. To connect the
transcriptomic and cellular level B cell influenza vaccine responses,
we hypothesized that predominantly recall TIV responses would be
characterized by significant variations in established markers of late
B cell differentiation (Fig. 2f). Detailed analysis showed known genes
with time-varying patterns that paralleled B cell phenotypic changes
in S02, S03 and S04 including the genes for CD70 receptor CD2716–18,
ecto-enzyme CD3816, plasma cell marker syndecan-1 (SDC1 or
CD138), and genes encoding regulatory molecules PRDM1 (Blimp-
1)19,7, IRF416,20,21 and XBP122. Also increased was CD59, which has

been associated with memory B cell differentiation23. Increased
expression of CXCR3, a gene for a migration marker24 suggested
trafficking from the germinal center through peripheral blood
presumably to bone marrow and spleen. Decreases in MS4A1
(CD20) and CD19 at peak cellular changes are also consistent with
late-stage differentiating B cells16,25,26,23. PAX57 and BACH227 are
known repressors of B cell differentiation and decreased gene
expression has been linked to expression of PRDM128. In subjects
with predominantly de novo responses (S05, S06) time-varying
expression of these differentiation markers was modest or absent.

Decreases were seen at peak response in CD5, the gene expressing
a marker of naı̈ve B cells, and SERPINB9 (PI-9), an enzyme that
protects cytolytic B cells from endogenously produced granzyme
B29. It has been proposed that a granzyme B expressing cytolytic B
cell lineage diverges from plasmablasts during differentiation30.
Reduced expression of these markers may reflect ASC fractional
expansion post-vaccination.

To confirm and validate changes in expression of key B cell dif-
ferentiation genes, we probed RNA samples of the eight other sub-
jects by qRT-PCR for 11 genes: SDC1, IGHG, XBP1, CD27, CD38,
CD59, PRDM1, IRF4, IRF8, BACH2, and PAX5. These subjects were
heterogeneous in vaccine response by HAI titer (Fig. 3a), vaccine-
specific ELISA (Fig. 3b), and flow cytometry (Fig. 3c). Changes in
migrating B cells and plasma cells over time exhibited a similar
pattern in these independent subjects (Fig. 3d and Supplementary
Table S5).

A strong gene expression signature post-TIV in previously
vaccinated subjects is associated with migrating plasma cells. In
comparing significant time-varying gene sets between individuals,
we found a biomarker signature of 742 genes common to predo-
minantly recall subjects (Fig. 4, p-values in Supplementary Table
S6). To identify statistically significant connections between tran-
scriptomic and cellular levels, we compared phenotypic and gene
expression data using Pearson’s correlation test with the Benjamini-
Hochberg multiple test correction to control FDR at 0.05. Out of 742
genes shared among the previously vaccinated individuals, 740 (S02),
404 (S03), and 238 (S04) genes were significantly correlated with
CD27hiCD38hiCD1382 plasmablasts, indicating a very strong asso-
ciation. This gene set was even more highly correlated with CD27hi

CD38hiCD138hi plasma cells. Out of 742 shared genes, 742 (S02), 553
(S03), and 725 (S04), were correlated with plasma cells (FDR , 0.05)
(Fig. 5a, correlations in Supplementary Table S6). These associations
were strong in all three subjects, even though the timing of peak
expression, and composition of genes within the broader signifi-
cant gene sets, varied between subjects. We refer to this set of 742
genes as the plasma cell gene signature (PCgs).

Expression of the PCgs in late-stage differentiating B cells subsets.
We next asked if the PCgs could be validated by examining tran-
scriptome data from in vitro human plasma cell differentiation.
Peripheral blood CD271 IgG1 memory B cells from six normal
healthy volunteers were CFSE labeled to track proliferation and
stimulated in vitro for 60 hrs with CpG2006 ODN, IL-2, IL-10, IL-
15, and BAFF23. For transcriptome analysis, cells were FACS-sorted
into three stages of late-stage memory B cell activation and differen-
tiation; undivided CD27lo memory B cell, proliferating CD27lo cells
and proliferating CD27hi plasmablasts (Fig. 5b) (n 5 6 subjects). We
hypothesized that a subset of PCgs genes would be differentially
expressed between the CD27lo (proliferating but non-IgG sec-
reting) B cell and the more differentiated CD27hi plasmablasts
(Fig. 5c). Of 2033 genes differentially expressed between CD27lo

and CD27hi B cells, 366 genes of the PCgs were highly expressed in
the CD27hi plasmablasts (Fig. 5d, full gene list in Supplementary
Table S6). These independent findings strengthen the association
between the PCgs and differentiating plasma cell subtypes (Fig. 5e).

www.nature.com/scientificreports
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Common upstream regulatory mechanisms in the PCgs. Given the
strength of the in vivo and in vitro associations between the plasma
cell population kinetics and the PCgs at the gene level, it seemed
likely that there were common upstream regulatory transcription

factors. We performed upstream analysis on gene expression data
from S02 using IngenuityH Pathways Analysis (IPA). Fisher’s exact
test was used to assess overlap between the data set and curated
gene sets associated in the literature with upstream modulators
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Figure 2 | Subject-specific B cell vaccine response characteristics. (a) A single gene expression eigenfunction accounted for 90% of sample variation in
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(www.ingenuity.com). We constructed a time series movie of a net-
work of identified upstream modulators (p-value , 0.01) and their
targets, (see Supplementary Movie S1). Gene expression changes
consistent with release of suppression of B cell regulator PRDM1
(Blimp1) by BACH227 occur by day 4. In days 4 through 10, upregu-
lation of XBP1 was seen, as well as downstream genes associated with
ER function, the unfolded protein response, protein production and
transport. We also performed functional enrichment analyses of
Gene Ontology (GO) terms using DAVID (http://david.abcc.
ncifcrf.gov/) and analyses of pathways with KEGG, BIOCARTA
and REACTOME (Supplementary Table S7). Ten of the top 30
categories of functionally related genes in the PCgs involved ER
function and protein production. These findings are consistent
with involvement of the PCgs in program-level upregulation of
antibody production machinery and the unfolded protein response
seen during plasma cell development28.

Unique as well as shared B cell response features beneath the larger
patterns. In addition to the common PCgs, each subject had unique
time-varying gene sets. We hypothesized that these may reflect
differences between subjects in regulatory transcription factors.
Using the complete set of significant genes for each predominantly
recall subject, upstream analysis identified a likely set of upstream
activators (Z-score . 2.0) that spanned the peak B cell response in all
three subjects (Fig. 6). IL2, IL4, IL5, IL6 and CD40 ligand were
identified as probable activators. While the signaling pathways of
these activators are not mutually exclusive, this is consistent with a
plasma cell history of germinal center reaction.

In addition to common upstream activators, each subject also had
a unique set of significantly varying transcription factors. Of particu-
lar interest, a wave of probable activation of Type I IFN and

IFN-related gene sets appeared in S04 two days after the shared
germinal center pattern. This could be evidence of a secondary
migration of B cells with previous plasmacytoid dendritic cell
(pDC) interaction within the broader peak response. Producers of
large amounts of Type I Interferons, pDC are part of the innate
response to virus and can induce antibody production by CD40-
stimulated B cells in response to influenza31,32. As interferon regula-
tory factor (IRF) proteins can also regulate B cell differentiation in
response to toll-like receptor stimulation33,34, another interpretation
of this pattern is a viral DNA-initiated innate response to the vaccine.
The eigenfunctions derived by the analysis, along with upstream
analysis, identified both common and subject-specific dynamic gene
sets that may represent the effects of interacting innate and adaptive
cellular immune systems on differentiating plasma cell.

Myeloid cell gene signatures peak in PBMC primary eigenfunc-
tions at Day 1. We next hypothesized that the PCgs could be
identified in PBMC collected in parallel with the B cell samples.
We found something quite unexpected. The primary eigenfunction
in the RNA Seq gene expression data, which explained over 70% of
the variation for four out of five subjects (S02, 81.44%; S03, 86.68%;
S04, 72.8%; S05, 57.15%; S06, 85.32%), peaked on day 1 post-
vaccination (Fig. 7a). In the predominantly recall subjects, the
genes with largest positive loadings on the primary eigenfunction
were enriched for myeloid/dendritic cell (DC) lineage-associated
genes (Fig. 7b, Supplementary Table S8). Interestingly, the first
eigenfunctions for predominantly de novo response subject S06
also contained myeloid/DC genes with more modest overall gene
expression changes. These results suggest that even within the
far more complex and dynamic mix of cellular populations in
post-vaccination PBMC, FPCA analysis could identify a wave of
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myeloid lineage cells released into peripheral blood one day post-
influenza vaccination in four of five subjects.

Discussion
Using a method based on FPCA for time-series transcriptome ana-
lysis, we identified a 742 gene signature, upstream transcription fac-
tors, and subject-specific gene sets associated with a robust B cell
response to influenza vaccine. The method yields quantitative func-
tions (eigenfunctions) that describe the temporal pattern of major
transcriptome variation. In previously vaccinated subjects, the 742
gene signature was highly correlated with the migration of differenti-
ating plasma cells through peripheral blood. There was an asso-
ciation between the PCgs and key upstream transcription factors
that control antibody production including PRDM1 and XBP1. A
second gene signature was identified in unfractionated PBMC with a
transcriptome profile suggesting migration of cells of the myeloid/
DC lineage one day post-vaccination. In addition to these common

gene signatures, eigenfunctions identified specific points of variation
between individuals including a late spike in IFN-related gene activ-
ity. Thus, this approach can identify processes common across indi-
viduals in a vaccine response, as well as unique features that may
underlie variation between subjects.

A systems biology approach to studies of B cell response
requires not only connections between nested levels of regulation
from genes to the whole organism, but also perturbations in these
systems over time. This study was designed to capture frequent
and complete B cell gene expression dynamics after influenza
vaccination in a small set of subjects. In this study, high-frequency
data from each subject serves as an intra-subject control, adding
statistical power and accuracy for detection of significant signals
from noisy transcriptome data. A better understanding of vaccine-
induced subject-specific gene dynamics may help design studies
with more subjects and fewer timepoints that still capture tran-
scriptome patterns.
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Figure 7 | PBMC Gene Expression Patterns Suggest Myeloid/Dendritic Cell Migration. PBMC were isolated in parallel with enriched B cell samples.

(a) FPCA analysis of RNA Seq data showed a primary eigenfunction that explained over 70% of the variation across the timepoints for four subjects (S02,

81.44%) (S03, 86.68%) (S04, 72.8%) (S05, 57.15%) (S06, 85.32%). Second eigenfunctions explained most of the remaining variation in three subjects

(S02, 13.11%) (S03, 7.24%) (S06, 10.2%). S05 had a third eigenfunction that explained 13.85% of variation. The first eigenfunction for S02, S03, and S04

peaked day 1. (b) The largest positive loadings on these functions were enriched for genes expressed by myeloid/DC lineages (gene symbols in red),
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The use of eigenfunctions to identify common patterns of gene
expression that explain transcriptome variations is a powerful ana-
lytic method. Inter-subject vaccine response heterogeneity is consid-
erable3,9,4. To generalize conclusions, other systems biological studies
have averaged gene expression data across subjects10 or restricted
their analyses to significant genes shared in at least 20% of subjects4.
Our goal was not to predict vaccine efficacy in large groups of people
and indeed, all of our subjects achieved protective HAI titers. Our
goal was to identify differences between the vaccine responses of
individual subjects over time, and to identify dynamic gene express-
ion mechanisms that underlie those differences. Our method
approached subject variation by identifying subject-specific time-
varying transcriptome signatures and within those unique patterns,
identifying a B cell response gene set shared among individuals. This
approach may yield more robust insights into immune response
dynamics than sampling at wide time intervals (e.g. only days 0, 4
and 7 post-vaccination), which misses critical events in the indi-
vidual response. While other studies have found plasma cell assoc-
iated genes upregulated on Day 76,4, we found subject-specific
variation in peak expression of PCgs that would have been missed
with typical interval sampling.

Using high-frequency sampling, we found that subjects that had
been previously vaccinated each had individual response charac-
teristics, but 90% of the gene expression variation over time could
be accounted for by a single subject-specific eigenfunction con-
taining a common plasma cell transcriptome signature. This gene
signature was identical in all three of the previously vaccinated
subjects. As our sample size is small and all of our subjects for
RNA Seq achieved protective HAI titers for the vaccine antigens,
it is difficult to compare vaccine efficacy with incidence of the
PCgs. One interpretation suggested by our findings is that the
predominantly recall influenza vaccine responses exhibited a syn-
chrony of B cell differentiation across vaccine-specific memory B
cell populations, while the predominantly de novo responses did
not. In combination with stochastic nature of plasma cell fate
determination35, this synchrony of initiation likely resulted in a
wave of differentiating plasma cell migrating from the germinal
center of individuals with B cell memory.

PBMC eigenfunctions contained a signature suggesting migration
of myeloid/DC lineage cells 24 hours after vaccination. Our results
are quite consistent with a recent study using transcriptional analysis
of whole blood after influenza vaccination5. In this study, neutrophils
and monocytes were implicated as the major source of the IFN-
related gene set upregulated within 15 hours post-vaccination for
influenza. Interferon-related transcripts upregulated one day after
Influenza vaccination in an earlier study were also correlated with
anti-Influenza antibody titers6. This myeloid/DC gene signature
likely triggers the initial germinal center reaction that results in
plasma cell migrations later.

At the organ level in normal human subjects, we cannot sample
lymph nodes and spleen. However, our analysis suggests that with
higher temporal transcriptome resolution, peripheral blood does
reveal evidence of prior upstream gene regulation, reflecting hidden
dynamic events within lymphoid compartments. Also, upstream
transcriptome analysis revealed that migration of multiple B cell
populations underlie broader B cell and plasma cell surface marker
phenotypes observed by flow cytometry. Further detailed experi-
ments are needed to determine if transcriptome patterns observed
are from broad changes in B cell population cell frequencies or a
single dominating subpopulation. Given that our PBMC analysis
reflects mixed and dynamic cell populations, any resulting gene
interaction network cannot be considered strictly causal, but rather
should be interpreted as a network of temporally associated tran-
scriptome changes, likely occurring in several cell populations.
Further and more detailed cell sorting work will need to be done to
validate this hypothesis.

At the cellular level, division-linked B cell differentiation36,37,38 is
asymmetric with key control molecules like BCL-6 bequeathed to
one daughter cell39. This, along with graded IRF4 expression21, is
thought to affect diversification of B cells. Our findings suggest that
even with diverse B cell fates, a common transcriptomic signature
can identify pre-existing vaccine-specific B cell memory, likely a
marker for heterosubtypic immunity. During a pandemic, the
PCgs may be useful in early prediction of both successful vaccine
responses and heterosubtypic immunity.

At the individual gene level, within the PCgs we identified key
plasma cell regulatory genes including those seen in other systems
biology studies. TNFRSF1710 was found in both in vitro and in vivo
data sets, and XBP14,40 was central to our networks. Our high-
frequency sampling extends these observations with detailed time-
series data capturing individual response patterns. Other genes
previously associated with the post-vaccination neutralizing anti-
body response include KBTBD710, which did not significantly
change. We also found more genes specifically associated with
plasma cells than previous studies. Whether this difference is due
to the statistical strength of high-frequency sampling and FPCA, or
other methodological differences, will be addressed in future studies.

Finally, we would like to note that FPCA-based time-series tran-
scriptome analysis extends beyond simple statistical analysis. The
method of FPCA and the form of the results are well suited for
application to machine learning in computational modeling41. In
replacing instinctive or heuristic approaches with a rigorous mathe-
matic method that can approximate behaviors of a complex bio-
logical system, FPCA lends itself to the utilization of artificial
intelligence methods in models and systems biology analyses.
Specifically, the resulting eigenfunctions and matrix formulations
allow more rigorous characterization and modeling of complex cel-
lular and transcriptome responses.

In conclusion, these data provide evidence for a novel transcrip-
tomic signature associated with differentiating B cell and plasma cell
migration through peripheral blood B cell pools in subjects prev-
iously vaccinated for influenza. They also suggest that with further
study, temporal transcriptome patterns that accommodate indi-
vidual variation may illuminate more detailed system dynamics
underlying large-scale responses. The method of FPCA may also
allow robust modeling and systems analysis of immune responses
using artificial intelligence and machine learning methods.

Methods
Human subjects protection. This study was approved by the Research Subjects
Review Board at the University of Rochester Medical Center. Informed consent was
obtained from all participants. Research data were coded such that subjects could not
be identified, directly or through linked identifiers, in compliance with the
Department of Health and Human Services Regulations for the Protection of Human
Subjects (45 CFR 46.101(b)(4)). Subject identification numbers were re-encoded for
publication.

Myeloma cell culture. Myeloma cell lines were maintained in log-phase growth as
previously described42 and used for controls in flow cytometry and ELISPOT assays:
MPR-1130 (established in our laboratory), MC/CAR, Ramos cell lines (ATCC,
Manassas, VA), NCI-H929 (ATCC, Manassas, VA).

Peripheral blood mononuclear cell (PBMC) isolation. Each daily blood sample for
each subject was pooled from heparinized blood collection tubes and a portion
removed for PBMC analysis. Lymphocytes were isolated using discontinuous Ficoll
gradient centrifugation from buffy coat samples. Magnetic anti-CD235
immunoaffinity beads (Miltenyi Biotec, Auburn, CA) were used to remove RBC
contaminants.

B cell isolation. B cell samples were enriched from heparinized whole blood with
RosetteSep Immunodensity separation (Stemcell Technologies, Vancouver, BC,
Canada). Negative magnetic immunoaffinity bead separation columns (Miltenyi
Biotec, Auburn, CA) were used with anti-CD3 (BD Bioscience, San Diego, CA) and
anti-CD235 beads (Miltenyi Biotec, Auburn, CA) to further purify total B cells. Flow
cytometric analysis was performed on all isolates, showing .90% purity of the
isolates.
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Flow cytometric assay. Data was collected as previously described43 with FACS Diva
data acquisition software on an LSR II cytometer. Analysis of data utilized Flowjo
software (Treestar, Ashland, OR). Antibodies used included anti-CD138-APC, anti-
CD20-V450 (BD Bioscience, San Diego, CA), anti-CD19-PE-Texas Red, anti-CD27-
PE-Cy5, (Beckman Coulter, Indianapolis, IN), anti-CD38-PE-Cy7 (eBioscience, San
Diego, CA), anti-CD3-PECy5.5 (Southern Biotech, Birmingham, AL), anti-B7-FITC
(Santa Cruz Biotechnology, Santa Cruz, CA), anti-CCR10-PE (Biolegend, San Diego,
CA), anti-CD62L-APC-Alexa-750, and Live/Dead Aqua (Invitrogen, Grand Island,
NY).

Flow cytometry analysis. Before analysis with Flow clustering without K (FLOCK)
software (https://immport.niaid.nih.gov), compensation and initial gating to remove
debris and dead cells was competed using FlowJo (TreeStar). Files for each subject
were then concatenated, uploaded to ImmPort and analyzed using FLOCK 1.044 to
identify centroids for representative clusters across the timepoints. The following
markers were used: CD19, CD20, CD138, CD3, CD27, CD38, B7, CCR10 and CD62L.
Individual timepoint sample files were then analyzed against the centroids file,
assigning all events to a cluster, using the Cross Sample Comparison feature of Flock.
A semi supervised clustering method was used to cluster centroids to identify non-B
cells (CD192, CD32), T cells (CD192, CD31), naive B cells (CD191, CD32,
CD201, CD272), memory B cells (CD191, CD32, CD201, CD271), plasmablasts
(CD191, CD32, CD202, CD1382) and plasma cells (CD191, CD32, CD202,
CD1381). Percentages of each phenotype were calculated for each sample.

Hemagglutinin inhibition analysis (HAI). Hemagglutinin assays were performed as
previously described45 using the 2012–2011 WHO Influenza reagent Kit for
identification of influenza isolates (WHO Collaborating Center for Surveillance,
Epidemiology and Control of Influenza) and the Seiken method to remove non-
specific inhibitors of hemagglutination.

RNA Seq. RNA was extracted with the Qiagen RNeasy micro kit. Concentrations
were determined by UV spectrophotometry (Nanodrop) and integrity of ribosomal
RNA was confirmed with the Agilent Bioanalyzer. Barcoded sequencing libraries
were prepared with Illumina TruSeq RNA kits as recommended by Illumina, using
100 ng total RNA as input. All samples from an individual subject were sequenced in
the same run using an Illumina Genome Analyzer IIx (22 samples per 8 lanes).
CASAVA programs (Illumina, version 1.7) were used to demultiplex samples
according to barcode, align sequences with the genome, and count how many
sequences aligned with known variants of RefSeq genes (data are not separated
according to splice variants). Sequences (reads) per gene per million total RefSeq
reads were computed, with no adjustment for transcript length.

Quantitative RT-PCR. Immediately after collection, peripheral blood cell isolates
were lysed in RLT buffer, passed through a Qiashredder column (Qiagen,
Germantown, MD) and snap frozen in liquid nitrogen. Samples were stored at 270uC
until RNA extraction, performed using the RNeasy Micro Kit with on-column
DNAse (Qiagen). Quantitative RT-PCR was performed on three experimental
replicates per sample in TaqManH Array Fast Plates with TaqManH Universal PCR
Master Mix, No AmpEraseH UNG on the StepOnePlusTM Real-Time PCR System
(Life Technologies, Carlsbad, CA) with 10 ng cDNA into each 10 ul reaction. RNA
quality was confirmed by the presence of intact rRNA with an Agilent 2100
Bioanalyzer (Santa Clara, CA). For analysis, relative quantity (RQ) values for each
gene were calculated using DDCT (Cq) method46. Cq values for each gene were
normalized to the mean Cq from a group of six reference genes (ACTB, POLR2A,
MTA2, THRAP3, USP4, CERS2) that were chosen empirically because they were
unaffected by vaccination in all five subjects from whom RNAseq data were available.

Semi-quantitative ELISpot estimation of IgG secretion. Photocleavable antibody-
coated paramagnetic beads were prepared as previously published23. B cell isolates
were plated in ELISPOT plates coated as indicated below and incubated at 37uC for
5 hours. The plates were washed and plates for IgG and IgA detection were soaked
overnight in PBS 1 0.1% Tween20. Plates for IgM detection were stored at 4uC
overnight in PBS before a 1 hr soak. At each time point, ELISPOT plates were
developed as previously published using Alkaline Phosphate Substrate Kit III (Vector
Laboratories, Burlingame CA)15. ELISPOT well membranes were removed from
plates and scanned on an HP Scanjet 8300 high-resolution scanner and well images
analyzed using ELIScan and EXPLORAspot custom software as previously
published47.

Reagents for ELISPOT and ELISA. Wells of 96-well ELISPOT and ELISA plates
were coated with 3.2 mcg/ml 2010–2011 trivalent influenza vaccine for assay of TIV-
specific antibody secretion for virus-specific reactivity, or 4 ug/ml goat-anti-human
IgM 1 IgA 1 IgG (KPL, Gaithersburg, MD) for total IgA, IgG, or IgM. Detection
reagents for separate isotype-specific assays included goat anti-human IgM, goat anti-
human IgG, and goat anti-human IgA reagents that were phosphatase-labeled for
ELISPOT (KPL, Gaithersburg, MD) or peroxidase-labeled for ELISA (KPL,
Gaithersburg, MD). ELISA assays were developed using 1-Step Ultra TMB substrate
(Pierce Biotechnology, Rockford, IL).

Statistical methods. Functional principal component analysis. Significance testing of
the time-series RNA Seq data was performed using Eigen-bases estimated from
Functional Principal Component Analysis as published in Wu et al13. and a test

statistic of the goodness of fit of the model. The multiple test correction method
proposed by Benjamini and Hochberg14 was followed to control the false discovery
rate (FDR).

Upstream analysis. Data sets containing RNA Seq gene expression values were
uploaded into Ingenuity Pathways Analysis (IPA) (http://ingenuity.com/). Each
identifier was mapped to its corresponding object in Ingenuity’s Knowledge Base.
Network eligible molecules were overlaid onto a global molecular network developed
from information contained in Ingenuity’s Knowledge Base. Networks of Network
Eligible Molecules were then algorithmically generated based on their connectivity. A
series of network figures with overlaid daily gene expression data was made using
Upstream Analysis in IPA, Adobe Illustrator and Acrobat Professional CS5 (Adobe,
San Jose, CA). Upstream analysis modulator Z-scores of 2 and above were considered
probable activators (22 for inhibitors).

Functional gene enrichment analysis. We performed the standard GO functional
enrichment analysis using DAVID (http://david.abcc.ncifcrf.gov/). The reported p-
values were derived from the EASE score probability ‘p-Value’, and a modified
Fisher’s exact test that is more conservative than the standard Fisher’s exact test.
Benjamini-Hochberg correction was used. ‘BIOCARTA’, ‘KEGG_PATHWAY’, and
‘REACTOME_PATHWAY’ were used for pathway enrichment analysis of these
clusters. We set the DAVID EASE threshold to default and ranked the enriched
functions and pathways for each cluster.

Microarray gene expression analysis. Previously published in vitro microarray gene
expression data23 from CpG-stimulated normal IgM- human B cells were examined
for the 742 gene PCgs seen in our in vivo data. Where multiple probe sets corre-
sponded to one gene, we reported the single probe set with the highest interquartile
range.

Correlations of RNA Seq and qRT-PCR data with cell phenotypes. Pearson’s test
for pair-wise correlation was used to test each gene and the percentage of each cellular
phenotype. The Benjamini-Hochberg procedure14 was used to control FDR at 0.05
level.

Significance testing of phenotypic changes and serum antibody changes. For the
significance test of changes in the percent of cells by phenotype and antibody levels,
we used a variant of the EDGE method48 without multiple testing correction. For the
day of 50% increase, we used a method similar to Zaslavsky et al49.
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Danielle C. Alcéna, Shannon Hilchey, and the members of the University of Rochester
Center for Biodefense Immune Modeling for spirited discussions that greatly improved the
manuscript. We would like to thank study nurse Margaret McGrath as well as Yanfang
Huang, Sarah Alef, Danielle Morsch, Michelle Zanche and the URMC genomics core, and
the URMC Flow Core for their expert technical assistance. This work was supported by NIH
grant number HHSN272201000055C (A.D.H., M.S.Z., S.L.W., J.H.-W., M.R., M.S., S.W.,
X.Q., Z.L., H.W.), R01 AI098112 and R01 AI069351 (M.Z., M.R., A.D.H.)

Author contributions
M.S.Z. and H.W. conceived the study. A.D.H., M.S.Z. and H.W. designed the experiments.
A.D.H. performed the experiments and transcriptomic analysis and S.L.W. performed the
FPCA analysis. H.W. supervised the data analysis. S.W., X.Q, M.S., H.Y., Z.L. and J.H-W.
performed the statistical analysis of the data, Z.L. performed GSEA analysis, M.R.
performed FLOCK analysis of flow cytometric data, S.L.W. supervised the RNA data
collection and pre-analysis/processing. A.D.H., M.S.Z., S.L.W., S.W., X.Q. and H.W. wrote
the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Henn, A.D. et al. High-Resolution Temporal Response Patterns to
Influenza Vaccine Reveal a Distinct Human Plasma Cell Gene Signature. Sci. Rep. 3, 2327;
DOI:10.1038/srep02327 (2013).

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-nd/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2327 | DOI: 10.1038/srep02327 12

http://creativecommons.org/licenses/by-nc-nd/3.0
http://creativecommons.org/licenses/by-nc-nd/3.0
http://creativecommons.org/licenses/by-nc-nd/3.0

	Title
	Figure 2 Subject-specific B cell vaccine response characteristics.
	Figure 3 Quantitative RT-PCR confirms patterns of expression of B cell Differentiation Genes.
	Figure 4 A common set of 742 significant genes in subjects that had been previously vaccinated.
	Figure 5 Expression of the PCgs in Differentiating Plasma Cells.
	Figure 6 Upstream analysis of time-varying B cell gene sets.
	Figure 7 PBMC Gene Expression Patterns Suggest Myeloid/Dendritic Cell Migration.
	References

