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Abstract: Vaccines against Marek’s disease can protect chickens against clinical disease; however,
infected chickens continue to propagate the Marek’s disease virus (MDV) in feather follicles and can
shed the virus into the environment. Therefore, the present study investigated if MDV could induce
an immunoregulatory microenvironment in feathers of chickens and whether vaccines can overcome
the immune evasive mechanisms of MDV. The results showed an abundance of CD4+CD25+ and
CD4+ transforming growth factor-beta (TGF-β)+ T regulatory cells in the feathers of MDV-infected
chickens at 21 days post-infection. In contrast, vaccinated chickens had a lower number of regulatory
T cells. Furthermore, the expression of TGF-β and programmed cell death receptor (PD)-1 increased
considerably in the feathers of Marek’s disease virus-infected chickens. The results of the present
study raise the possibility of an immunoregulatory environment in the feather pulp of MDV-infected
chickens, which may in turn favor replication of infectious MDV in this tissue. Exploring the evasive
strategies employed by MDV will facilitate the development of control measures to prevent viral
replication and transmission.

Keywords: Marek’s disease virus; feather; T regulatory cell; chicken; MD vaccine

1. Introduction

Marek’s disease (MD) in chickens is caused by an oncogenic herpesvirus, named
Marek’s disease virus (MDV) [1]. MDV is shed from feathers of infected chickens and
is transmitted via the respiratory tract of chickens through inhalation of contaminated
dust or feather follicle dander [2,3]. After spreading throughout the body, MDV pro-
duces enveloped infectious viruses in the feather follicle epithelium (FFE), which are shed
along with feathers and feather dander [4]. Although MD vaccines control clinical disease,
vaccine-induced host responses are unable to prevent viral replication in FFE and trans-
mission of MDV to the environment [5–7]. Moreover, the viral load in feather follicles is
higher than that in the spleen of MDV-infected chickens [6]. These apparent differences
in viral numbers between lymphoid tissues and the productive replication site suggest
that immune responses to MDV in feather follicles may not be effective, hence, favoring
the successful replication of the virus for transmission. Importantly, Marek’s disease vac-
cines, including herpesvirus of turkeys (HVT) and CVI988, can replicate and induce host
immune responses in feathers [7–9]. However, until now, little research has been carried
out to investigate how the microenvironment in chicken feathers supports virus replica-
tion and whether MD vaccines can overcome such an environment. Here, we consider
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the immunoregulatory microenvironment as a biological site consisting of inhibitory or
regulatory cells and cytokines that suppress host immune responses against productive
replication of MDV in feathers. Therefore, the current study was carried out to examine
whether immunoregulatory responses are induced in feathers in favor of MDV replication
and if such regulatory responses can be overcome by vaccine administration.

2. Materials and Methods
2.1. Chickens

One-day-old specific pathogen-free white leghorn chicks were kept in the animal
isolation facility at the Ontario Veterinary College, University of Guelph. The Animal Care
Committee of the University of Guelph approved all experimental procedures carried out
in this study in accordance with the guidelines of the Canadian Council on Animal Care.

2.2. Vaccine and Virus

The HVT FC-126 vaccine strain was obtained from Boehringer Ingelheim Animal
Health Canada Inc as a generous gift. The CVI988 vaccine was purchased from Merck
Animal Health (Intervet Canada Corp, Kirkland, QC, Canada). Chickens were challenged
with a very virulent strain of MDV (RB1B), which had been propagated in chickens [10].

2.3. Experimental Design

One-hundred and sixty-eight chickens were randomly assigned to 6 experimental
groups. Chickens in each group were housed separately in Horsfall units. The man-
ufacturer’s recommended dose (0.2 mL per chicken) of HVT or CVI988 vaccines were
administered subcutaneously to chickens at two weeks of age. For collecting sufficient cells
from the pulp of growing feathers, chickens were vaccinated at two weeks of age and sub-
sequently infected with MDV. Phosphate-buffered saline (PBS) was used as a control. PBS
containing 500 plaque-forming units of RB1B was injected into the abdomen of each chicken
at 18 days of age. The various experimental groups were as follows: MDV-challenged
group (MDV, n = 30), HVT-vaccinated, and MDV-challenged group (HVT+MDV, n = 30),
CVI988-vaccinated and MDV-challenged group (CVI988+MDV, n = 30), HVT-vaccinated
group (HVT, n = 27), CVI988-vaccinated group (CVI988, n = 27) and a PBS group (PBS,
n = 24) as a negative control. From each chicken, feathers and spleen were collected at 4-, 10-
and 21 days post-infection (dpi) to assess RB1B MDV genome levels, cellular composition
and expression of immune system genes.

2.4. DNA and RNA Extraction and Real-Time Polymerase Chain Reaction (PCR)

To evaluate RB1B MDV genome levels in the feathers and spleen, genomic DNA
was extracted from these tissues [11]. A total of 100 ng of DNA was used with primers
amplifying the Meq gene of RB1B MDV in real-time PCR with the SYBR green master mix.
To measure RB1B genome levels in the challenged group, RB1B meq primers were used.
Although the CVI988 vaccine strain also contains meq, it contains two isoforms that differ
by a 178bp insertion. These are not present in RB1B MDV [12,13].

As described previously, feather tips were used to extract RNA using TRIzol (Life
Technologies, Burlington, ON, Canada), and 1 µg of DNase-treated RNA was used to
synthesize cDNA [14]. The synthesized cDNA was used to evaluate the expression of
immunoregulatory genes by real-time PCR. The primers used in this study, Table 1, were
purchased from Sigma-Aldrich Canada (Oakville, ON, Canada).
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Table 1. Target genes, primer sequences and references used for real-time PCR.

Genes Primer Sequences 5′-3′ References

β-actin F: CAACACAGTGCTGTCTGGTGGTA
R: ATCGTACTCCTGCTTGCTGATCC [15]

IL-10 F: AGCAGATCAAGGAGACGTTC
R: ATCAGCAGGTACTCCTCGAT [6]

TGF-β F: CGGCCGAGATGAGTGGCTC
R: CGGGGCCCATCTCACAGGGA [16]

Perforin F: ATGGCGCAGGTGACAGTGA
R: TGGCCTGCACCGGTAATTC [17]

CTLA-4 F: CAAGATGGAGCGGATGTACC
R: TGGCTGAGATGATGATGCTG [18]

PD-1 F: GTGATTGTGCTGCTGCTCTTTG
R: GAACTCCAGCACACCGTAGTC [18]

PDL-2 F: CTTCACATTACCAGCGTCAGG
R: GACTGGCATATAAGAGCAAAC [18]

meq F: GTCCCCCCTCGATCTTTCTC
R: CGTCTGCTTCCTGCGTCTTC [11]

2.5. Isolation of Cells from Feathers and Spleen

Mononuclear cells were prepared from feathers as described previously [19]. Briefly,
the entire pulp was collected from feather tips in 0.5 mL of 0.1% collagenase-dispase
solution (Collagenase type IV, Life Technologies, Carlsbad, CA, USA; Dispase II, Sigma-
Aldrich, Oakville, ON, Canada). The pulp cell suspension was subsequently incubated at
40 ◦C for 15 min and strained through a 40 µm strainer with ice-cold PBS. The collected
cells were washed with ice-cold PBS twice at 250× g at 4 ◦C, and the final cell pellet was
collected in fluorescent activated cell sorting (FACS) buffer (PBS containing 1% bovine
serum albumin).

Spleen cell suspensions were prepared by crushing spleens. Following rinsing with
Hank’s balanced salt solution, cells were filtered through a 40-µm nylon cell strainer and re-
suspended in complete RPMI medium (Invitrogen, Burlington, ON, Canada) supplemented
with 10% fetal bovine serum (Millipore-sigma, Oakville, ON, Canada) and 1% Penicillin-
Streptomycin (Gibco, Carlsbad, CA, USA). To obtain mononuclear cells, cell suspensions
were overlayed on 4 mL of Histopaque-1077 (Sigma, Oakville, ON, Canada) followed by
centrifugation at 400× g for 20 min. Cells at the interface were harvested in a complete
RPMI medium and washed twice.

2.6. Flow Cytometry Analysis

MOXI Z cell counter (Orflo, Ketchum, ID, USA) was used to count the isolated
cells from spleen and feathers. Hundred µL of each cell suspension at the concentra-
tion of 5 × 106 cells/mL in a complete RPMI medium were plated in round bottom 96 well
plates. Subsequently, fluorescent monoclonal antibodies were added to the washed cells
and kept in the dark for 30 min at 4 ◦C for staining the cells. The surface staining antibodies
used in this study were PB conjugated mouse anti-chicken CD3, PE-Cy7 conjugated mouse
anti-chicken CD4, PE conjugated mouse anti-chicken CD8, FITC conjugated human anti-
chicken CD25, and APC conjugated mouse anti-chicken TGFβ. CD25-FITC was obtained
from Bio-Rad (Mississauga, ON, Canada), and the rest of the antibodies were purchased
from SouthernBiotech (Birmingham, AL, USA). Fixable Live/Dead near-IR fluorescent
reactive dye (Thermo Fisher Scientific, Waltham, MA, USA) was used to stain dead cells for
removing them from subsequent analyses. After surface staining of cells, they were fixed
in 2% paraformaldehyde following two times wash with FACS buffer.

Using a FACScanto II flow-cytometer (BD Bioscience, San Jose, CA, USA) 200,000 events
per feather and 100,000 events per spleen were collected. FlowJo Software v.10 (Tree Stat,
Ashland, OR, USA) was used to analyze the data. The gating strategy was performed as
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follows (Supplementary Figure S1): initial gating was carried out to exclude cell debris in
the SSC -A vs. FSC-A plot. Then, at the SSC-A vs. live/dead plot dead cells were excluded,
and live cells were selected. Next, singlets were chosen in FSC-W vs. FSC-H plot and
SSC-W vs. SSC-H plot. Then, SSC-A vs. CD3 plot was gated to select all T cells. Subsequent
T cell subsets were gated using CD4, CD8, CD25, and TGF-β markers from this gating.
Subsequently, cell counts were determined based on the frequency of the cells.

2.7. Statistical Analysis

Advanced relative quantification software in the Light-Cycler 480 II system was used
to determine the relative expression of target genes to the housekeeping gene, β-actin.
Logarithmically transformed gene expression data and flow cytometry data were analyzed
by two-way ANOVA and Tukey’s multiple comparison test. MDV genome levels were
analyzed by a non-parametric statistical method, Kruskal–Wallis test. Geometric mean of
relative expression ± standard error of the mean was used to plot the gene expression data
in the graph. If p-value was ≤ 0.05, the results were considered significant.

3. Results and Discussion

MDV genome levels were determined by extracting DNA from the feathers and spleen
in MDV-challenged chickens followed by real-time PCR (Figure 1). As expected, the viral
load was significantly decreased in both feathers and spleen in the MDV-challenged group
that received the CVI988 vaccine compared with MDV-challenged chickens (Figure 1a,b).
This reduction in MDV load coincides with a previous observation where a significant
difference in viral load was reported at 14 dpi in feathers following in ovo vaccination with
CVI988 and MDV infection [20]. Although MDV genome copy numbers were reduced
in HVT-vaccinated and MDV-challenged chickens compared with the MDV-challenged
group, it was not statistically significant, which agrees with our previous study [9]. Further,
regardless of vaccination, viral load was several-fold higher in feathers compared with
the spleen tissue of chickens (Figure 1) [20,21]. In agreement with this study, a higher
MDV genome load has been found in feathers compared with the spleen following MD
vaccination [6]. These findings indicate the presence of a favorable environment for MDV
replication in feathers.
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Figure 1. RB1B MDV genome levels in feathers and spleen. RB1B MDV genome levels per 100 ng of
DNA were calculated from (a) feathers (n = 8) and (b) spleen (n = 8) collected at 10 and 21 dpi. Viral
load data were analyzed by Kruskal–Wallis test. If p-value was ≤0.05, it was considered statistically
significant (*). Each group was compared with the MDV-challenged group. Error bars indicate the
standard error of the mean.
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The cells collected from feather pulp and spleen were analyzed by flow cytometry
for the presence of T cell subsets, including CD4+CD25+ and CD4+ TGFβ+ T regulatory
cells. These regulatory cells are essential for controlling the exaggerated immune responses
and maintaining immune homeostasis [22]. A gradual increase in CD4+ and CD4+CD8+ T
cells was observed in the feathers of MDV-challenged chickens (Figure 2), which agrees
with previous findings [23]. On the other hand, a reduction in CD4+ and CD4+CD8+ T
cells was observed in feathers of vaccinated and MDV-challenged chickens compared with
MDV infected chickens at 10 and 21 dpi (Figure 2). Similar to our findings, Islam et al.
also reported slight depletion of T cells in HVT-vaccinated chickens than MDV received
chickens [24]. In contrast, a reduction in CD4+ cells in the spleen and blood was described
following vaccination with CVI988 compared with unvaccinated chickens at the early stage
of immune responses [25].
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Figure 2. Evaluation of subsets of T cells in feathers (n = 6) at 4, 10, and 21 dpi. Cells were isolated
from the feather pulp from feather tips, and analyzed by flow cytometry at various time points
following the MDV challenge. Two-way ANOVA and Tukey’s multiple comparison test were used to
analyze these data. If p-value was ≤0.05, it was considered statistically significant when compared
with PBS (x) or MDV (*). Cell counts on the Y-axis are presented on a logarithmic scale. Error bars
indicate mean ± standard error.

In chickens, CD25 and TGF-β containing CD4+ T regulatory cells exist in various
immune system tissues [26,27]. Here, we demonstrated the detection of these T regulatory
cells in the feathers of MDV-challenged chickens. In vaccinated and challenged chickens,
CD4+ CD25+ and CD4+ TGF-β+ cells were decreased in feathers at 10 and 21 dpi (Figure 2).
Spleen T regulatory cells were also assessed to compare them with feathers (Figure 3).
No difference in spleen T regulatory cell numbers was observed between vaccinated
chickens and MDV-challenged chickens. T regulatory cells modulate T helper type 1 and
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cytotoxic T cell immune responses required for protection against viral infections [22].
Therefore, the existence of T regulatory cells in the feathers of MDV-challenged chickens
may correspond with the inhibition of T cell function and replication of infectious MDV in
feathers. Involvement of TGF-β expressing T regulatory cells in the pathogenesis of MDV
infection has already been demonstrated [26]. Our findings on the increased number of
TGF-β+ T regulatory cells and MDV load in feathers agree with this report.
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analyzed by flow cytometry at different time points following the MDV challenge. Two-way ANOVA
and Tukey’s multiple comparison test were used to analyze these data. If p-value was ≤0.05, it was
considered statistically significant when compared with PBS (x) or MDV (*). Cell counts on the Y-axis
are presented on a logarithmic scale. Error bars indicate mean ± standard error of mean.

The expression of programmed cell death (PD)-1 receptor, PD ligand (PDL)-2, in-
terleukin (IL)-10, TGF-β, and cytotoxic T lymphocyte-associated antigen (CTLA)-4, is
necessary for the inhibitory function of T regulatory cells [28]. Among these markers,
CTLA-4 and PD-1, which are members of the CD28 superfamily immunoreceptors, coun-
teract activation and function of effector T cells. PD-1 binds with PDL-1 and PDL-2 on
CD4+ and CD8+ T cells and suppresses the secretion of pro-inflammatory cytokines [29].
In addition, T regulatory cells control immune responses by secreting anti-inflammatory
cytokines, IL-10 and TGF-β [30]. Perforin is important for the function of cytotoxic T cells
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for the elimination of virus-infected cells and tumor cells in the host [31]. Therefore, the
expression of perforin was assessed in this study to evaluate the activity of cytotoxic T cells
in feathers where the enhanced regulatory function is expected.

The expression of TGF-β, PD-1, PDL-2, IL-10, CTLA-4, and perforin was evaluated as
markers of immunoregulatory functions in the feather. At 10 and 21 dpi, TGF-β and PD-1
expression significantly declined in vaccinated chickens compared with MDV-challenged
chickens (Figure 4). TGF-β can prevent naïve T cell activation and proliferation. TGF-β
can also induce apoptosis in activated T cells to dampen cytotoxic function, which favors
replication of the virus [32].

Viruses 2022, 14, x FOR PEER REVIEW 7 of 10 
 

 

activation and function of effector T cells. PD-1 binds with PDL-1 and PDL-2 on CD4+ and 
CD8+ T cells and suppresses the secretion of pro-inflammatory cytokines [29]. In addition, 
T regulatory cells control immune responses by secreting anti-inflammatory cytokines, IL-
10 and TGF-β [30]. Perforin is important for the function of cytotoxic T cells for the elimi-
nation of virus-infected cells and tumor cells in the host [31]. Therefore, the expression of 
perforin was assessed in this study to evaluate the activity of cytotoxic T cells in feathers 
where the enhanced regulatory function is expected. 

The expression of TGF-β, PD-1, PDL-2, IL-10, CTLA-4, and perforin was evaluated 
as markers of immunoregulatory functions in the feather. At 10 and 21 dpi, TGF-β and 
PD-1 expression significantly declined in vaccinated chickens compared with MDV-chal-
lenged chickens (Figure 4). TGF-β can prevent naïve T cell activation and proliferation. 
TGF-β can also induce apoptosis in activated T cells to dampen cytotoxic function, which 
favors replication of the virus [32]. 

R
el

at
iv

e 
ex

pr
es

sio
n

4 10 21
0

5×10 -4

1×10 -3

1.5×10 -3

2×10 -3

2.5×10 -3

IL–10

Days post-infection

*

x

4 10 21
0

2×10 -4

4×10 -4

6×10 -4

8×10 -4

PD–1

Days post-infection

x

x

x

*
* *

x

*
*

* *
#

4 10 21
0

5×10 -7

1×10 -6

1.5×10 -6

2×10 -6

PDL–2

Days post-infection

*

x
x

4 10 21
0

1×10 -4

2×10 -4

3×10 -4

4×10 -4

Perforin

Days post-infection

*
*

*

x

x

x

x

x

x
x
x x

* * *

x

x

#

*

 
Figure 4. Relative expression of the immunoregulatory genes in feathers. Gene expression of TGF-
β, IL-10, CTLA-4, PD-1, PDL-2, and perforin in feathers was determined based on the expression of 
β-actin at 4, 10, and 21 dpi. Logarithmically transformed data were analyzed by two-way ANOVA 
and Tukey’s post-test. Y-axis indicates the geometric mean of relative expression ± standard error 
of the mean. If p- value was ≤ 0.05, it was considered statistically significant when compared with 
PBS (x) or MDV (*) or HVT+MDV vs. HVT (#) or CVI988+MDV vs. CVI988 (#). 

The finding of increased expression of PD-1 in feathers of MDV-challenged chickens 
compared with PBS control chickens at 10 and 21 dpi coincides with a similar pattern of 
expression reported in splenocytes and CD4+ T cells in the spleen in previous studies 
[18,33]. These observations suggest that CD4+ T cells possibly contributed to the expres-
sion of PD-1 in feathers. The progressive upregulation of PD-1 corresponds to the in-
creased CD4+, and CD4+CD8+ T cell counts in MDV-challenged chickens, which may indi-
cate the exhaustion of these T cells. The occurrence of these exhausted cells may be one of 
the mechanisms employed by MDV for the evasion of host responses. In addition, CTLA-
4 expression was also decreased at 10 dpi in vaccinated chickens (Figure 4), which shows 
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Figure 4. Relative expression of the immunoregulatory genes in feathers. Gene expression of TGF-β,
IL-10, CTLA-4, PD-1, PDL-2, and perforin in feathers was determined based on the expression of
β-actin at 4, 10, and 21 dpi. Logarithmically transformed data were analyzed by two-way ANOVA
and Tukey’s post-test. Y-axis indicates the geometric mean of relative expression ± standard error
of the mean. If p- value was ≤0.05, it was considered statistically significant when compared with
PBS (x) or MDV (*) or HVT+MDV vs. HVT (#) or CVI988+MDV vs. CVI988 (#).

The finding of increased expression of PD-1 in feathers of MDV-challenged chickens
compared with PBS control chickens at 10 and 21 dpi coincides with a similar pattern of
expression reported in splenocytes and CD4+ T cells in the spleen in previous studies [18,33].
These observations suggest that CD4+ T cells possibly contributed to the expression of PD-1
in feathers. The progressive upregulation of PD-1 corresponds to the increased CD4+, and
CD4+CD8+ T cell counts in MDV-challenged chickens, which may indicate the exhaustion
of these T cells. The occurrence of these exhausted cells may be one of the mechanisms
employed by MDV for the evasion of host responses. In addition, CTLA-4 expression was
also decreased at 10 dpi in vaccinated chickens (Figure 4), which shows the reduction in
inhibitory effect on effector T cells. Importantly, CTLA-4 has been shown to be increased
in feathers and spleen CD4+ T cells of MDV-challenged chickens [18], which point to the
possible involvement of CTLA-4 in the pathogenesis of MDV. Based on the observation
that CTLA-4 is downregulated in feathers, it may be concluded that vaccines counteract
the MDV effect for inducing an immunoregulatory microenvironment.

In contrast to the expression of regulatory genes, perforin expression was initially high
in vaccinated chickens at 4 dpi and then subsided in feathers with no difference among
the various groups (Figure 4). Perforin is crucial for the cytotoxic activity of T cells to
control viral infection. The increased expression of perforin in the feathers of vaccinated
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chickens indicates the cytotoxic activity of effector cells, possibly involving the elimination
of MDV-infected cells and interrupting the regulatory milieu in feathers. A high expression
of perforin might have caused a reduction in MDV numbers in this tissue in vaccinated
chickens. However, the expression of perforin at the initial time point might have been
overcome by the presence of regulatory factors, such as TGF-β and T regulatory cells in
feathers. It is also possible that due to the exhaustion of effector cells, perforin expression
declined at the later stages of pathogenesis. Therefore, it may be concluded that MD
vaccination interrupts the regulatory microenvironment in feathers. This possibly leads to
a reduction in MDV replication, thereby reducing shedding and transmission of infectious
MDV to the environment and chickens. However, this remains to be formally investigated.

Overall, our findings provide evidence for increased CD4+CD25+ and CD4+TGF-
β+ T regulatory cell numbers in feathers of MDV-challenged chickens. However, these
cells were significantly reduced when chickens were immunized with HVT or CVI988
vaccines before the MDV challenge. In addition, TGF-β and PD-1 transcripts were high
in feathers of MDV-challenged chickens. These observations indicate the occurrence of
an immunoregulatory microenvironment in feathers of MDV-infected chickens. This
microenvironment may support the productive replication of MDV in FFE and subsequent
transmission to unvaccinated chickens. Furthermore, age-related resistance might have
influenced MDV infection in this study. Our current study expands the understanding
of the biological properties in the feathers of chickens during MDV infection and MD
vaccination which will assist in understanding the evasive mechanism employed by MDV.
Identifying additional molecular factors that enable replication of infectious MDV in
feathers and studying the immune evasive mechanisms utilized by the virus are necessary
for developing intervention approaches to prevent replication and transmission of MDV.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14010112/s1, Figure S1: The gating strategy with the represen-
tative FACS plots.
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