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SUMMARY

Increasing evidence suggests that the reactivation of initially inhibited signaling pathways causes 

drug resistance. Here, we analyze how network topologies affect signaling responses to drug 

treatment. Network-dependent drug resistance is commonly attributed to negative and positive 

feedback loops. However, feedback loops by themselves cannot completely reactivate steady-state 

signaling. Newly synthesized negative feedback regulators can induce a transient overshoot but 

cannot fully restore output signaling. Complete signaling reactivation can only occur when at least 

two routes, an activating and inhibitory, connect an inhibited upstream protein to a downstream 

output. Irrespective of the network topology, drug-induced overexpression or increase in target 

dimerization can restore or even paradoxically increase downstream pathway activity. Kinase 

dimerization cooperates with inhibitor-mediated alleviation of negative feedback. Our findings 

inform drug development by considering network context and optimizing the design drug 

combinations. As an example, we predict and experimentally confirm specific combinations of 

RAF inhibitors that block mutant NRAS signaling.
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In brief

Kholodenko et al. uncover signaling network circuitries and molecular mechanisms necessary and 

sufficient for complete reactivation or overshoot of steady-state signaling after kinase inhibitor 

treatment. The two means to revive signaling output fully are through network topology or 

reactivation of the kinase activity of the primary drug target. Blocking RAF dimer activity by a 

combination of type I½ and type II RAF inhibitors efficiently blocks mutant NRAS-driven ERK 

signaling.

INTRODUCTION

Intrinsic and acquired drug resistances are major clinical problems that limit cancer 

therapies by targeted drugs. Cancer cell proliferation and survival critically depend on 

mutated proteins, such as receptor tyrosine kinases (RTKs) or cytoplasmic kinases. This 

dependence, called oncogene addiction, remains a main concept underlying the rationale to 

target amplified or mutated oncoproteins for cancer treatment (Weinstein and Joe, 2008). 

Monoclonal antibody or small-molecule inhibitors are used to target mutated or 

overexpressed oncoproteins (e.g., ErbB1 in lung cancer, ErbB2 in breast cancer, BRAFV600E 

mutant in melanoma). Unfortunately, many patients are intrinsically resistant to targeted 

treatments, whereas other patients, who initially respond, often relapse due to signaling 

pathway reactivation.
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Multiple mechanisms of resistance are known, ranging from genetic mutations that abrogate 

drug binding to network-mediated drug resistance (Kolch et al., 2015; Niederst and 

Engelman, 2013; Pao et al., 2005). Reactivation of proliferative signals often depends on 

secondary mutations or amplification of signaling proteins downstream of a primary drug 

target (Johnson et al., 2015). Alternative, but not mutually exclusive, mechanisms of drug 

resistance include network adaptations leading to pathways crosstalk, activation of feedback 

mechanisms, and bypass signaling (Ercan et al., 2012; Lito et al., 2012; Nguyen and 

Kholodenko, 2016). A surprising mechanism of RAS/RAF/MEK/ERK pathway activation 

by RAF inhibitors, called paradoxical activation, is due to inhibitor-induced increases in 

RAF kinase dimerization and subsequent activation (Hatzivassiliou et al., 2010; Heidorn et 

al., 2010; Kholodenko, 2015; Poulikakos et al., 2010).

Negative and positive feedback loops are ubiquitous in signal transduction. For instance, in 

the RAS/RAF/MEK/ERK (mitogen-activated protein kinase [MAPK]) cascade, a negative 

feedback from ERK to RAF is mediated by the inhibitory phosphorylation of RAF kinases 

(Ritt et al., 2010). Feedback loops mediated by posttranslational modifications (PTMs), such 

as (de)phosphorylation, operate on a timescale of minutes or tens of minutes. Other types of 

feedback loops involve the expression of downstream signaling regulators (Amit et al., 2007; 

Junttila et al., 2008; Nakakuki et al., 2010). Feedback loops involving transcription or 

translation operate on timescales of hours and days, as reported for growth factor signaling 

(Mina et al., 2015; Segatto et al., 2011). Negative feedback loops have been implicated as 

critical mediators in the development of acquired resistance (Chandarlapaty et al., 2011; Sun 

and Bernards, 2014). However, it remains unclear whether partial or complete, transient, or 

steady-state reactivation of signaling will occur and how the revival of pathway activity 

depends on signaling network topology and feedback mechanisms.

Here, we show that negative and positive feedback loops induced by PTMs or transcription/

translation are not sufficient, by themselves, for complete reactivation of steady-state 

pathway signaling following drug inhibition. We also demonstrate that integral feedback, 

which enables perfect adaptation in engineered bacterial systems (Aoki et al., 2019), cannot 

fully restore the activity of mammalian signaling systems after drug perturbation of certain 

network constituents. Systematically analyzing regulatory mechanisms that lead to complete 

pathway reactivation or overshoot, we identify network topologies that can mediate full 

pathway reactivation in response to drug inhibition. We demonstrate that two or more 

feedforward connection routes from an inhibited upstream protein to a pathway output 

protein are required for full reactivation or increase of the steady-state pathway activity 

within a range of inhibitor doses. Reactivation is further modulated by kinase dimerization. 

If the relief of negative feedback by a drug increases the drug-induced kinase dimerization, 

then this feedback enlarges the range of paradoxical activation. If the drug does not induce 

dimerization, then the relief of negative feedback only allows a transient overshoot of 

pathway activity. In the absence of at least two feedforward routes to the output protein, 

negative feedback regulators can only induce a transient overshoot of the output signaling 

that has existed before drug treatment, rather than being able to enhance the steady-state 

output activity. These insights may have profound implications for designing approaches to 

overcome drug resistance.
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RESULTS

A need for a systematic network analysis of pathway inhibition and reactivation in 
response to drugs

Much of drug resistance research has focused on mutations in the target protein(s) that 

interfere with drug binding and mechanisms that eliminate drugs from the target cells 

(Aleksakhina et al., 2019; Nikolaou et al., 2018). However, network adaptations emerge as 

another important source of drug resistance (Klinger et al., 2013). In particular, recent 

lessons learned from the responses of the RAS/RAF/MEK/ERK pathway to inhibitors have 

unearthed surprises, such as inhibitors actually activating the pathway (so-called paradoxical 

activation) (Lee et al., 2020; Rauch et al., 2016). Numerous publications suggest that 

pathway reactivation due to negative feedback circuits is a key mechanism of resistance to 

RAF, MEK, KRASG12C and phosphatidylinositol 3-kinase (PI3K) inhibitors (Lito et al., 

2012; Montero-Conde et al., 2013; Prahallad et al., 2012; Ryan et al., 2020; Sun et al., 2014; 

Yaeger and Corcoran, 2019). To systematically analyze network-mediated adaptations to 

drug inhibition and pathway re-activation, we have exploited a systems theory, modular 

response analysis (MRA), and mechanistic modeling of signaling pathways. MRA is based 

on principles from physics, chemistry, and control engineering, allowing us to analyze and 

quantify the dynamic responses of different network topologies to drug interference 

(Kholodenko et al., 2002). Figure 1 illustrates how the MRA-quantified network topology 

and the local response of the primary target to a drug determine the systems-level drug 

response (STAR Methods). The topology is given by the connections between network 

nodes and their strengths. In the MRA framework, network nodes can be single proteins, 

genes, or entire signaling pathways considered to be modules with defined output species 

(Halasz et al., 2016; Yalamanchili et al., 2006). The local response of the primary target 

depends on the mechanisms of drug-target interactions, which can facilitate protein 

dimerization or change target abundance by changing the synthesis or degradation rates. On 

a high level, MRA analysis demonstrates that there are only two major means of complete, 

steady-state revival of signaling, enabled by (1) the network topology or (2) mechanisms 

rendering the primary target active again. Here, we analyze these statements in detail and 

dissect the contributions of different feedback and feedforward loops into drug resistance.

Can feedback circuitry reactivate signaling?

Negative feedback occurs when a downstream pathway protein, the signaling output, inhibits 

an upstream protein, the pathway input. As a result, the output activity directly correlates 

with the inhibition of the input. A strong input increases both the output and negative 

feedback that subsequently inhibits the input as self-regulatory loop. This mechanism is 

commonly held responsible for mediating resistance to drugs that inhibit the input and 

concomitantly, the negative feedback, allowing recovery of the output. Although intuitively 

persuasive, it raises a critical question. If a drug inhibits the input, can the steady-state 

output activity completely recover because of a particular circuitry of feedback loops, which 

are mediated by either PTMs or expression of negative regulators?

We consider a signaling pathway consisting of layers of PTM cycles, where at each tier, a 

kinase is phosphorylated and activated by an active kinase of the preceding layer and 
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dephosphorylated by a phosphatase at the same layer (Figure 2A). The first-tier kinase is 

activated by an external signal, which is considered constant for simplicity. The terminal 

kinase is the pathway output that inhibits the first-tier kinase. This pathway architecture is 

similar to the topology of MAPK cascades, which are evolutionarily conserved from yeast to 

mammals (Widmann et al., 1999)

Pathway response to the inhibition of the first-tier kinase

To understand how the pathway output (T) responds to a drug that inhibits the input kinase 

X1, we quantify this response in terms of a systems-level change in T brought about by a 

small change in the drug dose (I), assuming that the entire pathway relaxes to a stable steady 

state (Kholodenko et al., 1997),

RTI = dT
dI system steady state  . (Equation 1)

This systems-level response RTI is also known as the global pathway response (Bruggeman 

et al., 2002). Now, for a moment, we consider the first tier, a kinase and a phosphatase, as 

being isolated from the rest of the pathway. Given the drug I inhibits the kinase X1, and only 

this first cascade tier is allowed to relax to its steady state, we quantify the local response 

(rX1I) of the primary drug target X1, as follows,

rX1I = ∂X1
∂I first tier steady state 

. (Equation 2)

The kinase X1 is inhibited by negative feedback from the output protein T, which in turn is 

activated by X1 through cascade interactions (Figure 2A). Consequently, the systems-level 

response RTI will be different from the local response rX1I. We quantify the negative 

feedback in terms of the local response (rX1T) of the first-tier kinase X1 to its inhibition by 

T,

rX1T = ∂X1
∂T first tier steady state 

. (Equation 3)

To describe how the signal propagates through the cascade, we introduce the local responses 

(rXjXj − 1) of the kinase Xj of tier j to the preceding kinase Xj−1, again assuming that only 

tier j, isolated from the system, relaxes to its steady state,

rXjXj − 1 = ∂Xj
∂Xj − 1 tier j steadystate

. (Equation 4)

The local responses (rXjXj − 1, rX1T) are also referred to as connection coefficients, because 

they)quantify the strengths of direct connections between network nodes (Bastiaens et al., 

2015; Kholodenko, 2007; Thomaseth et al., 2018). The connection coefficients rXjXj − 1 are 

positive because each kinase is activated by its immediately preceding kinase.
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We now determine the systems-level response to a drug using the local drug response and 

the connection coefficients for a given network structure (STAR Methods),

RTI =
rX1I ⋅ P

1 − rX1T ⋅ P ; P = rX2X1 ⋅ rX3X2… ⋅ rTXN > 0. (Equation 5)

The coefficient rX1I is negative because the kinase X1 is inhibited by the drug, and rX1T  is 

also negative because the output T inhibits X1. Therefore, RTI is negative, and its absolute 

value is always smaller than the absolute value of the local (isolated) response rX1I of the 

primary drug target. In other words, the systems-level response to a drug is attenuated by 

negative feedback. If the cascade is ultrasensitive (i.e., P > 1) (Brown et al., 1997; Ferrell, 

1997), then the inhibition of output signaling can be markedly reduced compared to the 

inhibition of the isolated primary drug target. However, the systems-level signaling response 

to an inhibitor is always negative and cannot change its sign, meaning that although the 

inhibition relieves negative feedback, the steady-state output activity cannot be completely 

restored. This conclusion questions the common explanation that loss of negative feedback 

restores output signaling and causes drug resistance. Whereas in engineering it is known that 

proportional negative feedback cannot perfectly restore the systems output, the role of 

negative feedback in drug resistance was a major misconception due to a multitude of ways 

how negative feedback can be implemented in biochemical networks.

To illustrate this general conclusion, we built a mass-action kinetic model of a generic three-

tier kinase-phosphatase cascade, which resembles a three-tier MAPK pathway (e.g., 

RAF/MEK/ERK), featuring two-site phosphorylation of kinases X2 (MEK) and T (ERK) 

(Figure 2B) (Qiao et al., 2007). This model describes elementary enzymatic steps of every 

reaction and inhibition of the upstream kinase X1 (RAF) by the output protein T (STAR 

Methods). We consider two mechanistic scenarios in which the feedback-mediated 

modification either does or does not affect the affinity of the feedback-modified form (X1
P) 

for the drug (Figure 2C). Red, green, and blue lines show dose responses for a strong 

feedback, the decreased feedback strength, and in the absence of feedback. Dashed red and 

green lines correspond to the reduced drug affinity of the feedback-modified primary target. 

For any mechanistic scenario, signaling reactivation increases as the negative feedback 

strength increases, but never results in complete reactivation of the output at steady state 

(Figures 2C). The time course of systems-level drug response shows the initial cascade 

inhibition, followed by partial reactivation (Figure 2D). When the negative feedback 

becomes too strong, the system loses stability and sustained oscillations appear (Figure 2E), 

brought about by the inherent delay in the reaction chain from the upstream kinase X1 to the 

pathway output T (Kholodenko, 2000).

Some RAF inhibitors not only block RAF catalytic activity but they also sequester BRAF in 

an inactive complex with its substrate MEK (Haling et al., 2014). Thus, we also consider this 

type of inhibition. If the output protein T inhibits the upstream kinase X1 by sequestration 

into an inactive complex rather than by inhibitory modification of X1 (Figure 2F), then the 

complex concentration, X1-T, appears in the moiety conservation equations for both X1 and 

T (Kholodenko and Westerhoff, 1995). Therefore, a change in the drug dose will influence 
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both active forms, X1 and T, through the drug-induced change in the X1-T complex (Figure 

2F; STAR Methods). Thus, T will respond to a drug whose primary target is X1 even when 

all of the other cascade kinases remain fixed, because X1 and T are linked through the 

moiety conservation law. However, the systems-level drug response will still be negative for 

any drug dose (STAR Methods). Although Equation 5 requires a modification when the 

negative feedback is mediated by protein sequestration (Lill et al., 2019), the complete 

revival or overshoot of output signaling cannot occur (Figure 2G).

The logic behind a general statement that the inhibition of negative feedback by itself cannot 

lead to complete signaling reactivation is straightforward. In signal transduction networks, 

negative feedback that inhibits the input kinase X1 has a physical manifestation as a PTM or 

the formation of the inactive complex. A drug that inhibits X1 will diminish X1 activity and 

consequently the output T and negative feedback to X1. Let us assume that for a given 

mechanism of feedback modification and its influence on the drug binding, the decrease in 

negative feedback inhibition of X1 is greater than the increase in X1 inhibition caused by the 

increased drug dose. Then, the X1 activity and therefore the output activity T would 

increase. However, the higher T activity would lead to the higher level of X1 inhibition, 

resulting in the decrease rather than the increase in the steady-state X1 activity. This 

contradicts our initial assumption that the increase in the drug dose would increase the X1 

activity due to relief in negative feedback.

If a drug affects an intermediate kinase, located within the negative feedback loop (Figure 

S1A), then the drug effect is buffered, becoming much smaller than the response to a drug 

that inhibits a top-level kinase (STAR Methods). An example is the RAF/MEK/ERK 

pathway. Here, negative feedback from ERK to RAF buffers the inhibition of MEK and 

attenuates the inhibition of the output kinase ERK (Sturm et al., 2010). Simulations of a 

mechanistic, mass-action model of a three-tiered kinase-phosphatase pathway support these 

conclusions (Figures S1B and S1C).

To summarize, we stipulate that the inhibition of a negative feedback loop mediated by 

PTMs or sequestration of the active species cannot completely reactivate steady-state 

signaling in a kinase pathway. Inhibiting a target embedded within a negative feedback loop 

is less effective than inhibition of an upstream target.

A cascade with several feedback loops—Most cellular signal transduction networks 

are regulated by intertwined negative and positive feedback loops. We show that no 

combination of feedbacks coming from the pathway output or from an intermediate kinase 

can ensure a complete recovery of signaling output. As an example, we consider a pathway 

in which two feedbacks, negative and positive, arise from the output protein T and affect the 

upstream kinase X1 (Figure 2H). These feedback loops can occur as PTM-mediated 

interactions within the same pathway, or they can go through different intermediates of other 

pathways (Y and Z), as shown in Figure 2H. Given that one feedback (e.g., through Y) is 

positive and the other (through Z) is negative, the local response of the activity of the kinase 

X1 to changes in T will be positive for the Y loop (rX1Y ⋅ rY T > 0) and negative for the Z 

loop (rX1Z ⋅ rZT < 0). A positive feedback (Y loop) can be carried out by two consequent 
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negative feedbacks or two positive feedbacks, so that the product rX1Z ⋅ rZT > 0 in either 

case. The systems-level response (RTI) of the output T to drug I is expressed in terms of the 

connection coefficients (local feedback responses) and the product P of the activating 

connections along the pathway (STAR Methods),

RTI =
rX1I ⋅ P

1 − rX1Y ⋅ rY T + rX1Z ⋅ rZT P
P = rX2X1 ⋅ rX3X2… ⋅ rTXN − 1 .

(Equation 6)

Because of a combination of negative and positive feedback terms (rX1Z ⋅ rZT < 0, 

rX1Y ⋅ rY T > 0), the denominator of Equation 6 is >1, if the negative feedback arm prevails. 

In this case, drug inhibition is attenuated. If the positive feedback prevails, then the 

denominator becomes <1, and the drug effect is amplified. At first glance, a further increase 

in the positive feedback strength could make the denominator negative, changing the sign of 

the drug response to positive, meaning that the inhibitor would increase the output activity. 

However, when the denominator passes through zero, the steady state loses stability, and an 

additional unstable state emerges in a so-called saddle-node bifurcation (Kholodenko, 2006; 

Kuznetsov, 2004). The pathway response RTI to the inhibitor is positive only for this 

unstable state. Therefore, a combination of positive and negative feedback loops cannot 

restore the pathway activity to the level observed before inhibitor treatment.

Transient pathway reactivation by expression of negative feedback regulators
—In addition to immediate, PTM-mediated regulatory connections, signaling pathways are 

controlled by feedback circuitries that initiate the expression of feedback regulators (Amit et 

al., 2007; Boutros et al., 2008; Jones et al., 2018; Mukherjee et al., 2021). For the sake of 

brevity, we call these transcriptional loops. The stable steady-state behaviors of networks 

with the same connection topologies are similar for both PTM-mediated and transcriptional 

regulatory connections. Therefore, the above conclusions about network topologies and 

features that bring about paradoxical pathway activation by inhibitors continue to apply to 

networks that involve transcriptional feedback loops. However, there are essential 

distinctions between the rapid regulation by PTMs and the control by transcriptional loops. 

Transcriptional feedback and feedforward loops involve processes that occur on timescales 

that are orders of magnitude longer than (de)phosphorylation events. Delays in 

transcriptional feedback circuits can lead to sustained oscillations, such as circadian rhythms 

(Aronson et al., 1994; Feillet et al., 2015; Goldbeter, 1995), whereas a steady state of a 

pathway with the same topology of (de)phosphorylation connections can be stable. Even 

when stable steady-state behaviors are similar, the temporal patterns of responses to 

perturbations, such as drug treatments, will be different for networks with solely PTM-

mediated regulations or those that involve transcriptional connections. The network response 

time to drug perturbations may be so long that even before transcriptional loops reach the 

steady state, cell fate decisions would be made based on transient signaling responses 

(Volinsky and Kholodenko, 2013).

Growth factor signaling induces the expression of multiple negative feedback regulators 

operating at different signaling layers, from RTKs to downstream kinases, such as the 
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MAPK family. For instance, the MAP kinases JNK, p38, and ERK activate transcription of 

dual-specificity phosphatases (DUSPs), which can dephosphorylate the cognate MAPK that 

induced this DUSP, as well as other MAPKs, leading to crosstalk between different MAPK 

pathways (Caunt and Keyse, 2013; Junttila et al., 2008). Other negative feedback regulators 

of growth factor signaling include ERK-induced expression of the ERBB receptor feedback 

inhibitor 1 (also known as MIG-6, ERRFI1, or RALT), which is a potent inhibitor of 

epidermal growth factor receptor (EGFR), ERBB2, and ERBB4 (Milewska et al., 2015), and 

the SPRY domain-containing proteins (e.g., SPRY-2), which bind to and inhibit receptors 

and several other upstream proteins, such as GRB2 and CBL (Frank et al., 2009; Wong et 

al., 2002).

We next examined the dynamics of the JNK pathway that embraces phosphorylation-

mediated positive feedback loops and transcriptional negative feedback (Figure 3A). JNK 

phosphorylates and activates the immediately preceding kinase MKK4 in neuroblastoma 

cells, and activates an upstream MAPKKK (e.g., MLK, ASK) in other cell types (Fey et al., 

2015; Ventura et al., 2006). In addition, JNK induces the expression of its phosphatase, 

DUSP1 (Ventura et al., 2006). Inhibition of JNK or its upstream kinase is amplified by rapid 

positive feedback and initially strongly suppresses JNK signaling (Figures 3A and 3B). This 

reduced JNK activity decreases mRNA synthesis and expression of DUSP1, which leads to 

slow reactivation, followed by the overshoot of JNK activity on the timescale of hours. 

However, complete reactivation of steady-state JNK signaling cannot occur (Equation 6). 

Thus, the large delay in the transcriptional negative feedback circuits is a key distinction 

from the rapid PTM-mediated regulation. If the system is stable, then an increase in the 

delay time often results in the appearance of the activity overshoot before the output activity 

approaches the steady state, as illustrated in Figure 3B. The delays in negative feedback 

loops combined with sensitivity amplification are common mechanisms of damped or 

sustained oscillatory responses of signaling cascades to perturbations (Dibrov et al., 1982; 

Kholodenko, 2000; Tyson and Othmer, 1978).

The integral feedback control—When the degradation time of de novo synthesized 

regulators is much greater than the timescale of the network evolution regulated by the 

PTM-mediated control circuitry, signaling network dynamics are often described using the 

integral feedback control (Goyal et al., 2017; Nakakuki et al., 2010). The integral feedback 

control is widely used in industrial process control applications (Bennett, 1996). In this 

strategy, the time integral of the difference between the current output of a system and its 

preper-turbation level, which is called the error, feeds back to regulate the system output. A 

hallmark of integral controllers is the complete elimination of the steady-state error, leading 

to complete or perfect adaptation to noise and other disturbances. However, when the effect 

feedback regulator on the signaling output is described by the integral control, a system 

cannot reach a true steady state because the abundance of de novo synthesized regulators 

increases indefinitely, while the abundances of other network constituents remain constant 

(STAR Methods).

Integral feedback can ensure perfect adaptation (Yi et al., 2000). A marked difference 

between the transcriptional regulation of upstream signaling and the integral feedback is that 

integral feedback depends not only on the current network state but also on the previous 
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states. A synthetic transcriptional network, in which so-called antithetic integral feedback is 

compatible with steady-state requirements has recently been described (Aoki et al., 2019). 

Its key property is the presence of at least two de novo synthesized controlling species. One 

of these species must be synthesized at a constant rate to activate the regulated network. The 

synthesis of the second controlling species is induced by the output of the regulated network. 

The other necessary feature is an annihilation reaction, in which these two species or their 

derivatives form a mutually inhibitory complex that subsequently degrades. Although this 

design is based on a proven mathematical theorem, its main assumption fails for cell 

signaling networks, if the moieties of interconverted protein forms are conserved at the time 

of observation. In STAR Methods, we provide rigorous proof that for an arbitrary signaling 

network, in which the total abundance of different forms of the primary drug target or other 

proteins that transfer the signal are conserved (Figures S2A and S2B), antithetic integral 

feedback cannot result in complete reactivation of signaling. We also illustrate this proof in 

STAR Methods, using realistic examples of signaling networks (Figures 3D–3H and S2C–

S2E).

To summarize, negative transcriptional regulators can lead to slow reactivation and 

overshoot of output signaling following initial pathway inhibition. However, when the 

steady-state activity is finally reached, the signaling output will normally be below the 

original level. Mammalian signaling systems with integral feedback cannot completely 

restore the original signaling output after the inhibition of many primary drug targets, 

because moiety conservation of interconverted protein forms is the rule rather than an 

exception. We conclude that for complete and robust reactivation following a drug 

inhibition, a signaling network must have additional features, other than positive and/or 

negative feedback loops.

Complete reactivation or overshooting of the pathway output activity

Motivated by the conclusion that feedback loops alone cannot fully reactivate pathways after 

drug inhibition, we have analyzed potential complementary mechanisms. We show that 

complete reactivation of steady-state signaling following drug treatment can emerge if a 

network involves (1) feedforward connections from the primary drug targets to signaling 

output, (2) pathway crosstalk, or (3) when the inhibitor triggers paradoxical pathway 

activation by inducing dimerization/oligomerization and concomitant activation of its direct 

target (Koppikar et al., 2012). Negative and positive feedback loops merely modulate 

reactivation of the signaling output and, depending on the pathway topology and allosteric 

inhibitor-target interactions, may amplify or attenuate drug resistance.

Signaling reactivation brought about by pathway crosstalk—Complete 

reactivation or overshoot of steady-state signaling can emerge for a range of drug doses, if 

there are two or more connection routes from the upstream primary drug target to the 

downstream output. For topological reasons, these routes cannot be formed only by feedback 

loops. An additional feedforward connection to the output protein is necessary, which can 

exist, for instance, as crosstalk between two pathways.
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In a typical crosstalk, an upstream kinase signals to an output protein through a kinase 

cascade, but also directly or indirectly activates another pathway that inhibits this output 

protein (Figure 4A). This topology is known as a negative or incoherent feedforward loop 

(Mangan and Alon, 2003). A similar topology is found in tumor cells with mutant RAS that 

activates both the RAF/MEK/ERK cascade and the p38 pathway, which in turn can inhibit 

ERK (Figure 4B) (Fey et al., 2012).

The pathways X and Y converge onto the same signaling output (Figure 4A). We denote the 

products of the connectivity coefficients along each pathway to the shared output T as PX 

and PY, respectively,

PX = rX2X1 ⋅ … ⋅ rTXN − 1 > 0; PY = rY1X1 ⋅ rY2Y1… ⋅ rTYM < 0

Because kinases in the pathway X activate each other and subsequently the output T, the PX 

value is positive. At the same time, PY is negative, because the pathway Y inhibits T. For 

instance, T can be inhibited by the kinase Y M rTYM < 0 , whereas YM is activated by the 

reaction chain Y rY1X1 > 0, rY2Y1 > 0, …, rYMYM − 1 > 0  (Figure 4A). PX or PY shows how 

sensitive the output is to the changes in the upstream kinase activity X1 when the signal 

propagates only through the pathway X or the pathway Y.

Given the primary drug target is the upstream kinase X1, the systems-level response (RTI) to 

the drug I equals the local response (rX1I < 0) of the kinase X1 to this drug, multiplied by 

the sum (PX and PY) of the products of the connectivity coefficients along each pathway 

(STAR Methods),

RTI = rX1I ⋅ PX + PY . (Equation 7)

Depending on the connection strengths that determine the sensitivity of the output to signals 

propagating through each pathway, the sum (PX + PY) can be positive or negative. Moreover, 

with the change in the inhibitor dose and the resulting change in the upstream kinase 

activity, the sign of the sum (PX + PY) can change.

If at low drug doses the negative sensitivity PY prevails, then the sum (PX + PY) is negative. 

Because the upstream kinase is inhibited, its local response is also negative, rX1I < 0. The 

product of these two values (i.e., the systems-level response RTI in Equation 7), will be 

positive. This means that output signaling will be activated by low doses of a drug that 

inhibits the input kinase X1 (Figure 4C). The dose range for this “paradoxical activation” 

depends on the network kinetics. Initially, pathway activation increases with drug dose, but 

at large doses both pathways and their common output eventually will be inhibited (Figure 

4C). If the positive sensitivity PX prevails at low inhibitor doses, then the sum (PX + PY) is 

positive. Consequently, RTI will be negative, so the signaling output will be inhibited by the 

drug at low inhibitor doses. With increasing inhibitor doses and a decrease in the kinase X1 

activity, the negative sensitivity can become dominant, and the sum (PX + PY) turns 

negative. As a result, the systems-level response RTI will become positive, and within a 

Kholodenko et al. Page 11

Cell Rep. Author manuscript; available in PMC 2021 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



range of inhibitor doses, the signaling output becomes paradoxically activated by the 

inhibitor (Figure 4D).

If pathway crosstalk occurs downstream of the kinase X1, paradoxical activation of the 

output T can occur when the drug inhibits a kinase that is located upstream of negative 

feedforward connection to T (Figures S3A and S3B), but not by inhibition of a kinase within 

the feedforward loop or the output kinase itself (Figures S3C and S3D; STAR Methods). 

Clearly, the inhibition of the pathway Y only can activate the output. Thus, the key element 

of reactivation and overshoot of the output activity via crosstalk is the interplay between 

positive and negative signals that propagate from the primary drug target to the downstream 

output.

Modulation of paradoxical inhibitor responses emerging from pathway 
crosstalk by feedback loops—Whereas feedforward connections are necessary for the 

activation of the pathway output by an inhibitor, feedback loops will modulate the extent of 

paradoxical activation and the range of drug doses where it occurs.

If the output feeds back to the upstream kinase at the crosstalk point (Figure 4E), then the 

output responses propagate to both pathways. Additional interaction points can be created by 

feedback loops between intermediate kinases of two pathways. The systems-level response 

(RTI) of the shared output to a drug (I) is expressed in terms of the local kinase response 

(rX1I < 0), the products (PX and PY) of the connectivity coefficients along the cross-talking 

pathways, and the feedback connection strength (rX1T) (see STAR Methods),

RTI =
rX11 ⋅ PX + PY

1 − rX1T ⋅ PX + PY
. (Equation 8)

This response resembles the response of a single pathway with feedback (Equation 5), but 

here feedback integrates the responses along two pathways. Because negative feedback 

attenuates the drug inhibition, it will also narrow the range of drug doses where signaling is 

reactivated via pathway crosstalk. Positive feedback amplifies the drug action, and it will 

enlarge the range of paradoxical activation by an inhibitor. Figures 4F and 4G illustrate this 

modulation of responses.

If the primary drug target is localized upstream of the crosstalk point but inside a feedback 

loop (Figures S3E–S3G), then complete reactivation of output signaling still occurs for a 

range of drug doses. However, if a drug inhibits a kinase located downstream of the crosstalk 

point (Figures S3H–S3J), the systems-level response to this inhibitor will always be 

negative, ruling out paradoxical activation of the pathway (STAR Methods).

Notwithstanding the integration by feedback, at least two feedforward routes from the 

primary drug target to the output that include positive and negative connections are 

necessary to observe paradoxical inhibitor responses. A route can embrace feedback loops, 

but the direction of signal propagation to the output is feedforward (Figures S4A and S4B). 

A mathematical formulation is given in STAR Methods together with a method to obtain the 

number of routes connecting the primary drug target with the network output. Figures S4C 
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and S4D illustrate different dose responses for paradoxical pathway activation by an 

inhibitor depending on what route is dominant.

Negative and positive feedback loops cannot by themselves fully reactivate pathway 

signaling following the inhibition of an upstream kinase. Two or more routes need to 

connect the inhibited kinase to the output protein. These routes can incorporate feedback 

loops but inevitably require feedforward connections. Negative and positive feedback loops 

not only propagate the responses of downstream proteins back to the input but also reduce or 

enlarge the ranges of drug doses in which pathway reactivation is observed, as well as the 

magnitude of signaling overshoot.

Opposite drug responses emerging at hysteresis branches—Positive or double-

negative feedback loops intertwined with descending feedforward routes from a primary 

drug target can lead to the emergence of switch-like, bistable responses to a drug 

(Kaimachnikov and Kholodenko, 2009). When the drug dose gradually increases or 

decreases, a bistable network can switch between two stable but different steady states. A 

hallmark of bistable systems is hysteresis. In STAR Methods, we show that at different 

hysteresis branches corresponding to alternative steady states, the drug responses can behave 

differently. Increasing the drug dose will decrease signaling at one hysteresis branch and 

increase signaling at the other branch (Figures S5A and S5B). Depending on the history of 

drug treatment, for the same drug dose the output activity can be high or low, and distinct 

responses to a drug are observed at different hysteresis branches.

Pathways with multiple output proteins: Inhibition of one output leads to 
activation of the other and concomitant drug resistance—Signaling pathways, 

which crosstalk to one another, often have multiple outputs, including shared outputs 

(Klinger and Blüthgen, 2014). Because of crosstalk and feedforward loops, the inhibition of 

one output protein may result in the activation of another output. For instance, if there is 

negative feedback from the first output to a kinase at the crosstalk point or further upstream, 

then inhibition of this output will reduce the negative feedback influence. Crosstalk between 

two pathways was suggested as a mechanism of resistance by Zañudo et al. (2018). Figures 

S5C and S5D illustrate that the inhibition of the output T1 activates another output T2 by 

alleviating the inhibition of T2. If there are negative and positive feedback loops from T1 to 

the upstream kinases (Figure S5E), then its inhibition by a drug results in the activation or 

inhibition of another output T2 at a range of drug doses. These dose responses adopt convex 

or concave shapes depending on the dominant feedback effect in different dose ranges 

(Figures S5F and S5G).

Kinase dimerization cooperating with negative feedback conveys pathway reactivation and 
drug resistance

Many bona fide kinase inhibitors increase the activity of their targets, causing paradoxical 

activation. This effect was first described for RAF inhibitors by Hall-Jackson et al. (1999), 

and later shown to be related to increased RAF homo- and heterodimerization that is 

facilitated by RAF inhibitors (Heidorn et al., 2010; Poulikakos et al., 2010). Not only the 

RAF kinases but also many other kinases are activated by homo- and heterodimerization and 
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oligomerization (Bessman et al., 2014; Dey et al., 2005; Hu et al., 2013; Huang et al., 2014; 

Wang et al., 2012). Here, we show that negative feedback cooperates with paradoxical 

activation in the reactivation of a pathway, if the inhibitor-induced alleviation of this 

feedback increases kinase dimerization (Lito et al., 2012).

Paradoxical activation of the RTK/RAS/RAF/MEK/ERK pathway by RAF 
inhibitors—Using a previous study (Rukhlenko et al., 2018), we have built a structure-

based dynamic model of the RAS/RAF/MEK/ERK pathway that sheds light on the 

mechanisms of paradoxical RAF activation by RAF inhibitors facilitated by negative 

feedback loops (see STAR Methods for details). We analyze these mechanisms and dose 

responses to inhibitors in cells bearing activating BRAFV600E mutation or wild-type (WT) 

BRAF, and either WT RAS or mutant RAS genes.

In melanoma cells harboring the BRAFV600E mutation and WT RAS, the high BRAFV600E 

kinase activity induces strong ERK-mediated feedback phosphorylation of SOS on 

inhibitory residues resulting in suppressed SOS activity and low RAS-guanosine 

triphosphate (GTP) levels. RAF binding to RAS-GTP is required for RAF dimerization, 

which greatly increases the RAF kinase activity (Rushworth et al., 2006). Because RAS-

GTP is low, BRAFV600E molecules remain monomers with high constitutive activity. RAF 

inhibitors strongly inhibit BRAFV600E monomers, transiently decreasing MEK and ERK 

activities (Figure 5B). However, the concomitant decrease in SOS inhibitory 

phosphorylation increases SOS activity and RAS-GTP levels. In addition, RAF inhibitors 

allosterically promote RAF dimerization, reducing the apparent dimerization constant (Kd). 

Together with the enhanced RAS-GTP, the decrease in Kd prompts homo- and 

heterodimerization of BRAFV600E with WT BRAF and CRAF, leading to inhibitor-induced 

paradoxical activation of ERK signaling. Our model demonstrates that this induction of RAF 

dimers brings about complete reactivation and overshooting of the ERK activity (Figure 5B).

Importantly, negative feedback from active ERK to SOS (and also to RTKs) cannot by itself 

reactivate the pathway or induce its paradoxical activation following RAF inhibitor 

treatment without RAF dimerization (Figure 5C). The inhibitor-induced RAF dimerization is 

a necessary prerequisite for ERK reactivation and can bring about paradoxical pathway 

activation by itself (Kholodenko, 2015). Negative feedback increases the range of RAF 

inhibitor doses where pathway reactivation is observed, but it can also decrease the peak 

value of paradoxical activation.

Combining two RAF inhibitors blocks ERK pathway reactivation more effectively than 
combining RAF and MEK inhibitors in NRAS mutant cells

A combination of RAF and MEK inhibitors can reduce ERK reactivation (Sturm et al., 

2010) and is now the standard of care for BRAFV600E-driven metastatic melanoma (Grob et 

al., 2015; Larkin et al., 2014; Lito et al., 2012). Although this inhibitor combination can 

suppress ERK activity better than a single RAF inhibitor, attenuation of ERK-mediated 

negative feedback loops to SOS and upstream RTKs can make this combination ineffective, 

especially at low or moderate RAF inhibitor doses. Currently, three types of RAF inhibitors 

are available: type I, binding an active RAF conformation with the DFG motif and αC-helix 
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in “IN” positions (DFG-IN/αC-IN); type II, binding the inactive DFG-OUT/αC-IN 

conformation; and type I½ binding the DFGIN/αC-OUT RAF. Next, we show that whether 

RAF and MEK inhibitors will or will not exhibit synergy is determined by the type of 

inhibitors and RAS-GTP levels in WT RAS and RAS mutant cells.

The efficiency of the ERK inhibition by a two-drug combination is comprehensively 

assessed by determining the ppERK response across a two-dimensional plane of drug doses 

(Keith et al., 2005; Yeh et al., 2009). Lines of constant inhibition are called Loewe isoboles 

(Greco et al., 1995). For non-interacting drugs, these isoboles are straight lines. If two 

inhibitors synergize, then Loewe isoboles are concave, because lesser doses result in the 

same inhibitory effect, whereas convex isoboles indicate antagonism between inhibitors, 

because the doses must increase to achieve the same inhibition level.

Using the model, we calculated Loewe isoboles for combinations of a type I½ RAF inhibitor 

(e.g., dabrafenib or encorafenib) and a MEK inhibitor (trametinib or binimetinib), which are 

currently used in the clinic. We performed these calculations for different levels of RAS 

activity based on literature estimates ((Romano et al., 2014); Rukhlenko et al., 2018)— high 

RAS activity observed in mutant RAS cells (~250 nM RAS-GTP of 750 nM total RAS), low 

RAS activity (~25 nM RAS-GTP of 750 nM total RAS) as in WT RAS and BRAFV600E 

cells where RAS activation is feedback inhibited, and medium RAS activity (~100 nM RAS-

GTP of 750 nM total RAS) as in cells where WT RAS is feedback inhibited but 

simultaneously stimulated by RTK overexpression. For WT RAS, BRAFV600E melanoma 

cells with low RAS activity, our model shows that Loewe isoboles are concave for a wide 

range of concentrations of these drugs, demonstrating synergy between RAF and MEK 

inhibitors (Figure 5D). However, this combination can even turn antagonistic when inhibitor 

concentrations are low and RAS-GTP levels are constitutively high, such as in RAS mutant 

cells. For instance, a combination of dabrafenib and trametinib showed marked antagonism 

in MEL-JUSO melanoma cells harboring two oncogenic RAS mutations (NRASQ61L/WT 

and HRASG13D/G13D) and WT BRAF (Rukhlenko et al., 2018). This is likely due to a two-

pronged mechanism, in which MEK inhibition releases the negative feedback from ERK to 

RAF, thereby increasing RAF dimerization, while the RAF inhibitor further induces RAF 

dimerization and activation of RAF signaling to ERK. Elevating RAS-GTP levels in WT 

RAS, BRAFV600E cancer cells (e.g., by RTK overexpression) shift the Loewe isoboles to the 

right, showing that higher type I½ RAF inhibitor doses are required to achieve 25% and 50% 

of ERK inhibition (Figure 5E). At low RAF inhibitor concentrations, the RAF dimerization 

related to paradoxical activation prevails, causing a small zone of antagonism with MEK 

inhibitors (Figure 5D). Once that zone is passed, type I½ RAF and MEK inhibitors can 

synergize over a wide dose range. The synergy is dampened as RAS activity increases 

(Figure 5E). Moreover, at relatively large doses, a MEK inhibitor may be more effective on 

its own than in combination with a RAF inhibitor, when the RAF inhibitor is given at doses 

that are within the range of paradoxical ERK activation (Figure 5E). Because the maximum 

blood plasma levels for MEK inhibitors are low (Table S2), these doses can be insufficient 

for achieving the desired therapeutic effects.

For several type II RAF inhibitors, such as LY3009120, AZ-628, TAK-632, TAK-580, or 

lifirafenib, which have low apparent dissociation constants and a narrow range of 
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paradoxical activation, synergy with MEK inhibitors has been observed (Yen et al., 2018; 

Yuan et al., 2020). However, our calculations suggest that the zone where antagonism 

prevails can still be substantial, and sufficiently high doses of type II RAF inhibitors are 

required to remain in the synergy zone (Figure 6A). This is highlighted in Figure S6A, 

where the Talalay-Chou combination index (CI) is calculated across ranges of RAF and 

MEK inhibitor doses. Drug synergy, additivity, or antagonism are observed when the CI is 

<1, equal to 1, or >1, respectively (Chou, 2010). We see that only at high RAF and MEK 

inhibitor doses, the CI is substantially smaller than 1, indicating synergy. Maintaining high 

doses of type II RAF inhibitor continuously is difficult to achieve and may increase drug 

side effects. For many other RAF inhibitors, which have a wide dose range of paradoxical 

activation (e.g., type I½ inhibitors such as vemurafenib), reaching a zone of synergy with 

MEK inhibitors is practically impossible in RAS mutant cancers.

Our model suggests effective ways to counteract reactivation of the ERK pathway induced 

by RAF dimerization and multiple negative feedback loops from ERK. A combination of 

types I½ and II RAF inhibitors substantially decreases the dose range of paradoxical 

activation for both inhibitors and, therefore, in RAS mutant cells, synergizes in ERK 

inhibition over a wider dose range than a combination of RAF and MEK inhibitors (Figures 

6B and S6B). The maximally tolerable plasma blood levels demonstrate that type I½ RAF 

inhibitor can be given in doses >30 times greater than doses of MEK inhibitors, normalized 

by their Kd values, thereby having a larger therapeutic window (Table S2).

Experimental validation of model predictions—To verify model predictions, we 

measured ERK phosphorylation responses to diverse types of RAF and MEK inhibitors in 

two RAS mutant cell lines, melanoma MEL-JUSO (NRASQ61L/WT, HRASG13D/G13D) and 

acute myeloid leukemia (AML) OCI-AML-3 (NRASQ61L/Q61L). We tested type I½ 

(vemurafenib and encorafenib) and type II (TAK-632) RAF inhibitors and different 

allosteric MEK inhibitors, trametinib and cobimetinib, which bind to the same pocket in 

MEK but shape it in distinct ways (Khan et al., 2020). To compare different dosages, we 

normalized the inhibitor concentrations by their Kd. This corrects for different inhibitor 

affinities and allows a direct comparative evaluation of possible synergistic or antagonistic 

effects. The doses tested were determined by titrating each inhibitor as described previously 

(Rukhlenko et al., 2018). The doses shown in Figures 6C–6E correspond to ranges in which 

paradoxical ERK activation by RAF inhibitors is observed, and to IC20 or IC40 for MEK 

inhibitors. This design allows the observation of both synergistic and antagonistic effects, 

particularly effects on paradoxical ERK activation. Types I, I½, and II RAF inhibitors 

exhibit paradoxical activation of the ERK pathway, although in different dose ranges 

(Karoulia et al., 2016). The dose range of paradoxical ERK activation was still noticeable for 

low doses of the type II RAF inhibitor TAK-632 (Figures 6C, 6D, and S6C). Testing a 

combination of TAK-632 and trametinib in MEL-JUSO cells, we found that ERK inhibition 

achieved by trametinib decreased after adding TAK-632 in doses within a zone of 

paradoxical ERK activation (Figures 6C and S6A). Therefore, this inhibitor combination did 

not synergize. Unlike trametinib, cobimetinib and a type II RAF inhibitor show synergistic 

inhibition of ERK signaling (Figure 6D), in line with previous data (Yen et al., 2018). 

However, replacing cobimetinib by type I½ inhibitors (vemurafenib and encorafenib) for a 
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combination with type II RAF inhibitor resulted in a stronger synergistic effect, further 

decreasing ERK activity (Figures 6D and S7B), exactly as predicted by the model.

We next tested a combination of cobimetinib and TAK-632 in the NRAS mutant AML cell 

line, OCI-AML-3. Intriguingly, there was no synergy but rather antagonism between these 

MEK and type II RAF inhibitors within the range of paradoxical RAF activation (Figure 

S7C). However, a combination of type I½ (vemurafenib and encorafenib) and type II 

(TAK-632) synergistically and efficaciously suppressed the ERK pathway activity (Figures 

6E and S7C). Thus, experimental results obtained for these cell lines and diverse RAF and 

MEK inhibitors support our model predictions.

A reason for the observed responses in mutant RAS cells is that a MEK inhibitor can 

attenuate the negative feedback phosphorylation of CRAF and BRAF by ERK (Sturm et al., 

2010), but it is unable to prevent the RAF inhibitor-induced RAF dimerization, which drives 

ERK activation. The extent of synergy (or lack thereof) depends on which RAF 

(de)activating inputs are available in a cell (e.g., RTK overexpression or concentration of 

proteins that regulate RAF dimerization) (Baljuls et al., 2013; Bla ževitš et al., 2016; Boned 

Del Río et al., 2019). Only two RAF inhibitors with different conformation specificity 

effectively can inhibit RAF dimers (Kholodenko, 2015). Consistent with this explanation, 

synergy between type I½ and type II RAF inhibitors was even observed for the dose ranges 

in which each inhibitor on its own paradoxically activates ERK signaling (Figures 6D and 

6E). The decrease in the range of paradoxical activation for a combination of types II and I½ 

RAF inhibitors helps avoid ERK activation when drug availability decreases because of 

inhibitor clearance. Thus, although high doses of type II RAF inhibitors synergize with both 

MEK and RAF inhibitors in NRAS mutant cells, we conclude that a combination of two 

RAF inhibitors is advantageous, as this combination substantially broadens the zone of 

synergy and diminishes the zone of antagonism.

The paradoxical response of the primary target to an inhibitor activates output signaling 

rather than inhibits it. This mechanism is distinct from activation caused by feedbacks. A 

well-studied paradoxical ERK activation in response to RAF inhibitors is caused by RAS-

dependent RAF dimerization, which is facilitated by RAF inhibitors and can cooperate with 

negative feedback loops from ERK to RTKs, SOS, and RAF kinases. A combination of type 

I½ and type II RAF inhibitors is highly effective in reducing ERK pathway reactivation that 

otherwise would lead to drug resistance. The model and experiments suggest that this 

inhibitor combination can efficiently block ERK activation in cancer cells that steadily 

maintain high RAS-GTP levels.

DISCUSSION

Our analysis shows that no combination of feedback loops can completely restore the 

steady-state output activity that existed before the inhibition by a drug. The alleviation of 

negative feedback by a drug is commonly considered a key factor in drug resistance (Ishii et 

al., 2013; Montero-Conde et al., 2013; Mukherjee et al., 2021; Prahallad et al., 2012). Our 

results confirm that feedbacks are important contributors. However, at least two feedforward 

routes, activating and inhibitory, which emanate from the primary drug and converge at the 
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same output, are necessary for the full revival of signaling after drug treatment (Figure 4). In 

cancer, the activating route is often provided by crosstalk with other pathways that bypass 

the drug block (Alexander and Wang, 2015).

Although feedback circuitries by themselves cannot fully reactivate steady-state signaling, 

intrinsic delays in feedback loops can cause a slow transient reactivation and overshoot 

above the pre-inhibition level. These time delays are typically due to transcriptionally 

induced feedback inhibitors, such as DUSPs or SPOUTY/SPRED proteins in the MAPK 

pathways (Lake et al., 2016). Only integral feedback could lead to perfect adaptation to 

disturbances. However, the molecular realization of integral feedback control imposes 

restrictive requirements, which can be achieved in synthetic systems (Aoki et al., 2019) but 

have not been found in mammalian signaling networks. Consequently, mammalian signaling 

networks with integral feedback modules cannot fully restore output activities after drug 

inhibition (Figures 3D, 3G, S2D, and S2E; STAR Methods).

Clearly, drug resistance does not necessarily imply perfect reactivation of signaling. 

However, when reactivation is incomplete, there will always be a drug dose that produces a 

desired level of inhibition of its target and the pathway output. If this dose exceeds the 

therapeutic window, then resistance will prevail, but optimizing drug combinations can 

improve the pathway inhibition and the total dose of drugs in a combination will be smaller 

than a dose of a single drug.

Besides network topology-mediated mechanisms, the activity of a primary drug target can be 

restored by overexpression or mutation of this target, or by increasing its dimerization and 

subsequent kinase activity. If dimerization induces allosteric activation, drugs that enhance 

dimerization lead to paradoxical activation of the drug target. If the alleviation of a negative 

feedback further increases dimerization, then the paradoxical activation of this kinase will 

increase further. The two common mechanisms of resistance to RAF inhibitors in 

BRAFV600E melanoma are due to activating mutations in NRAS gene or expression of 

BRAFV600E splice variants. Both events increase BRAFV600E dimerization, rendering RAF 

inhibitors inefficient. Unlike melanoma, colorectal cancers (CRCs) express high amounts of 

EGFR, which is feedback suppressed by the high ERK activity caused by BRAFV600E. 

Inhibiting BRAFV600E releases this negative feedback and allows the EGFR to activate 

RAS, which induces RAF dimerization and paradoxical pathway activation (Prahallad et al., 

2012). Combining RAF with MEK inhibitors improved the response rate in BRAFV600E-

mutated CRC (Corcoran et al., 2015). Further adding an EGFR inhibitor generated high 

response rates and promising clinical results (Kopetz et al., 2019; Van Cutsem et al., 2019). 

Heterogeneity of RTK expression in genetically identical cells can also result in resistance to 

RAF inhibitors (Gerosa et al., 2020).

Using RAF as an example, we show that negative and positive feedback loops cannot lead to 

a complete, steady-state revival of the pathway output activity unless the inhibitor can 

induce RAF dimerization (Figures 5B and 5C). Paradox-breaking RAF inhibitors are 

thought to avoid paradoxical pathway activation by not inducing RAF dimerization 

(Karoulia et al., 2016). However, recent experiments showed that the paradox-breaking RAF 

inhibitor PLX8394 still induces paradoxical activation of ERK when cells overexpress 
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14-3-3 proteins, which promote RAF dimerization (Mendiratta et al., 2019). Our model 

recapitulates these data. The overexpression of 14-3-3 not only counteracts the ability of a 

paradox-breaking RAF inhibitor to reduce ERK activity but it also even restores paradoxical 

ERK activation (Figure S8).

Our model, validation experiments, and previously reported data (Rukhlenko et al., 2018) 

suggest that a type I½ RAF inhibitor given together with a type II RAF inhibitor is an 

efficacious synergistic combination that counterbalances ERK pathway reactivation and 

concomitant drug resistance in NRAS mutant melanoma and AML cells. This two-RAF 

inhibitor treatment can be more effective than treatment with MEK and RAF inhibitors 

(Figures 6C–6E and S7). However, depending on the cell context and heterogeneity of tumor 

cells, the search for optimal drug combinations in different tumor types will require further 

dedicated research efforts.

In summary, our analysis has elaborated dynamic principles and network topologies that 

control drug responses of signaling pathways and revealed the mechanisms and extent of 

pathway reactivation if resistance occurs. These findings will be useful in informing the 

systematic improvement of combining existing drugs and feed into the discovery and 

development of smart future drugs that consider network context.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Prof. Boris N. Kholodenko 

(boris.kholodenko@ucd.ie).

Materials availability—This study did not generate new unique reagents.

Data and code availability—The published article includes all datasets and codes 

generated or analyzed during this study.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture—MEL-JUSO cell line was purchased from DSMZ. OCI-AML-3 cell line was 

a gift from Prof. Ken Mills, Queen’s University Belfast. All cells were grown in RPMI 1640 

supplemented with 2 mM L-glutamine and 10% (v/v) fetal bovine serum (all from GIBCO) 

in a humidified atmosphere of 5% CO2 at 37°C.

For treatments, MEL-JUSO were seeded in 6-well plates (Greiner CELLSTAR dishes) at the 

density of 3×105 cells per well. OCI-AML-3 were seeded in 12-well plates at the density of 

5×105/mL.

After reaching sufficient confluency respectively cell number, cells were treated with 

different concentrations of inhibitors and DMSO as control as indicated.
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METHOD DETAILS

RAF inhibitors—All inhibitors used in this study were purchased from Selleckchem Ltd: 

TAK-632 (#S7291), Trametinib (GSK1120212, #S2673), Cobimetinib (GDC-0973, 

#S8041), Vemurafenib (PLX4032, #1267), and Encorafenib (LGX818, #S7108).

Inhibitors were dissolved in DMSO and stocks were stored at −80°C.

Western blot—Total lysates for western blotting were prepared on ice using 10mM Tris-

HCl pH 7.5, 150 mM NaCl, 0.5% (v/v) NP-40 (Calbiochem), complemented with 

COMPLETE Mini protease and PhosSTOP phosphatase inhibitor cocktails (both from 

Roche).

Cellular debris were removed from the lysate by centrifugation at 10,000 g at 4°C for 10 

min. Following protein quantification using the Pierce BCA Protein Assay Kit (Thermo 

Scientific), lysates were adjusted to equal protein concentrations

Using the Mini Protean Tetra system (Bio-Rad), lysates were then resolved by SDS-PAGE 

(10% PAA) and transferred on a polyvinylidene difluoride membrane (Millipore).

Protein visualization was performed by the iBright CL750 Imaging System (Invitrogen), 

using horseradish peroxidase–conjugated secondary antibodies (Cell Signaling 

Technologies) and the enhanced chemiluminescence system (GE Healthcare) for the 

following antibodies: Polyclonal rabbit anti-human mitogen-activated protein (MAP) kinase 

(extra-cellular signal-regulated kinase (ERK) 1 & 2) antibody (Sigma #M5670), monoclonal 

mouse anti-human MAP kinase, activated (diphosphorylated ERK-1 & 2) antibody (Sigma 

#8159).

MSD multi-spot assay ELISA system—ERK activation was assessed by ELISA using 

the MESOSCALE MSD kit according to the manufacturer’s instructions. Briefly, following 

the addition of complete MSD lysis buffer and scraping the cells from the surface of the 

dish, the cellular debris was removed from the lysate by centrifugation at 10000 g at 4°C for 

10 min. Protein concentration was determined using the BCA test according to the 

manufacturer’s instructions (Pierce BCA Protein Assay Kit). Lysates were adjusted to 0.1 

μg/μL protein concentration and relative ERK activation was assessed according to the 

manufacturer’s instructions using the MSD Sector Imager 2400 (model 1250).

Modeling

Systems-level responses to a drug: We consider a network comprising n independent state 

variables (xi) assigned to each of n network nodes. Each variable xi represents the 

concentration or activity level of a node i. The linearly dependent variables, such as inactive 

forms of proteins are expressed in terms of linearly independent variables xi and moiety 

conservations. The dynamics of the system is given by mass balance equations,

dx
dt = f(x, p, I) . x = x1, …, xn, p = p1, …, pm . (Equation 1.1)
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Here x is the vector of independent variables (activities of network nodes), p is the parameter 

vector, I is the drug concentration, which for convenience is separated from the other 

parameters, such as reaction constants and the conserved moieties. f (x, p, I) is a function of 

these independent variables, parameters and drug concentration. The function f(x, p, I) is 

derived using the network stoichiometric matrix and the reaction rates (see, e.g., Bruggeman 

et al., 2002).

The Jacobian of this ordinary differential equation (ODE) system is the s by s matrix (J) of 

the partial derivatives of the function f(x, p, I) with respect to the state variables x,

J = ∂f(x, p, I)
∂x . (Equation 1.2)

Given that the system has a single stable steady state, all eigenvalues of J are non-zero. The 

stationary activities of network nodes are found from the system of algebraic equations,

f(x, p, I) = 0. (Equation 1.3)

The matrix of the connectivity coefficients (r) is defined as (Bastiaens et al., 2015; 

Kholodenko et al., 2002; Lill et al., 2019; Santra et al., 2018),

r = − (dgJ)−1 ⋅ J = − dg ∂f(x, p, I)
∂x

−1
⋅ ∂f(x, p, I)

∂x . (Equation 1.4)

Here dgF·is the diagonal matrix that contains the diagonal elements of the matrix F.

The local response of a node xi to a drug is defined by a partial derivative ∂xi/∂I; assuming 

that all other nodes are kept fixed, that is

∂xi(p, I)
∂I = − ∂fi x1, …, xn, p, I / ∂I

∂fi x1, …, Xn, p, I / ∂xi steady state of module i
. (Equation 1.5)

The vector of local responses (rxI) of network nodes to a drug is expressed as in Kholodenko 

et al. (2002),

rxI = ∂x
∂I = − dg ∂f(x, p, I)

∂x
−1

⋅ ∂f(x, p, I)
∂I = = − (dgJ)−1

⋅ ∂f(x, p, I)
∂I .

(Equation 1.6)

The vector of the global, systems-level responses of network nodes to a drug is defined as,

RxI = dx
dI system steady state  (Equation 1.7)

Differentiating Equation 1.3, we obtain,

∂f(x, p, I)
∂x ⋅ RxI = J ⋅ RxI = − ∂f(x, p, I)

∂I (Equation 1.8)
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Multiplying both sides by the inverse of the Jacobin matrix and using Equations 1.4, 1.5, and 

1.6, we finally obtain,

RxI = − ∂f(x, p, I)
∂x

−1
⋅ ∂f(x, p, I)

∂I = − (r)−1 ⋅ rxI . (Equation 1.9)

Equation 1.9 provides a general expression of the systems-levels responses to a drug in the 

matrix format.

The global, systems-level responses and local responses, which are components of the 

connectivity matrix r or the vector rxI of the local responses of the primary targets to the 

drug, can also be expressed in dimensional units, using log-to-log derivatives (Kholodenko 

et al., 2002). Next, we show that Equation 1.9 also holds for logarithmic derivatives.

The matrix of the connectivity coefficients defined using log-to-log derivatives, rlog = (∂ln 

xi/∂ln xj), is given by,

rlog =
∂lnxi
∂lnxj

=

−1
∂x1
∂x2

⋅
x2
x1

⋯
∂x1
∂xn

⋅
xn
x1

∂x2
∂x1

⋅
x1
x2

−1 ⋯
∂x2
∂xn

⋅
xn
x2

⋮ ⋮ ⋱ ⋮
∂xn
∂x1

⋅
x1
xn

∂xn
∂x2

⋅
x2
xn

⋯ −1

=

1
x1

0 ⋯ 0

0 1
x2

⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1
xn

⋅

−1
∂x1
∂x2

⋯
∂x1
∂xn

∂x2
∂x1

−1 ⋯
∂x2
∂xn

⋮ ⋮ ⋱ ⋮
∂xn
∂x1

∂xn
∂x2

⋯ −1

⋅

x1 0 ⋯ 0
0 x2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ xn

= (diagx)−1 ⋅ r ⋅ (diagx)

The vector of global responses (RxI
log) defined using log-to-log derivatives is expressed as 

follows,

RxI
log = dlnx

dlnI system steady state  = (diagx)−1 ⋅ RxI ⋅ I

The vector of local responses (rxI
log) of network nodes to a drug (I) defined using log-to-log 

derivatives is given by,

rxI
log = ∂lnx

∂lnI = (diagx)−1 ⋅ rxI ⋅ I

Equation 1.9 can be re-written as

r ⋅ RxI = − rxI

Multiplying both sides of this equation by (diag x) −1·I, we obtain,
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(diagx)−1 ⋅ r ⋅ (diagx)(diagx)−1RxI ⋅ I = − (diagx)−1 ⋅ rxI ⋅ I
rlog ⋅ RxI

log = − rxI
log

RxI
log = − rlog

−1 ⋅ rxI
log .

(Equation 1.10)

Equations 1.9 and 1.10 show that the same expression is valid for both usual derivatives and 

logarithmic derivatives.

The expression for the global, systems-level responses to the drug, Equation 1.9, involves 

the inverse of the connection coefficient matrix, which in turn is expressed as the inverse of 

the normalized Jacobian matrix, which depends on the stoichiometry matrix and rate 

expressions (Bruggeman et al., 2002). Nevertheless, it is instructive to derive several simple 

equations that are given in the main text directly, rather than using software tools for matrix 

inversions that require exactly defining the number of nodes and the matrix size. These 

derivations are intuitively transparent and emphasize key topological features of pathways 

with any primary drug targets and arbitrary number of constituents. We present these 

derivations below.

Drug response of a pathway with a single feedback loop: Following a change in the drug 

dose (ΔI), the system-wide (or global) change in the activity (ΔX1) of the kinase at the first 

level is expressed in terms of the global change in the activity (ΔT) of the target and ΔI and 

the connection coefficients, rX1T  and rX1I, as follows,

ΔX1 = rX1T ⋅ ΔT + rX1I ⋅ ΔI . (Equation 2.1)

The changes in the Xj activity at level j occur only due to the changes in the activity of Xj−1. 

The changes in T occur only through changes in XN−1, see Figure 2A,

ΔT = rTXN − 1 ⋅ rXN − 1XN − 2 ⋅ … ⋅ rX2X1 ⋅ ΔX1 = P ⋅ ΔX1 . (Equation 2.2)

Substituting Equation 2.1 in Equation 2.2, and proceeding to the limit of infinitesimal 

changes, we arrive at Equation 5 of the main text.

Mechanistic models of a 3-tier signaling cascade with negative feedback: Mass-action 

models schematically depicted in Figures 2B, 2F, and S1B describe elementary enzymatic 

steps of every reaction catalyzed by each kinase and phosphatase in a 3-tier signaling 

cascade. The pathway shown in Figure 2B resembles a three-tier MAPK pathway where 

kinases X2 and T are phosphorylated on two sites for full activation. In the pathways shown 

in Figures 2F and S1B kinases X2 and T have only two forms, one is inactive and the other 

isactive. Negative feedback from the output protein to the first tier kinase X1 is mediated 

either by the inhibitory phosphorylation of X1 by T (Figures 2B and S1B) or by the 

formation of an inactive complex between X1 and T, sequestering the active kinase (Figure 

2F). The primary target of an inhibitor (I) is the first-tier kinase (Figures 2B and 2F) or a 

kinase within a negative feedback loop (Figure S1B). In the models depicted in Figures 2B 

and S1B, the inhibitor I can bind to inactive (X1
i ), active (X1) and feedback-modified (X1

P) 
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forms of the first-tier kinase, and to inactive (X2
i ) and active (X2) forms, respectively. In the 

model shown in Figure 2F, the inhibitor I binds to inactive (X1
i ) and active (X1) forms of the 

first-tier kinase, which is also sequestered by T.

Phosphorylation or PTM-mediated feedback: Multiple forms of the kinase X1 (active, 

inactive, modified by feedback from T, free or bound to an inhibitor) generate a large 

number of the corresponding mass-action reactions. A rule-based approach overcomes the 

necessity of manual enumeration of state variables, using formalizations called ‘rules’, 

which account for combinatorial processes that may proceed simultaneously (Borisov et al., 

2008; Chylek et al., 2014; Varga et al., 2017). Our mass-action, mechanistic model is written 

using the BNGL format and BioNetGen software (Chylek et al., 2014). Mass action reaction 

laws, equations and the rate and dissociation constants are given in the SBML format in 

Data S1.

Protein sequestration mediated feedback: the output protein T and the upstream kinase X1 

form an inactive complex [X1-T]: Consider the kinetic scheme depicted in Figure 2F. 

Following binding of a drug (I) to its primary target X1 the moiety conservations for X1 and 

T read,

X1
i + X1 + X1 − T + X1 − I = X1

tot . (Equation 3.1)

X1 − T + T + T i = T tot . (Equation 3.2)

From Equations 3.1 and 3.2 concentration of (X1
i ) and can Ti be expressed as functions of 

X1, T and I,

X1
i = f1 X1, T , I

T i = f2 X1, T , I .
(Equation 3.3)

Therefore, even when all other pathway components are kept constant, both X1 and T locally 

respond to the changing drug dose. The changes in the concentrations of these two species 

after a change in the drug dose are related by the following equation,

ΔX1
i + ΔX1 + T /KT ΔX1 + X1/KT ΔT + I /KI ΔX1 + X1/KI ΔI

= 0. (Equation 3.4)

Here KT and KI are dissociation constants of the complexes [X1-T] and [X1-I], respectively. 

The change (dX1
i ) in the concentration of (X1

i ) is expressed as,

ΔX1
i = ∂f1/ ∂X1 dX1 + ∂f1/ ∂T dT + ∂f1/ ∂I dI . (Equation 3.5)

From Equation 3.2 we obtain,
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T /KT ΔX1 + X1/KT ΔT + ΔT + ΔT i = 0
ΔT i = ∂f2/ ∂T ΔT + ∂f2/ ∂X1 ΔX1 + ∂f2/ ∂I ΔI .

(Equation 3.6)

Equations 3.4, 3.5, and 3.6 allow expressing ΔX1 and ΔT in terms of dI and the local 

response coefficients rX1I = ∂X1/ ∂I and rTI = ∂T/∂I,

ΔX1 = rX1TΔI + rX1TΔT . (Equation 3.7)

ΔT = rX2X1 ⋅ … ⋅ rTXN ΔX1 + rTIΔI = P ⋅ ΔX1 + rTIΔI . (Equation 3.8)

Substituting Equation 3.7 into Equation 3.8 we obtain the expression of the systems-level 

response, RX1I = ΔX1/ΔI, in terms of the local responses,

RX1I =
rX1I + rX1TrTI

1 − rX1TP . (Equation 3.9)

Obviously, rX1I < 0 and rX1T < 0. As T and I compete for binding to X1, free T increases as 

I increases and rTI > 0. Then, the systems-level response to the drug will always be negative, 

RX1I < 0, ruling out paradoxical activation responses to the inhibitor. Figure 2G illustrates 

this conclusion for a mechanistic mass-action model schematically depicted in Figure 2F. 

Data S2 gives mass action reaction laws, equations, and the rate and dissociation constants 

for this model in SBML format.

Systems-level responses to the inhibition of an intermediate kinase: A pathway of 

phosphorylation-dephosphorylation cycles arranged as sequential cascade combined with a 

negative feedback resembles a so-called ‘negative feedback amplifier’ where the negative 

feedback reduces the effects of input noise and buffers changes within the amplifier (Sturm 

et al., 2010). Here we analyze the systems responses to a drug that affects an intermediate 

kinase (Xm), 1 < m < N, located within a negative feedback loop from the output T to the 

upstream kinase X1 (Figure S1A). The changes in the activities of cascade kinases (ΔXi) 

following the change in the drug dose (ΔI) are expressed as follows,

ΔX1 = rX1T ⋅ ΔT
ΔX2 = rX2X1 ⋅ ΔX1
ΔXm − 1 = rXmxm − 1 ⋅ … ⋅ rX2X1 ⋅ ΔX1
ΔXm = rXmXm − 1 ⋅ … ⋅ rX2X1 ⋅ ΔX1 + rXmI ⋅ ΔI = P1 ⋅ ΔX1 + rXmI ⋅ ΔI
ΔT = rTXN − 1 ⋅ rXN − 1XN − 2 ⋅ ⋅ … ⋅ rXm + 1Xm ⋅ ΔXm = Pm ⋅ ΔXm .

(Equation 4.1)

Rearranging, we obtain,

ΔT = Pm ⋅ P1 ⋅ ΔX1 + Pm ⋅ rXmI ⋅ ΔI = P ⋅ rX1T ⋅ ΔT + Pm ⋅ rXmI ⋅ ΔI . (Equation 4.2)

In the limit of infinitesimal changes we obtain,
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RTI =
rXmI ⋅ Pm

1 − rX1T ⋅ P ; Pm = rXm + 1Xm ⋅ … ⋅ rTXN − 1 < P . (Equation 4.3)

In particular, if the drug affects the output kinase, then the systems response of the output T 
to the drug I is the following,

RTI = rTI
1 − rX1T ⋅ P . (Equation 4.4)

Drug response of a pathway featuring intertwined negative and positive feedback 
loops: Given the network architecture shown in Figure 2H, the systems-wide changes in the 

activities of the kinase X1, the pathway target T and the kinases Y and Z (that mediate 

positive and negative influence of T on X1) can be related to the change in the drug dose (I) 
as follows,

ΔX1 = rX1Y ⋅ ΔY + rX1Z ⋅ ΔZ + rX1I ⋅ ΔI
ΔY = rY T ⋅ ΔT ; ΔZ = rZT ⋅ ΔT
ΔT = rTXN − 1 ⋅ rXN − 1XN − 2 ⋅ … ⋅ rX2X1 ⋅ ΔX1 = P ⋅ ΔX1 .

(Equation 5.1)

Equation 6 of the main text can be readily obtained from Equation 5.1.

Transient pathway reactivation by expression of negative feedback regulators: The 

dynamics of the pathway shown in Figure 3A are governed by the following equations,

d[MKK]
dt = V MKKaS MKKtot − MKK

KMKKa + MKKtot − MKK
⋅ 1 + γJNK[JNK]/Kγ

1 + [JNK]/Kγ
− V MKK[MKK]

KMKK + MKK

d[JNK]
dt = V JNKa[JNK] JNKtot − [JNK]

KJNKa + JNKtot − [JNK]
⋅ 1

1 + IJNK /Kd
IJNK −

V JNK + V JNK
DUSP [DUSP ] [JNK]

KJNK + [JNK]

d[dusp]
dt = V duspa[JNK]2

Kduspa
2 + [JNK]2 − V dusp[dusp]

d[DUSP ]
dt = V DUSPa[dusp] − V DUSP [DUSP ]

.

(Equation 6.1)

Parameters are given in Table S1.

The time course presented in Figure 3B was calculated using Equation 6.1 and parameters in 

Table S1.

The integral feedback: Approximate description of the transient control by negative 

feedback regulators: Consider expression of a negative feedback regulator (NR) induced by 

a MAPK kinase (MAPK). This negative regulator can inhibit upstream signaling by 

dephosphorylation, e.g., a phosphatase (DUSP), or bind to and inhibit other upstream 

proteins, e.g., receptor tyrosine kinases RTK. Assuming that the negative regulator decays 

slower than the inhibition time, an approximate dynamic description reads as follows (Goyal 

et al., 2017; Nakakuki et al., 2010),
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d[RTK]
dt = ka RTKi − ki[RTK] − kNR[RTK][NR]

d[MAPK]
dt = ka MAPKi ⋅ [RTK] − ki[MAPK]

d[NR]
dt = ksNR[MAPK] .

(Equation 7.1)

From Equation 7.1 it follows that,

[NR] = ksNR∫ [MAPK]dt . (Equation 7.2)

After substitution of Equation 7.2 into Equation 7.1 we obtain a system of equations with 

integral negative feedback. However, Equation 7.2 shows that the concentration of NR never 

reaches a steady state, increasing infinitely with time. At the same time, a non-zero 

degradation rate of NR breaks down integral feedback in this system.

Perfect adaption to a drug cannot be reached using integral feedback in generic signaling 

networks with moiety conservations: Here we demonstrate that a complete reactivation of 

signaling outputs after drug inhibition is not achieved by so-called antithetic integral 

feedback (Aoki et al., 2019; Briat et al., 2016) in a generic cell signaling networks where the 

moieties of interconverted, active and inactive, protein forms are conserved. The existence of 

moiety conservations of interconverted protein forms is a rule rather than an exception in 

kinase signaling networks. These moiety conserved cycles violate an assumption of a key 

theorem, which proves complete or perfect adaptation of the systems output to a fixed set-

point, i.e., the desired output value, owing to antithetic integral feedback. Theorem 2 in Briat 

et al. (2016) assumes the accessibility of the desired asymptotic set-point state. In other 

words, a unique systems steady state with the desired output level should be accessible, 

following a perturbation. Below we show that in biochemical systems with moiety 

conserved cycles, there are multiple primary drug targets, whose perturbations make the 

desired steady state inaccessible because of the upper limit to the abundance of either the 

target or downstream proteins that transfer the signal. In mathematical terms, the moiety 

conservations bring about saturation nonlinearity of a network transfer function (Na et al., 

2018).

Generic signaling networks that contain antithetic integral feedbacks are depicted in Figures 

S2A and S2B. These networks satisfy the antithetic integral feedback requirements 

formulated in Briat et al. (2016). A generic network shown in Figure S2A has arbitrary 

signaling constituents and connections between them, but the total abundance of 

interconvertible forms of the upstream primary drug target X1, which is regulated by the 

antithetic integral feedback control module consisting of species Y1 and Y2, is conserved 

(X1
tot). In a generic network depicted in Figure S2B, the abundance of the feedback-regulated 

signaling protein X1 is not conserved, as it can degrade and be rapidly synthesized de novo. 

However, in the network module, which has arbitrary signaling topology and transfers the 

signal via the module output (XS) downstream to the primary drug target (XD) and the 
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signaling output (T), intercomvertible protein forms for at least one or more proteins are 

constrained by moiety conservations.

The presence of the antithetic feedback module shown in Figures S2A and S2B has been 

proven to be a necessary condition and not only a sufficient condition of robust perfect 

adaptation in chemical networks (Aoki et al., 2019). The dynamics of the species, Y1 and 

Y2, in the integral control module are described by the following equations,

dY 1
dt = μ − η ⋅ Y 1 ⋅ Y 2

dY 2
dt = θ ⋅ T − η ⋅ Y 1 ⋅ Y 2 .

(Equation 7.3)

Here μ is the constant rate of synthesis of Y1, θ is the rate constant of T-induced synthesis of 

Y2, η is the rate constant of annihilation reaction of Y1 and Y2 (degradation of the Y1Y2 

complex).

Subtracting the equation for dY2/dt from the equation for dY1/dt yields,

d Y 1 − Y 2
dt = μ − θ ⋅ T . (Equation 7.4)

Then, the difference between Y1 and Y2 concentrations is expressed as,

Y 1 − Y 2 = ∫ (μ − θ ⋅ T )dt . (Equation 7.5)

This expression represents integral feedback and shows that there can only be a single steady 

state where T = μ/θ. However, this set-point steady state cannot be reached following a 

multitude of different perturbations.

Consider a perturbation to the network presented in Figure S2A by a drug that binds the 

upstream primary target. Since its total abundance is conserved (X1
tot), the maximal 

concentration of an active form (X1) is limited by X1
tot value, i.e., X1 ≤ X1

tot . Then, if an 

inhibitor (I) of X1 is added, the maximal concentration of inhibitor-free X1 satisfies the 

following inequality,

X1 ≤ X1
tot ⋅ 1

1 + 1
Kd

Here I and Kd are the inhibitor concentration and dissociation constant, respectively. In this 

case, for every value of set-point μ/θ there exists a value of inhibitor concentration I, which 

can make the X1 activity to be arbitrarily small. Since the steady state concentration of the 

network output T is a function (F) of X1, i.e., T = F(X1), then for every value of set-point μ/θ 
there exists inhibitor concentration that will make the T activity close to F(0)≠ μ/θ. This 

proves that if the total abundance of primary drug target is conserved, the steady-state set-
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point cannot be reached and the perfect reactivation of signaling output cannot be reached 

for an arbitrary network.

For the network shown in Figure S2B, consider a perturbation by an inhibitor that binds the 

downstream primary target XD. Owing moiety conservations there is saturation nonlinearity 

of transfer function of the network module that transfers the signal from X1 to XD via the 

module output (XS). Let XS
max be the maximal value of the output of this module. Since the 

primary drug target, XD, is activated by XS, its activity is a monotonous function (G) of XS,

XD = G XS

Then, the maximal value of XD is G(XS
max). When the primary target is inhibited by I, the 

value of XD cannot exceed the following,

XD ≤ G XS
max ⋅ 1

1 + 1
Kd

Therefore, for each value of set-point μ/θ there exists a value of inhibitor concentration I, 
which can make concentration of XD to be arbitrarily small. Since T is activated by XD, this 

makes the T activity to be near the activity that corresponds to XD = 0, which rules out 

reaching the set-point value μ/θ and fully reactivating the network output.

We conclude that if (i) the regulated network contains the modules with saturation 

nonlinearity of transfer function, and (ii) these modules cannot be bypassed, and (iii) there 

are no modules with transfer function singularity, then the accessibility condition can be 

violated by drug perturbations downstream of any module with transfer function saturation 

nonlinearity. In control engineering the proof of this statement is known and based on the 

properties of multiplication of transfer functions for sequentially connected modules along 

the path (Bakshi and Goyal, 2007).

Antithetic integral feedback motif in networks with moiety conservations—examples: 

Consider a signaling pathway, which is controlled by two species (Y1 and Y2) and has the 

required key properties of the antithetic integral feedback controller (Figure 3C). In this 

pathway, the rate of conversion of an inactive form X1
i  of the upstream kinase X1 into its 

active form is stimulated by the controlling protein Y1. X1 activates the output T through a 

cascade of intermediate kinases, X2, …, Xn−1. The first controlling protein Y1 is synthesized 

in an external process, which has a constant rate and does not depend on signaling output or 

other pathway species. The output T of the regulated pathway induces expression of the 

second controlling protein Y2 that forms a complex with Y1, which subsequently degrades. 

The kinetic behavior of this network are governed by Equation 7.6,
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dX1
dt = V X1aS X1

tot − X1
KX1a + X1

tot − X1
⋅

1 + γY 1/Kd
γ

1 + Y 1/Kd
γ ⋅ 1

1 + IX1/Kd
IX1 − V X1X1

KX1 + X1

dX2
dt = V X2aX1 X2

tot − X2
KX2a + X2

tot − X2
⋅ 1

1 + IX2/Kd
IX2 − V X2X2

Kx2 + X2

dT
dt = V TaX2 T tot − T

KTa + T tot − T
⋅ 1

1 + IT /Kd
IT − V TT

KT + T
dY 1
dt = μ ⋅ 1

1 + IY 1/Kd
IY 1 − ηY 1Y 2

dY 2
dt = θT − ηY 1Y 2 .

(Equation 7.6)

Here in Equation 7.6 and below in Equations 7.7 and 7.8, VX1a, VX2a and VTa, and KX1a, 

KX2a and KTa are the maximal rates and Michaelis constants of activation of X1, X2 and T, 

respectively, and VX1, VX2 and VT, and KX1, KX2 and KT are the maximal rates and 

Michaelis constants of deactivation of X1, X2 and T, respectively. S is the level of input 

activation. μ is the constant rate of synthesis of Y1, θ is the rate constant of T-induced 

synthesis of Y2, η is the rate constant of annihilation reaction of Y1 and Y2 (degradation of 

the Y1Y complex). IX1, IX2, IT and IY1, and Kd
IX1, Kd

IX2, Kd
IT  and Kd

IY 1 are the 

concentrations and dissociation constants of inhibitors of X1, X2, T and Y1, respectively.

Numerical solutions to Equation 7.6 demonstrate that although this network and its 

controller motif implements the integral feedback design (STAR Methods), there is no 

complete revival or overshoot of steady state output signaling after the inhibition of either 

the upstream kinase X1, any intermediate kinases, X2, …, Xn−1, or the output T by a drug I 
(Figures 3D and 3E). The presence of this antithetic integral controller motif was proven to 

be a necessary and sufficient condition for perfect adaptation in biomolecular networks 

(Aoki et al., 2019), but neither condition holds for networks that transfer signals via PTM 

cycles with conserved moieties of interconvertible proteins (Figures 3D and 3E).

In the second network example the controlling protein Y1 directly catalyzes rather than 

facilitates the conversion of the inactive kinase form X1
i  into an active form X1 (Figure S2C). 

The kinetic behavior of this network is determined by Equation 7.7,

dX1
dt = V X1a S + Y 1 X1

tot − X1
KX1a + X1

tot − X1
⋅ 1

1 + IX1/Kd
IX1 − V X1X1

KX1 + X1

dX2
dt = V X2aX1 X2

tot  − X2
KX2a + X2

tot  − X2
⋅ 1

1 + IX2/Kd
IX2 − V X2X2

KX2 + X2

dT
dt = V TaX2 T tot − T

KTa + T tot − T
⋅ 1

1 + IT /Kd
IT − V TT

KT + T
dY 1
dt = μ ⋅ 1

1 + IY 1/Kd
IY 1 − ηY 1Y 2

dY 2
dt = θT − ηY 1Y 2 .

(Equation 7.7)
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The difference between equations that describe these two networks above is that Y1 is an 

activator of the catalytic conversion of an inactive form X1
i  into an active form X1 in 

Equation 7.6. This is described by a hyperbolic multiplier (a common description of enzyme 

activation (Tsyganov et al., 2012)) where Kd
γ is an effective Michaelis constant, and γ > 1 is 

an activation coefficient. In Equation 7.7, Y1 directly catalyzes rather than facilitates the 

conversion of an inactive kinase form into its active form. The solutions to Equation 7.7 

clearly show that this signaling networks still lacks perfect signaling revival following drug 

inhibition of any kinase, X1, X2, …, Xn−1, the output T or the synthesis of the controlling 

protein Y1 (Figures S2D and S2E).

In our third network example, the first controlling protein Y1 induces the synthesis of the 

inactive upstream kinase (X1
i ) rather than catalyzing or facilitating its transition into an 

active form. The kinetic behavior of this network is described as follows,

dX1
i

dt = V X1
syn + V X1Y 1 ⋅ Y 1 + V X1X1

KX1 + X1
− V X1

degX1 − V X1aSX1
i

KX1a + X1
i ⋅ 1

1 + IX1/Kd
IX1

∂X1
∂t = V X1aSX1

i

KX1a + X1
i ⋅ 1

1 + IX1/Kd
IX1 − V X1X1

Kx1 + X1

dX2
dt = V X2aX1 X2

tot − X2
KX2a + X2

tot − X2
⋅ 1

1 + IX2/Kd
IX2 − V x2X2

KX2 + X2

dT
dt = V TaX2 T tot − T

KTa + T tot − T
⋅ 1

1 + IT /Kd
IT − V TT

KT + T
dY 1
dt = μ ⋅ 1

1 + IY 1/Kd
IY 1 − ηY 1Y 2

dY 2
dt = θT − ηY 1Y 2

.

(Equation 7.8)

Here the rate constants, VX1Y1· V X1
syn and V X1

deg, are the basic rates of the X1
i  synthesis and 

degradation, respectively. Only this network design can show complete output reactivation, 

or perfect adaptation, in response to inhibiting the kinases X1 or X2 (Figures 3F–3H). 

However, inhibition of any other kinase, X3, …, Xn−1, or the output T (Figure 3G, orange 

curve) necessarily leads to pathway inhibition. In addition, the inhibition of the controller Y1 

synthesis by a drug or the drug-induced direct degradation of the second controlling protein 

Y2 rules out complete reactivation of output signaling (Figure 3G, green curve). Moreover, 

because signaling reactivation is brought about by the synthesis of an inactive kinase form, 

even when the reactivation is possible, it might take several days after drug treatment (Figure 

3H).

The signaling networks shown in Figures 3C, 3F, and S2C have the controlling and regulated 

modules, implementing the topological properties that are reported to be necessary and 

sufficient for integral feedback (Aoki et al., 2019; Briat et al., 2016). Yet, these networks 

cannot perfectly adapt to drug inhibition of a number of targets. We conclude that the 

necessary and sufficient conditions to achieve the complete signaling recovery are not 

fulfilled for mammalian networks with the conserved abundances of interconverted protein 

forms.
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Parameters for Equations 7.6, 7.7, and 7.8 are given in Table S1.

For all three networks (Equations 7.6, 7.7, and 7.8), by subtracting the equation for dY2/dt 
from the equation for dY1/dt, we obtain,

d Y 1 − Y 2
dt = μ ⋅ 1

1 + IY 1/Kd
IY 1 − θT . (Equation 7.9)

Then, the difference between Y1 and Y2 concentrations is expressed as,

Y 1 − Y 2 = ∫ μ ⋅ 1
1 + IY 1/Kd

IY 1 − θT dt . (Equation 7.10)

This expression constitutes integral feedback and shows there can only be a single steady 

state where T = (μ/θ)/ 1 + IY 1/Kd
IY 1 . Thus, at first glance any deviations of T from this 

steady state value will lead to re-adjustment of the concentrations of Y1 and Y2 until a 

steady state is reached. However, for the networks in Figures 3C and S2C, described by 

Equations 7.6 and 7.7, there is no perfect reactivation of the steady-state output signaling 

after the inhibition of either the upstream kinase X1 or any of the intermediate kinases, X2, 

…, Xn−1 (Figures 3D and S2D, blue curves). The reason is that in these signaling networks 

(Equations 7.6 and 7.7) a conversion of an inactive kinase form (X1
i ) into an active form (X1) 

has a limit determined by the moiety conservation of activation and inactivation forms, 

X1
i + X1 = X1

tot, which is a feature of signaling kinetics (Kholodenko, 2006). Therefore, 

inhibition of any kinase, X1, X2, …, Xn−1 or the output T (over a threshold value) will lead 

to incomplete reactivation and the steady-state T value will remain below its pre-inhibition 

level (Figures 3E and S2E, blue and orange curves). For the network in Figure 3F (Equation 

7.8) the activation of X1 by Y1 is not constrained by the moiety conservation, merely 

because of unlimited synthesis of X1
i  (Equation 7.8). As a result, this network is capable of 

complete T reactivation in response to inhibition of X1 or X2 (Figures 3G and 3H, blue 

curves). However, neither signaling network can completely or perfectly reactivate the 

output signaling if any node downstream of X2, or the output protein T, or the synthesis of 

Y1 is inhibited.

Pathway crosstalk can lead to paradoxical activation by an inhibitor: In a crosstalk 

example in Figure 4A an upstream kinase X1 signals to the output protein T through a 

cascade of kinases (Xi), and also activates the pathway (Y1, …, YM) that inhibits T. The 

local response of the primary target X1 to the drug I is defined as,

rX1I = ∂X1
∂I tier X1steady state

ΔX1 = rX1I ⋅ ΔI .
(Equation 8.1)

Given that the output T is activated by the kinase cascade (X1, …, XN and inhibited through 

an incoherent feedforward loop by the pathway (Y1, …, YM) that in turn is activated by X1 

(Figure 4A), we can write,
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ΔT = rTXN − 1 ⋅ rXN − 1XN − 2 ⋅ … ⋅ rX2x1 + rY1X1 ⋅ rY2Y1… ⋅ rTYM
⋅ ΔX1 = PX + PY ⋅ ΔX1 . (Equation 8.2)

Here PX and PY are the products of the connection coefficients from X1 and Y1 to T along 

the pathways X and Y. Substituting Equation 8.1 in Equation 8.2 and proceeding to the limit 

of infinitesimal changes, we arrive at Equation 8 of the main text.

To illustrate paradoxical responses to the drug I, we present a model of pathway crosstalk for 

the example shown in Figure 4A with N = 2 and M = 2. Kinetics of the pathway components 

are described by the following equations,

dX1
dt = V X1aS X1

tot − X1
KX1a + X1

tot − X1
⋅ 1

1 + I /Kd
IX1 − V X1X1

KX1 + X1

dX2
dt = V X2aX1 X2

tot − X2
KX2a + X2

tot − X2
− V X2X2

KX2 + X2

dY 1
dt = V Y 1aX1 Y 1

tot − Y 1
KY1a + Y 1

tot − Y 1
− V Y 1Y 1

KY1 + Y 1

dY 2
dt = V Y 2aY 1 Y 2

tot − Y 2
KY 2a + Y 2

tot − Y 2
− V Y 2Y 2

KY 2 + Y 2

dT
dt = V TaX2 T tot − T

KTa + T tot − T
⋅ 1 + γiY 2/Kyi

1 + Y 2/Kyi
− V TT

KT + T .

(Equation 8.3)

Depending on parameters the dose-response curve in (T, X1) coordinates can be either 

convex (Figure 4C) or concave (Figure 4D). The parameters corresponding to convex and 

concave dose-response curves are presented in Table S1.

Inhibition of a kinase upstream of the point of crosstalk: In the example shown in Figure 

S3A the crosstalk point is at the 3rd cascade tier rather than at the level of the upstream 

kinase (X1) The kinase X2 is the primary drug target. Its local response to the inhibitor I is 

denoted as rX2I. The systems-level response (RTI) of the output T to the drug I that inhibits 

kinase X2 is given by,

RTI = rX2I ⋅ rX3X2 ⋅ PTX3 + PY . (Equation 8.4)

Here PX3 is the product of the connection coefficients from the crosstalk kinase X3 to the 

output T. Because kinases in the pathway X activate each other and subsequently the output, 

PX3 is positive and PY is negative, because the pathway Y inhibits T.

Thus, if a kinase upstream of branching point is inhibited, the expression for the global 

response to inhibition contains 2 terms with different signs, similarly to Equation 7 in the 

main text. Depending on the values of PX3 and PY the response to inhibition of X2 can be 

either positive or negative, and the dose response curve can be either convex or concave, 

Figures S3B (see Data S3 for kinetic equations and parameters).
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Inhibition of a kinase downstream of the point of crosstalk: We now consider a kinase 

downstream of the point of crosstalk as primary drug target, for instance, Xk, k > 3, as 

illustrated in Figure S3C. The local response rXkI of Xk to the drug I is defined as,

rXkI =
∂Xk
∂I tier Xk steady state

Then, for the responses of Xk and T to a change in the drug I dose, we can write,

ΔXk = rXkI ⋅ ΔI
ΔT = PTXk ⋅ ΔXk

Here, PXk is the product of the connection coefficients from Xk to the output T,

PTXk = rXkXk + 1 ⋅ … ⋅ rXN − 1XN ⋅ rXNXT . (Equation 8.5)

By substituting the expression for ΔXk into ΔT and proceeding to the limit of infinitesimal 

changes, we obtain the expression of the global response of T, when Xk is the primary drug 

target,

RTI = rXkI ⋅ PTXk . (Equation 8.6)

Equation 8.6 proves that if the cascade is inhibited below a branching point, then the 

systems-level response to inhibition will always be negative ruling out paradoxical activation 

in response to a drug, as illustrated in Figure S3D (see Data S3 for kinetic equations and 

parameters).

Feedback loops modulate paradoxical inhibitor responses: Consider a signaling cascade 

presented in Figure 4E. Because the first level kinase X1 is only affected by a drug (I) and 

feedback from the output T, we have,

ΔX1 = rX1T ⋅ ΔT + rX1I ⋅ ΔI. (Equation 8.7)

The output T is activated by the kinase cascade (X1, …, XN−1) and inhibited through an 

incoherent feedforward loop emanating from a pathway (Y1, …, YM) that in turn is activated 

by X1. Consequently, we can write,

ΔT = rTXN − 1 ⋅ rXN − 1XN − 2 ⋅ ⋅ … ⋅ rX2X1 + rY1X1 ⋅ rY2Y1⋯ ⋅ rTYM
⋅ ΔX1 = PX + PY ⋅ ΔX1 . (Equation 8.8)

Here PX and PY are the products of the connection coefficients from X1 and Y1 to T along 

the pathways X and Y.

Substituting Equation 8.7 in Equation 8.8 and proceeding to the limit of infinitesimal 

changes, we arrive at Equation 8 of the main text.
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To illustrate how feedback modulates paradoxical responses to inhibition, we present a 

model of the pathways shown in Figure 4E for N = 2 and M = 2. Kinetics of the pathway 

components is described by the following equations,

dX1
dt = V X1aS X1

tot − X1
KX1a + X1

tot − X1
⋅ 1 + γTT /Ki

1 + T /Ki
⋅ 1

1 + IX1/Kd
IX1 − V X1X1

KX1 + X1

dX2
dt = V X2aX1 X2

tot − X2
KX2a + X2

tot − X2
− V X2X2

KX2 + X2

dY 1
dt = V Y 1aX1 Y 1

tot − Y 1
KY 1a + Y 1

tot − Y 1
− V Y 1Y 1

KY1 + Y 1

dY 2
dt = V Y 2aY 1 Y 2

tot  − Y 2
KY 2a + Y 2

tot  − Y 2
− V Y 2Y 2

KY 2 + Y 2

dT
dt = V TaX2 T tot − T

KTa + T tot − T
⋅ 1 + γiY 2/Kyi

1 + Y 2/Kyi
− V TT

KT + T .

(Equation 8.9)

Parameter sets are presented in Table S1. Figures 4F and 4G illustrate how feedback 

modulates convex dose-response curves and concave dose-response curves.

Next, we analyze responses to the inhibition of a kinase localized inside a feedback loop but 

upstream of the point of crosstalk. For the pathways shown in Figure S3C, where X3 is the 

primary drug target, the changes in X3, X1 and T following a change in the drug dose I are 

the following,

ΔX1 = rX1T ⋅ ΔT
ΔX3 = rX2X1 ⋅ rX3X2 ⋅ ΔX1 + rX3IΔI
ΔT = PX3 + PY ⋅ ΔX3 .

(Equation 8.10)

Solving these equations with respect to ΔT we obtain the following expression for the global 

response of T to the inhibition of X3 by the drug I,

RTI =
PTX3 + PY

1 − rX1TrX2X1rX3X2 PX3 + PY
⋅ rX3I . (Equation 8.11)

Equation 8.11 demonstrates that the systems-level response to a drug can be positive or 

negative depending on the product of the sensitivities PTX3 and PY, as illustrated in Figures 

S3F and S3G (see Data S3 for kinetic equations and parameters).

If the primary drug target, kinase Xk, is downstream of the branching point (Figure S3H), 

the responses of X1, Xk and T to inhibition are related as follows,

ΔX1 = rX1T ⋅ ΔT
ΔXk = PXkX1 ⋅ ΔX1 + rXk ⋅ ΔI
ΔT = PY ⋅ ΔX1 + PTXk ⋅ ΔXk .

(Equation 8.12)
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Here PXkX1 is the product of the connection coefficients from X1 to Xk, and PTXk is the 

product of the connection coefficients from Xk to T (see Equation 8.5). By solving 

Equations 8.12 with respect to ΔT, we obtain the following expression for the systems-level 

response of T to drug inhibition, if Xk is the primary drug target,

RTI =
PTXk

1 − rX1rX2X1rX3X2 PX3 + PY
⋅ rXkI . (Equation 8.13)

Equation 8.13 demonstrates that although the feedback connection modulates the systems-

level response, it is always negative and cannot change its sign if the primary drug target 

embraced by the feedback is located downstream of the point of crosstalk. This rules out the 

possibility of paradoxical pathway activation by an inhibitor of Xk, as illustrated in Figures 

S3I and S3J (see Data S3 for kinetic equations and parameters)

Network topology where feedforward signal flow incorporates feedback loops: The network 

diagram shown in Figure S4A includes two non-identical routes of signal flow from the 

primary drug target X2 to the output T. To obtain the systems-level response (RTI) of the 

output T to a drug I we will use Equation 1.9, which is valid for any network topology. The 

connectivity matrix for this scheme reads as follows,

r =

−1 rX1X2 0 0 0
rX2X1 −1 0 0 0
0 rX3X2 −1 0 0
rY1X1 0 0 −1 0
0 0 rTX3 rTY1 −1

. (Equation 8.14)

The local drug response vector reads as,

rxI =

0
rX2I

0
0
0

. (Equation 8.15)

Using Equation 1.9 we obtain the following expression for RTI,

RTI =
rTX3rX3X2 + rTY1rX1X2rY1X1

1 − rX1X2rX2X1
⋅ rX2I . (Equation 8.16)

The connectivity coefficients, rTX3 and rTY1, are both positive, whereas rX1X2 is negative 

(Figure S4A). Thus, the expression for RTI has two terms with different signs in the 

numerator, which is a prerequisite for observing paradoxical drug responses. Negative 

feedback from X2 to X1 is necessary to observe paradoxical drug response.
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Next, we consider kinetic scheme presented in Figure S4B. The network connectivity matrix 

for this scheme reads,

r =

−1 0 rX1Y1 0 0
rX2X1 −1 0 0 0
rY1X1 0 −1 0 0
0 0 rY2Y1 −1 0
0 rTX2 0 rTY2 −1

. (Equation 8.17)

The local drug response vector reads as,

rxI =

0
rX1I

0
0
0

. (Equation 8.18)

Using Equation 1.9 we obtain the following expression for RTI,

RTI =
rTX2rX2X1 + rTY2rY1x1rY2Y1

1 − rX1Y1rY1X1
⋅ rX1I . (Equation 8.19)

We can readily see that Equations 8.16 and 8.19 are equivalent after the following renaming 

of nodes, X2→X1, X1→Y1, Y1→Y2, X3→X2. This equivalence is based on the topological 

equivalence of the signaling networks shown in Figures S4A and S4B. For a signaling 

network that is affected by a drug (I), the number of the separate products in the nominator 

of the systems-level response RTI gives the number of routes connecting the primary drug 

target with the pathway output T. The dose responses of these two equivalent networks are 

clearly identical and are illustrated in Figures S4C and S4D (see Data S4 for kinetic 

equations and parameters).

Opposite drug responses emerging at hysteresis branches: If there are two or more activating 

and inhibiting connection routes from the primary drug target to the output kinase coupled 

with intertwined feedback loops that lead to bistability, drug responses can exhibit hysteresis 

and behave differently at different hysteresis branches. An illustrative example is shown in 

Figures S5A and S5B. At a point of crosstalk, signaling protein X2 activates downstream 

proteins X3 and Y1, one of which (X3) inhibits the common output T, whereas the other (Y1) 

activates it. In turn, T inhibits X2 via positive feedback to the upstream kinase X1 that is a 

primary drug target. This positive feedback is a prerequisite for bistability and hysteresis in 

the pathway. X2 is inhibited by X1 and activated by positive feedback from Y1, Figure S5A. 

In contrast to a chain of kinases activating each other, here two inhibitory connections from 

the kinase X1 contribute to the output T activation. The kinetic diagram in Figure S5A 

resembles the Rac1-RhoA GTPase network where Rac1 (T) activates the kinase PAK (X1) 

that inhibits RhoA (X2), which, in turn, activates Rac1 via DIA (Y1) and inhibits Rac1 via 
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the kinase ROCK (X3). Under specific conditions, the Rac1-RhoA GTPase network can 

exhibit bistability and hysteresis (Bolado-Carrancio et al., 2020).

Suppose the sensitivity of the output T to the inhibition of the crosstalk kinase X2 is greater 

for the connection route via the kinase X3 that inhibits T than for the route via the protein Y1 

that activates T. Then, the inhibitor (I) of X1 that in turn inhibits X2 will activate T. As 

shown by an arrow that indicates the system trajectory along the solid black curve in Figure 

S5B, T is activated by a drug that inhibits X1. When the drug dose reaches a threshold value 

(the bifurcation point), the system flips from this stable state to another stable state. This 

abrupt switch to the greatly higher activity is shown by the arrow ‘Go up’ along a black 

dotted line that leads to the red line formed by alternative steady states. If the drug dose 

decreases, while the system is in the high activity state, the output activity increases, as 

shown by a red arrow along the red hysteresis curve in Figure S5B. This response to the 

drug is different from the response observed for the low activity branch where the response 

decreases with the decrease in the drug dose (solid black curve in Figure S5B). With the 

further decrease in drug doses, the low threshold is reached, and the system abruptly 

switches to the low activity as shown by the arrow ‘Go down’ along a red dotted line leading 

to the solid black line of stable steady states in Figure S5B. These network trajectories 

illustrate a hysteretic drug response, a feature of bistable systems (Kholodenko, 2006).

The dynamics of species presented in Figure S5A are governed by the following equations,

dX1
dt = V X1a

1 + γT
X1X1/KT

X1

1 + X1/KT
X1

X1
tot − X1 / KX1a 1 + I /Kd

1 + X1
tot − X1 / KX1a 1 + I /Kd

− V X1
X1/KX1

1 + X1/KX1

dX2
dt = V X2a

1 + γY1
X2Y 1/KY1

X2

1 + Y 1/KY1
X2

1 + γX1
X2X1/KX1

X2

1 + X1/KX1
X2

X2
tot − X2 /KX2

1 + X2
tot − X2 /KX2

− V X2
X2/KX2

1 + X2/KX2

dX3
dt = V X3a

1 + γX2
X3X2/KX2

X3

1 + X2/KX2
X3

X3
tot − X3 /KX3a

1 + X3
tot − X3 /KX3a

− V X3
X3/KX3

1 + X3/KX3

dY 1
dt = V Y1

1 + γX2
Y1X2/KX2

Y1

1 + X2/KX2
Y1

Y 1
tot − Y 1 /KY1a

1 + Y 1
tot − Y 1 /KY1a

− V Y1
Y 1/KY1

1 + Y 1/KY1

dT
dt = V Ta

1 + γY1
T Y 1/KY1

T

1 + Y 1/KY1
T

T tot − T /KTa
1 + T tot − T /KTa

− V T
1 + γX3

⊤ X3/KX3
T

1 + X3/KX3
T

T /KT
1 + T /KT

.

(Equation 8.20)

The steady-state trajectories shown in Figure S5B are obtained using Equation 8.20 with 

parameters listed in Table S1.

Paradoxical drug responses in pathways with multiple output proteins: Consider a 

signaling cascade presented in Figure S5C. Response of the first output T1 to the drug reads,

ΔT1 = rT1I ⋅ ΔI . (Equation 9.1)

Because the first level kinase X1 is only affected by a feedback from the output T1, we have,
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ΔX1 = rX1T1 ⋅ ΔT1 . (Equation 9.2)

The second output T2 is activated by the kinase cascade (X1, Y1 …, YM). Consequently, we 

can write,

ΔT2 = rT2YM ⋅ rYMYM − 1 ⋅ … ⋅ rY2Y1 ⋅ rY1X1 ⋅ ΔX1 = PY ⋅ ΔX1 . (Equation 9.3)

Here, PY is the product of the connection coefficients from X1 to T2 along the pathway Y. 

Substituting Equations 9.1 and 9.2 into Equation 9.3 and proceeding to the limit of 

infinitesimal changes, we arrive at the following expression for RT2I,

RT2I = PY ⋅ rX1T1 ⋅ rT1I . (Equation 9.4)

PY > 0 because X1 activates T2 via pathway Y, rX1T1<0 because the feedback is negative, 

and rT1I <0 because inhibitor inhibits T1. Therefore, rT2I >0, i.e., inhibitor activates T2.

To illustrate the response of T2 to inhibition of T1, we present the following model for N = 2 

and M = 1 (Figure S5C),

dX1
dt = V X1aS X1

tot − X1
KX1a + X1

tot − X1
⋅

1 + γT1T1/Ki
1 + T1/Ki

− V X1X1
KX1 + X1

dX2
dt = V X2aX1 X2

tot − X2
KX2a + X2

tot − X2
− V X2X2

KX2 + X2

dT1
dt =

V T1aX2 T1
tot − T1

KT1a + T1
tot − T1

⋅ 1
1 + I /Kd

−
V T1T1

KT1 + T1

dY 1
dt = V Y 1aX1 Y 1

tot − Y 1
KY1a + Y 1

tot − Y 1
− V Y 1Y 1

KY1 + Y 1

dT2
dt =

V T2aY 1 T2
tot − T2

KT2a + T2
tot − T2

−
V T2T2

KT2 + T2
.

(Equation 9.5)

Model parameters are presented in Table S1.

Figure S5E illustrates the case when T1 has both negative and positive connections to the 

kinases upstream of a branching point. In this case responses of T1 and X1 are described by 

Equations 9.1 and 9.2 as well. For the response of X2 we have,

ΔX2 = rX2X1 ⋅ ΔX1 + rX2T1 ⋅ ΔT1 . (Equation 9.6)

For the response of the second output T2 we can write,

ΔT2 = rT2YM ⋅ rYMYM − 1 ⋅ … ⋅ rY2Y1 ⋅ rY1X2 ⋅ ΔX2 = PY ⋅ ΔX2 . (Equation 9.7)
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Here PY is the product of the connection coefficients from X2 to T2 along the pathway Y. 

Substituting Equations 9.1, 9.2, and 9.6 in Equation 9.7, we arrive at the following 

expression for RT2I,

RT2I = PY ⋅ rX1T1 ⋅ rX2x1 + rX2T1 ⋅ rT1I . (Equation 9.8)

Since rX1T1 ⋅ rX2X1 > 0 and rX2T1, RT2I can be either positive or negative depending on 

parameters. Consequently, the dose response curve for T2 can be either convex or concave. 

This conclusion is illustrated by the following model with N = 2 and M = 1,

dX1
dt = V X1aS X1

tot − X1
KX1a + X1

tot − X1
⋅

1 + γT1
X1T1/Ki1

1 + T1/Ki1
− V X1X1

KX1 + X1

dX2
dt = V X2aX1 X2

tot − X2
KX2a + X2

tot − X2
⋅

1 + γT1
X2T1/Ki2

1 + T1/Ki2
− V X2X2

KX2 + X2

dT1
dt =

V T1aX2 T1
tot − T1

KT1a + T1
tot − T1

⋅ 1
1 + I /Kd

−
V T1T1

KT1 + T1

dY 1
dt = V Y 1aX2 Y 1

tot − Y 1
KY 1a + Y 1

tot − Y 1
− V Y 1Y 1

KY 1 + Y 1

dT2
dt =

V T2aY 1 T2
tot − T2

KT2a + T2
tot − T2

−
V T2T2

KT2 + T2
.

(Equation 9.9)

Model parameters yielding concave and convex dose response curves (see Figures S5F and 

S5G) are presented in Table S1.

Mechanistic models of the RAS/RAF/MEK/ERK pathway and inhibitor 
treatments: The rule-based model of RAS/RAF/MEK/ERK pathway developed previously 

(Rukhlenko et al., 2018) was extended to explicitly include SOS, RAS and the inhibitory 

phosphorylation of SOS by active ERK. The resulting model has 573 rules that generate 

2043 species and 15613 reactions. Our model integrates the structural properties and 

regulatory dynamics of RAF isoforms with thermodynamic and conformation analyses of 

inhibitor-target interactions. It employs a rule-based, domain-oriented approach, which 

explicitly monitors the conformational and phosphorylation states of multiple pathway 

proteins, including inhibiting and activating phosphosites (Borisov et al., 2008; Chylek et al., 

2014; Varga et al., 2017). Featuring negative feedback loops from ERK to BRAF, CRAF and 

a main RAS activator, the guanine exchange factor SOS (Figure 5A), the model reliably 

predicts the ERK pathway responses to RAF and MEK inhibitors and their combinations for 

cells with different genetic background, as validated in previous experiments (Rukhlenko et 

al., 2018).

The reaction laws, equations and the rate and dissociation constants are given in Data S5 in 

SBML format.
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The time courses of the ERK activity responses were calculated for type I½ RAF inhibitors, 

which induced (Figure 5B) or did not induce (Figure 5C) RAF dimerization at the doses 

equal to 150 Kd.

To assess effects of inhibitor combinations on ERK signaling we calculated stationary 

ppERK responses across a two-dimensional plane of drug doses (Figures 5D, 5E, 6A, and 

6B). Lines of constant ppERK inhibition are termed Loewe isoboles. A drug dose that 

inhibits the basal ERK activity by 50% is known as IC50 dose. In general, ICZ drug dose 

corresponds to ppERK inhibition by Z%.

The change in RTK activities from low to high levels in cells expressing WT RAS and 

BRAFV600E/WT (Figures 5D and 5E, respectively) was modeled as follows. The 

equilibrium constant of SOS binding to RTK-GRB2 complexes was increased 5-fold (cf. the 

values of the SOS membrane-cytoplasm distribution parameter kSOStransl in the files 

“RAS_to_ERK_BRAFV600E_ lowRTK_sbml.xml” and 

“RAS_to_ERK_BRAFV600E_highRTK_sbml.xml” of Data S5). To simulate WT BRAF 

and oncogenic RAS mutant conditions (Figures 6A and 6B) the rate constant of the RAS-

GAP activity was decreased 10-fold (cf. the values of the parameter V_RASGAP in the files 

“RAS_to_ERK_BRAFV600E_lowRTK_sbml.xml” and 

“RAS_to_ERK_WTRAF_oncoRAS_sbml.xml” of Data S5). These parameter changes 

resulted in the stationary RAS-GTP levels equal to ~25 nM in WT RAS cells with low RTK 

activity, ~100 nM in WT RAS cells with high RTK activity, and ~250 nM in cells with low 

RTK activity and oncogenic RAS. The total RAS concentration was 750 nM.

Inhibitor induced dimerization was described by the ratio of the dimerization constant for 

the complex of inhibitor-bound RAF monomer and free RAF monomer and the dimerization 

constant for the complex of two free RAF monomers (Kholodenko, 2015). This ratio is 

termed the facilitation factor (f), and an f smaller than 1 corresponds to the facilitation of 

RAF dimerization by the inhibitor. The factor f for a paradox breaker Type I½ RAF inhibitor 

was modeled by a 10-fold increase in the f value for a typical Type I½ RAF inhibitor (Figure 

S8). The effect of 14-3-3 overexpression was modeled by a 2-fold reduction in the 

dissociation constants of RAF dimers at the physiological abundance of 14-3-3 proteins.

QUANTIFICATION AND STATISTICAL ANALYSIS

Western Blots were quantified using ImageJ software (Schindelin et al., 2012). All 

measurements, both Western Blot and MESOSCALE, were done in 3 replicates, if not 

specified otherwise in the respective figure legends. Error bars represent standard error of 

mean. To estimate statistical significance and calculate p values, unpaired t test was used. To 

assess drug synergy effects, Talalay-Chou combination index (Chou, 2010) and Loewe 

isoboles (Greco et al., 1995) were used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Kholodenko et al. Page 41

Cell Rep. Author manuscript; available in PMC 2021 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ACKNOWLEDGMENTS

We thank Prof. Bond for the OCI-AML-3 cells. This work was supported by NIH/NCI grant R01CA244660, EU 
NanoCommons grant 731032, and Science Foundation Ireland grants 18/SPP/3522 and 14/IA/2395.

REFERENCES

Aleksakhina SN, Kashyap A, and Imyanitov EN (2019). Mechanisms of acquired tumor drug 
resistance. Biochim. Biophys. Acta Rev. Cancer 1872, 188310. [PubMed: 31442474] 

Alexander PB, and Wang XF (2015). Resistance to receptor tyrosine kinase inhibition in cancer: 
molecular mechanisms and therapeutic strategies. Front. Med 9, 134–138. [PubMed: 25957263] 

Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F, Tarcic G, Siwak D, Lahad J, Jacob-Hirsch J, et al. 
(2007). A module of negative feedback regulators defines growth factor signaling. Nat. Genet 39, 
503–512. [PubMed: 17322878] 

Aoki SK, Lillacci G, Gupta A, Baumschlager A, Schweingruber D, and Khammash M (2019). A 
universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570, 533–
537. [PubMed: 31217585] 

Aronson BD, Johnson KA, Loros JJ, and Dunlap JC (1994). Negative feedback defining a circadian 
clock: autoregulation of the clock gene frequency. Science 263, 1578–1584. [PubMed: 8128244] 

Bakshi UA, and Goyal SC (2007). Control Systems Engineering (Technical Publications).

Baljuls A, Kholodenko BN, and Kolch W (2013). It takes two to tango–signalling by dimeric Raf 
kinases. Mol. Biosyst 9, 551–558. [PubMed: 23212737] 

Bastiaens P, Birtwistle MR, Blüthgen N, Bruggeman FJ, Cho KH, Cosentino C, de la Fuente A, Hoek 
JB, Kiyatkin A, Klamt S, et al. (2015). Silence on the relevant literature and errors in 
implementation. Nat. Biotechnol 33, 336–339. [PubMed: 25850052] 

Bennett S (1996). A brief history of automatic control. IEEE Contr. Syst. Mag 16, 17–25.

Bessman NJ, Bagchi A, Ferguson KM, and Lemmon MA (2014). Complex relationship between 
ligand binding and dimerization in the epidermal growth factor receptor. Cell Rep. 9, 1306–1317. 
[PubMed: 25453753] 

Blaževitš O, Mideksa YG, Šolman M, Ligabue A, Ariotti N, Nakhaeizadeh H, Fansa EK, 
Papageorgiou AC, Wittinghofer A, Ahmadian MR, and Abankwa D (2016). Galectin-1 dimers can 
scaffold Raf-effectors to increase H-ras nanoclustering. Sci. Rep 6, 24165. [PubMed: 27087647] 

Bolado-Carrancio A, Rukhlenko OS, Nikonova E, Tsyganov MA, Wheeler A, Garcia-Munoz A, Kolch 
W, von Kriegsheim A, and Kholodenko BN (2020). Periodic propagating waves coordinate 
RhoGTPase network dynamics at the leading and trailing edges during cell migration. eLife 9, 
e58165. [PubMed: 32705984] 

Boned Del Río I, Young LC, Sari S, Jones GG, Ringham-Terry B, Hartig N, Rejnowicz E, Lei W, 
Bhamra A, Surinova S, and Rodriguez-Viciana P (2019). SHOC2 complex-driven RAF 
dimerization selectively contributes to ERK pathway dynamics. Proc. Natl. Acad. Sci. USA 116, 
13330–13339. [PubMed: 31213532] 

Borisov NM, Chistopolsky AS, Faeder JR, and Kholodenko BN (2008). Domain-oriented reduction of 
rule-based network models. IET Syst. Biol 2, 342–351. [PubMed: 19045829] 

Boutros T, Chevet E, and Metrakos P (2008). Mitogen-activated protein (MAP) kinase/MAP kinase 
phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol. Rev 60, 261–310. 
[PubMed: 18922965] 

Briat C, Gupta A, and Khammash M (2016). Antithetic Integral Feedback Ensures Robust Perfect 
Adaptation in Noisy Biomolecular Networks. Cell Syst. 2, 15–26. [PubMed: 27136686] 

Brown GC, Hoek JB, and Kholodenko BN (1997). Why do protein kinase cascades have more than 
one level? Trends Biochem. Sci 22, 288.

Bruggeman FJ, Westerhoff HV, Hoek JB, and Kholodenko BN (2002). Modular response analysis of 
cellular regulatory networks. J. Theor. Biol 218, 507–520. [PubMed: 12384053] 

Caunt CJ, and Keyse SM (2013). Dual-specificity MAP kinase phosphatases (MKPs): shaping the 
outcome of MAP kinase signalling. FEBS J. 280, 489–504. [PubMed: 22812510] 

Kholodenko et al. Page 42

Cell Rep. Author manuscript; available in PMC 2021 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder 
PK, Baselga J, and Rosen N (2011). AKT inhibition relieves feedback suppression of receptor 
tyrosine kinase expression and activity. Cancer Cell 19, 58–71. [PubMed: 21215704] 

Chou TC (2010). Drug combination studies and their synergy quantification using the Chou-Talalay 
method. Cancer Res. 70, 440–446. [PubMed: 20068163] 

Chylek LA, Harris LA, Tung CS, Faeder JR, Lopez CF, and Hlavacek WS (2014). Rule-based 
modeling: a computational approach for studying biomolecular site dynamics in cell signaling 
systems. Wiley Interdiscip. Rev. Syst. Biol. Med 6, 13–36. [PubMed: 24123887] 

Corcoran RB, Atreya CE, Falchook GS, Kwak EL, Ryan DP, Bendell JC, Hamid O, Messersmith WA, 
Daud A, Kurzrock R, et al. (2015). Combined BRAF and MEK Inhibition With Dabrafenib and 
Trametinib in BRAF V600-Mutant Colorectal Cancer. J. Clin. Oncol 33, 4023–4031. [PubMed: 
26392102] 

Dey M, Cao C, Dar AC, Tamura T, Ozato K, Sicheri F, and Dever TE (2005). Mechanistic link 
between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition. Cell 122, 
901–913. [PubMed: 16179259] 

Dibrov BF, Zhabotinsky AM, and Kholodenko BN (1982). Dynamic stability of steady states and static 
stabilization in unbranched metabolic pathways. J. Math. Biol 15, 51–63. [PubMed: 7142835] 

Ercan D, Xu C, Yanagita M, Monast CS, Pratilas CA, Montero J, Butaney M, Shimamura T, Sholl L, 
Ivanova EV, et al. (2012). Reactivation of ERK signaling causes resistance to EGFR kinase 
inhibitors. Cancer Discov. 2, 934–947. [PubMed: 22961667] 

Feillet C, van der Horst GT, Levi F, Rand DA, and Delaunay F (2015). Coupling between the 
Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth. 
Front. Neurol 6, 96. [PubMed: 26029155] 

Ferrell JE Jr. (1997). How responses get more switch-like as you move down a protein kinase cascade. 
Trends Biochem. Sci 22, 288–289.

Fey D, Croucher DR, Kolch W, and Kholodenko BN (2012). Crosstalk and signaling switches in 
mitogen-activated protein kinase cascades. Front. Physiol 3, 355. [PubMed: 23060802] 

Fey D, Halasz M, Dreidax D, Kennedy SP, Hastings JF, Rauch N, Munoz AG, Pilkington R, Fischer 
M, Westermann F, et al. (2015). Signaling pathway models as biomarkers: patient-specific 
simulations of JNK activity predict the survival of neuroblastoma patients. Sci. Signal 8, ra130. 
[PubMed: 26696630] 

Frank MJ, Dawson DW, Bensinger SJ, Hong JS, Knosp WM, Xu L, Balatoni CE, Allen EL, Shen RR, 
Bar-Sagi D, et al. (2009). Expression of sprouty2 inhibits B-cell proliferation and is epigenetically 
silenced in mouse and human B-cell lymphomas. Blood 113, 2478–2487. [PubMed: 19147787] 

Gerosa L, Chidley C, Fröhlich F, Sanchez G, Lim SK, Muhlich J, Chen J-Y, Vallabhaneni S, Baker GJ, 
Schapiro D, et al. (2020). Receptor-Driven ERK Pulses Reconfigure MAPK Signaling and Enable 
Persistence of Drug-Adapted BRAF-Mutant Melanoma Cells. Cell Syst. 11, 478–494.e9. 
[PubMed: 33113355] 

Goldbeter A (1995). A model for circadian oscillations in the Drosophila period protein (PER). Proc. 
Biol. Sci 261, 319–324. [PubMed: 8587874] 

Goyal Y, Jindal GA, Pelliccia JL, Yamaya K, Yeung E, Futran AS, Burdine RD, Schüpbach T, and 
Shvartsman SY (2017). Divergent effects of intrinsically active MEK variants on developmental 
Ras signaling. Nat. Genet 49, 465–469. [PubMed: 28166211] 

Greco WR, Bravo G, and Parsons JC (1995). The search for synergy: a critical review from a response 
surface perspective. Pharmacol. Rev 47, 331–385. [PubMed: 7568331] 

Grob JJ, Amonkar MM, Karaszewska B, Schachter J, Dummer R, Mackiewicz A, Stroyakovskiy D, 
Drucis K, Grange F, Chiarion-Sileni V, et al. (2015). Comparison of dabrafenib and trametinib 
combination therapy with vemurafenib monotherapy on health-related quality of life in patients 
with unresectable or metastatic cutaneous BRAF Val600-mutation-positive melanoma (COMBI-
v): results of a phase 3, open-label, randomised trial. Lancet Oncol. 16, 1389–1398. [PubMed: 
26433819] 

Halasz M, Kholodenko BN, Kolch W, and Santra T (2016). Integrating network reconstruction with 
mechanistic modeling to predict cancer therapies. Sci. Signal 9, ra114. [PubMed: 27879396] 

Kholodenko et al. Page 43

Cell Rep. Author manuscript; available in PMC 2021 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Haling JR, Sudhamsu J, Yen I, Sideris S, Sandoval W, Phung W, Bravo BJ, Giannetti AM, Peck A, 
Masselot A, et al. (2014). Structure of the BRAF-MEK complex reveals a kinase activity 
independent role for BRAF in MAPK signaling. Cancer Cell 26, 402–413. [PubMed: 25155755] 

Hall-Jackson CA, Goedert M, Hedge P, and Cohen P (1999). Effect of SB 203580 on the activity of c-
Raf in vitro and in vivo. Oncogene 18, 2047–2054. [PubMed: 10321729] 

Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, 
Gloor SL, Vigers G, et al. (2010). RAF inhibitors prime wild-type RAF to activate the MAPK 
pathway and enhance growth. Nature 464, 431–435. [PubMed: 20130576] 

Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho 
JS, Springer CJ, Pritchard C, and Marais R (2010). Kinase-dead BRAF and oncogenic RAS 
cooperate to drive tumor progression through CRAF. Cell 140, 209–221. [PubMed: 20141835] 

Hu J, Stites EC, Yu H, Germino EA, Meharena HS, Stork PJS, Kornev AP, Taylor SS, and Shaw AS 
(2013). Allosteric activation of functionally asymmetric RAF kinase dimers. Cell 154, 1036–1046. 
[PubMed: 23993095] 

Huang H, Zeqiraj E, Dong B, Jha BK, Duffy NM, Orlicky S, Thevakumaran N, Talukdar M, Pillon 
MC, Ceccarelli DF, et al. (2014). Dimeric structure of pseudokinase RNase L bound to 2–5A 
reveals a basis for interferon-induced antiviral activity. Mol. Cell 53, 221–234. [PubMed: 
24462203] 

Ishii N, Harada N, Joseph EW, Ohara K, Miura T, Sakamoto H, Matsuda Y, Tomii Y, Tachibana-Kondo 
Y, Iikura H, et al. (2013). Enhanced inhibition of ERK signaling by a novel allosteric MEK 
inhibitor, CH5126766, that suppresses feedback reactivation of RAF activity. Cancer Res. 73, 
4050–4060. [PubMed: 23667175] 

Johnson DB, Menzies AM, Zimmer L, Eroglu Z, Ye F, Zhao S, Rizos H, Sucker A, Scolyer RA, 
Gutzmer R, et al. (2015). Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the 
spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance 
mechanisms. Eur. J. Cancer 51, 2792–2799. [PubMed: 26608120] 

Jones DS, Jenney AP, Joughin BA, Sorger PK, and Lauffenburger DA (2018). Inflammatory but not 
mitogenic contexts prime synovial fibroblasts for compensatory signaling responses to p38 
inhibition. Sci. Signal 11, eaal1601. [PubMed: 29511118] 

Junttila MR, Li SP, and Westermarck J (2008). Phosphatase-mediated crosstalk between MAPK 
signaling pathways in the regulation of cell survival. FASEB J. 22, 954–965. [PubMed: 18039929] 

Kaimachnikov NP, and Kholodenko BN (2009). Toggle switches, pulses and oscillations are intrinsic 
properties of the Src activation/deactivation cycle. FEBS J. 276, 4102–4118. [PubMed: 19627364] 

Karoulia Z, Wu Y, Ahmed TA, Xin Q, Bollard J, Krepler C, Wu X, Zhang C, Bollag G, Herlyn M, et 
al. (2016). An Integrated Model of RAF Inhibitor Action Predicts Inhibitor Activity against 
Oncogenic BRAF Signaling. Cancer Cell 30, 501–503.

Keith CT, Borisy AA, and Stockwell BR (2005). Multicomponent therapeutics for networked systems. 
Nat. Rev. Drug Discov 4, 71–78. [PubMed: 15688074] 

Khan ZM, Real AM, Marsiglia WM, Chow A, Duffy ME, Yerabolu JR, Scopton AP, and Dar AC 
(2020). Structural basis for the action of the drug trametinib at KSR-bound MEK. Nature 588, 
509–514. [PubMed: 32927473] 

Kholodenko BN (2000). Negative feedback and ultrasensitivity can bring about oscillations in the 
mitogen-activated protein kinase cascades. Eur. J. Biochem 267, 1583–1588. [PubMed: 10712587] 

Kholodenko BN (2006). Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol 7, 165–
176. [PubMed: 16482094] 

Kholodenko BN (2007). Untangling the signalling wires. Nat. Cell Biol 9, 247–249. [PubMed: 
17330115] 

Kholodenko BN (2015). Drug resistance resulting from kinase dimerization is rationalized by 
thermodynamic factors describing allosteric inhibitor effects. Cell Rep. 12, 1939–1949. [PubMed: 
26344764] 

Kholodenko BN, and Westerhoff HV (1995). The macroworld versus the microworld of biochemical 
regulation and control. Trends Biochem. Sci 20, 52–54. [PubMed: 7701560] 

Kholodenko BN, Hoek JB, Westerhoff HV, and Brown GC (1997). Quantification of information 
transfer via cellular signal transduction pathways. FEBS Lett. 414, 430–434. [PubMed: 9315734] 

Kholodenko et al. Page 44

Cell Rep. Author manuscript; available in PMC 2021 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, and Hoek JB (2002). 
Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. 
Proc. Natl. Acad. Sci. USA 99, 12841–12846. [PubMed: 12242336] 

Klinger B, and Blüthgen N (2014). Consequences of feedback in signal transduction for targeted 
therapies. Biochem. Soc. Trans 42, 770–775. [PubMed: 25109956] 

Klinger B, Sieber A, Fritsche-Guenther R, Witzel F, Berry L, Schumacher D, Yan Y, Durek P, 
Merchant M, Schäfer R, et al. (2013). Network quantification of EGFR signaling unveils potential 
for targeted combination therapy. Mol. Syst. Biol 9, 673. [PubMed: 23752269] 

Kolch W, Halasz M, Granovskaya M, and Kholodenko BN (2015). The dynamic control of signal 
transduction networks in cancer cells. Nat. Rev. Cancer 15, 515–527. [PubMed: 26289315] 

Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T, Wasan H, Ciardiello F, Loupakis F, 
Hong YS, et al. (2019). Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated 
Colorectal Cancer. N. Engl. J. Med 381, 1632–1643. [PubMed: 31566309] 

Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T, Liu F, Saunders LM, Mullally 
A, Abdel-Wahab O, et al. (2012). Heterodimeric JAK-STAT activation as a mechanism of 
persistence to JAK2 inhibitor therapy. Nature 489, 155–159. [PubMed: 22820254] 

Kuznetsov IUA (2004). Elements of Applied Bifurcation Theory, Third Edition (Springer).

Lake D, Corrêa SA, and Müller J (2016). Negative feedback regulation of the ERK1/2 MAPK 
pathway. Cell. Mol. Life Sci 73, 4397–4413. [PubMed: 27342992] 

Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, Mandalà M, Demidov L, 
Stroyakovskiy D, Thomas L, et al. (2014). Combined vemurafenib and cobimetinib in BRAF-
mutated melanoma. N. Engl. J. Med 371, 1867–1876. [PubMed: 25265494] 

Lee S, Rauch J, and Kolch W (2020). Targeting MAPK Signaling in Cancer: Mechanisms of Drug 
Resistance and Sensitivity. Int. J. Mol. Sci 21, 1102.

Lill D, Rukhlenko OS, Mc Elwee AJ, Kashdan E, Timmer J, and Kholodenko BN (2019). Mapping 
connections in signaling networks with ambiguous modularity. NPJ Syst. Biol. Appl 5, 19. 
[PubMed: 31149348] 

Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E, Zubrowski M, Huang A, Wong WL, Callahan 
MK, Merghoub T, et al. (2012). Relief of profound feedback inhibition of mitogenic signaling by 
RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22, 668–682. 
[PubMed: 23153539] 

Mangan S, and Alon U (2003). Structure and function of the feed-forward loop network motif. Proc. 
Natl. Acad. Sci. USA 100, 11980–11985. [PubMed: 14530388] 

Mendiratta G, McFall T, and Stites EC (2019). RAF autoinhibition and 14-3-3 proteins promote 
paradoxical activation. bioRxiv. 10.1101/849489.

Milewska M, Romano D, Herrero A, Guerriero ML, Birtwistle M, Quehenberger F, Hatzl S, 
Kholodenko BN, Segatto O, Kolch W, and Zebisch A (2015). Mitogen-Inducible Gene-6 Mediates 
Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and 
Thereby Limits Malignant Transformation. PLoS ONE 10, e0129859. [PubMed: 26065894] 

Mina M, Magi S, Jurman G, Itoh M, Kawaji H, Lassmann T, Arner E, Forrest ARR, Carninci P, 
Hayashizaki Y, et al.; FANTOM Consortium (2015). Promoter-level expression clustering 
identifies time development of transcriptional regulatory cascades initiated by ErbB receptors in 
breast cancer cells. Sci. Rep 5, 11999. [PubMed: 26179713] 

Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, Ryder M, 
Ghossein RA, Rosen N, and Fagin JA (2013). Relief of feedback inhibition of HER3 transcription 
by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid 
carcinomas. Cancer Discov. 3, 520–533. [PubMed: 23365119] 

Mukherjee R, Vanaja KG, Boyer JA, Gadal S, Solomon H, Chandarlapaty S, Levchenko A, and Rosen 
N (2021). Regulation of PTEN translation by PI3K signaling maintains pathway homeostasis. 
Mol. Cell 81, 708–723.e5. [PubMed: 33606974] 

Na J, Chen Q, and Ren X (2018). Saturation Dynamics and Modeling. In Adaptive Identification and 
Control of Uncertain Systems with Non-smooth Dynamics (Academic Press), pp. 195–201.

Nakakuki T, Birtwistle MR, Saeki Y, Yumoto N, Ide K, Nagashima T, Brusch L, Ogunnaike BA, 
Okada-Hatakeyama M, and Kholodenko BN (2010). Ligand-specific c-Fos expression emerges 

Kholodenko et al. Page 45

Cell Rep. Author manuscript; available in PMC 2021 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from the spatiotemporal control of ErbB network dynamics. Cell 141, 884–896. [PubMed: 
20493519] 

Nguyen LK, and Kholodenko BN (2016). Feedback regulation in cell signalling: lessons for cancer 
therapeutics. Semin. Cell Dev. Biol 50, 85–94. [PubMed: 26481970] 

Niederst MJ, and Engelman JA (2013). Bypass mechanisms of resistance to receptor tyrosine kinase 
inhibition in lung cancer. Sci. Signal 6, re6. [PubMed: 24065147] 

Nikolaou M, Pavlopoulou A, Georgakilas AG, and Kyrodimos E (2018). The challenge of drug 
resistance in cancer treatment: a current overview. Clin. Exp. Metastasis 35, 309–318. [PubMed: 
29799080] 

Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, and Varmus H (2005). 
Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second 
mutation in the EGFR kinase domain. PLoS Med. 2, e73. [PubMed: 15737014] 

Poulikakos PI, Zhang C, Bollag G, Shokat KM, and Rosen N (2010). RAF inhibitors transactivate 
RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430. [PubMed: 
20179705] 

Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, 
and Bernards R (2012). Unresponsiveness of colon cancer to BRAF(V600E) inhibition through 
feedback activation of EGFR. Nature 483, 100–103. [PubMed: 22281684] 

Qiao L, Nachbar RB, Kevrekidis IG, and Shvartsman SY (2007). Bistability and oscillations in the 
Huang-Ferrell model of MAPK signaling. PLoS Comput. Biol 3, 1819–1826. [PubMed: 
17907797] 

Rauch N, Rukhlenko OS, Kolch W, and Kholodenko BN (2016). MAPK kinase signalling dynamics 
regulate cell fate decisions and drug resistance. Curr. Opin. Struct. Biol 41, 151–158. [PubMed: 
27521656] 

Ritt DA, Monson DM, Specht SI, and Morrison DK (2010). Impact of feedback phosphorylation and 
Raf heterodimerization on normal and mutant B-Raf signaling. Mol. Cell. Biol 30, 806–819. 
[PubMed: 19933846] 

Romano D, Nguyen L, Matallanas D, Halasz M, Doherty C, Kholodenko BN, and Kolch W (2014). 
Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling. Nat Cell Biol 16, 673–
684. 10.1038/ncb2986. [PubMed: 24929361] 

Rukhlenko OS, Khorsand F, Krstic A, Rozanc J, Alexopoulos LG, Rauch N, Erickson KE, Hlavacek 
WS, Posner RG, Gómez-Coca S, et al. (2018). Dissecting RAF Inhibitor Resistance by Structure-
based Modeling Reveals Ways to Overcome Oncogenic RAS Signaling. Cell Syst. 7, 161–179.e14. 
[PubMed: 30007540] 

Rushworth LK, Hindley AD, O’Neill E, and Kolch W (2006). Regulation and role of Raf-1/B-Raf 
heterodimerization. Mol. Cell. Biol 26, 2262–2272. [PubMed: 16508002] 

Ryan MB, Fece de la Cruz F, Phat S, Myers DT, Wong E, Shahzade HA, Hong CB, and Corcoran RB 
(2020). Vertical Pathway Inhibition Overcomes Adaptive Feedback Resistance to KRASG12C 

Inhibition. Clin. Cancer Res 26, 1633–1643. [PubMed: 31776128] 

Santra T, Rukhlenko O, Zhernovkov V, and Kholodenko BN (2018). Reconstructing static and 
dynamic models of signaling pathways using Modular Response Analysis. Curr. Opin. Syst. Biol 
9, 11–21.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, 
Saalfeld S, Schmid B, et al. (2012). Fiji: an open-source platform for biological-image analysis. 
Nat. Methods 9, 676–682. [PubMed: 22743772] 

Segatto O, Anastasi S, and Alemà S (2011). Regulation of epidermal growth factor receptor signalling 
by inducible feedback inhibitors. J. Cell Sci 124, 1785–1793. [PubMed: 21576352] 

Sturm OE, Orton R, Grindlay J, Birtwistle M, Vyshemirsky V, Gilbert D, Calder M, Pitt A, 
Kholodenko B, and Kolch W (2010). The mammalian MAPK/ERK pathway exhibits properties of 
a negative feedback amplifier. Sci. Signal 3, ra90. [PubMed: 21177493] 

Sun C, and Bernards R (2014). Feedback and redundancy in receptor tyrosine kinase signaling: 
relevance to cancer therapies. Trends Biochem. Sci 39, 465–474. [PubMed: 25239057] 

Kholodenko et al. Page 46

Cell Rep. Author manuscript; available in PMC 2021 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sun C, Wang L, Huang S, Heynen GJ, Prahallad A, Robert C, Haanen J, Blank C, Wesseling J, 
Willems SM, et al. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in 
melanoma. Nature 508, 118–122. [PubMed: 24670642] 

Thomaseth C, Fey D, Santra T, Rukhlenko OS, Radde NE, and Kholodenko BN (2018). Impact of 
measurement noise, experimental design, and estimation methods on Modular Response Analysis 
based network reconstruction. Sci. Rep 8, 16217. [PubMed: 30385767] 

Tsyganov MA, Kolch W, and Kholodenko BN (2012). The topology design principles that determine 
the spatiotemporal dynamics of G-protein cascades. Mol. Biosyst 8, 730–743. [PubMed: 
22218529] 

Tyson JJ, and Othmer HG (1978). The dynamics of feedback control circuits in biochemical pathways. 
Progr. Theor. Biol 5, 1–62.

Van Cutsem E, Huijberts S, Grothey A, Yaeger R, Cuyle PJ, Elez E, Fakih M, Montagut C, Peeters M, 
Yoshino T, et al. (2019). Binimetinib, Encorafenib, and Cetuximab Triplet Therapy for Patients 
With BRAF V600E-Mutant Metastatic Colorectal Cancer: Safety Lead-In Results From the 
Phase III BEACON Colorectal Cancer Study. J. Clin. Oncol 37, 1460–1469. [PubMed: 
30892987] 

Varga A, Ehrenreiter K, Aschenbrenner B, Kocieniewski P, Kochanczyk M, Lipniacki T, and Baccarini 
M (2017). RAF1/BRAF dimerization integrates the signal from RAS to ERK and ROKα. Sci. 
Signal 10, eaai8482. [PubMed: 28270557] 

Ventura JJ, Hübner A, Zhang C, Flavell RA, Shokat KM, and Davis RJ (2006). Chemical genetic 
analysis of the time course of signal transduction by JNK. Mol. Cell 21, 701–710. [PubMed: 
16507367] 

Volinsky N, and Kholodenko BN (2013). Complexity of receptor tyrosine kinase signal processing. 
Cold Spring Harb. Perspect. Biol 5, a009043. [PubMed: 23906711] 

Wang L, Perera BG, Hari SB, Bhhatarai B, Backes BJ, Seeliger MA, Schürer SC, Oakes SA, Papa FR, 
and Maly DJ (2012). Divergent allosteric control of the IRE1α endoribonuclease using kinase 
inhibitors. Nat. Chem. Biol 8, 982–989. [PubMed: 23086298] 

Weinstein IB, and Joe A (2008). Oncogene addiction. Cancer Res. 68, 3077–3080. [PubMed: 
18451130] 

Widmann C, Gibson S, Jarpe MB, and Johnson GL (1999). Mitogen-activated protein kinase: 
conservation of a three-kinase module from yeast to human. Physiol. Rev 79, 143–180. [PubMed: 
9922370] 

Wong ES, Fong CW, Lim J, Yusoff P, Low BC, Langdon WY, and Guy GR (2002). Sprouty2 
attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently 
enhances Ras/ERK signalling. EMBO J. 21, 4796–4808. [PubMed: 12234920] 

Yaeger R, and Corcoran RB (2019). Targeting Alterations in the RAF-MEK Pathway. Cancer Discov. 
9, 329–341. [PubMed: 30770389] 

Yalamanchili N, Zak DE, Ogunnaike BA, Schwaber JS, Kriete A, and Kholodenko BN (2006). 
Quantifying gene network connectivity in silico: scalability and accuracy of a modular approach. 
Syst. Biol. (Stevenage) 153, 236–246. [PubMed: 16986625] 

Yeh PJ, Hegreness MJ, Aiden AP, and Kishony R (2009). Drug interactions and the evolution of 
antibiotic resistance. Nat. Rev. Microbiol 7, 460–466. [PubMed: 19444248] 

Yen I, Shanahan F, Merchant M, Orr C, Hunsaker T, Durk M, La H, Zhang X, Martin SE, Lin E, et al. 
(2018). Pharmacological Induction of RAS-GTP Confers RAF Inhibitor Sensitivity in KRAS 
Mutant Tumors. Cancer Cell 34, 611–625.e7. [PubMed: 30300582] 

Yi TM, Huang Y, Simon MI, and Doyle J (2000). Robust perfect adaptation in bacterial chemotaxis 
through integral feedback control. Proc. Natl. Acad. Sci. USA 97, 4649–4653. [PubMed: 
10781070] 

Yuan X, Tang Z, Du R, Yao Z, Cheung SH, Zhang X, Wei J, Zhao Y, Du Y, Liu Y, et al. (2020). RAF 
dimer inhibition enhances the antitumor activity of MEK inhibitors in K-RAS mutant tumors. 
Mol. Oncol 14, 1833–1849. [PubMed: 32336014] 

Zañudo JGT, Steinway SN, and Albert R (2018). Discrete dynamic network modeling of oncogenic 
signaling: mechanistic insights for personalized treatment of cancer. Curr. Opin. Syst. Biol 9, 1–
10. [PubMed: 32954058] 

Kholodenko et al. Page 47

Cell Rep. Author manuscript; available in PMC 2021 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Feedback loops cannot fully buffer drug perturbations and recover signaling 

output

• Activating and inhibitory paths from a drug target can reactivate signaling 

output

• Drug target dimerization combined with feedback can restore signaling output

• Combining type I½ and II RAF inhibitors quells ERK reactivation in NRAS 

mutant cancers
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Figure 1. Systems-level drug responses are determined by MRA-quantified network connections 
and local drug responses of primary targets
Modular response analysis (MRA) allows the calculation of the systems-level network 

responses RI to different drugs (I). RI is vector of systems-level responses; the matrix r is the 

connection matrix that quantifies network topology by giving the directions, signs, and 

magnitudes of network connection strengths; and the vector rI quantifies the local responses 

of primary targets to a drug. MRA demonstrates that paradoxical activation by a drug can 

only be observed because of a specific network topology (the term r−1) or if this drug cannot 

inhibit its primary targets (the term rI).
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Figure 2. Kinetic schemes and dose responses of signaling pathways with feedback loops
(A) Activating kinase cascade with negative feedback from the pathway output protein (Ti is 

an inactive form and T is an active form) to the first-tier kinase (X1). Inhibitor (I) can bind to 

an active form(X1) and/or an inactive (X1
i ) form of this kinase that is the primary drug target.

(B) Schematic of a mass-action, mechanistic model of a 3-tier cascade with negative 

feedback mediated by the inhibitory phosphorylation of X1 by T. Drug I can bind to inactive 

(X1
i ), active (X1), and feedback-modified (X1

P) kinase forms.

(C) Steady-state dependence of T on the drug concentration I (dose responses). The inhibitor 

dose is normalized by Kd. Solid red, green, and blue lines correspond to strong feedback, 

weak feedback, or no feedback. Dashed red and green lines correspond to the reduced 
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affinities of the feedback-modified kinase form X1
P  for the drug. The input signal was 

adjusted to obtain the same initial output activity at different feedback strengths.

(D) The time course of T in response to the drug dose equal to 0.5 Kd for different strengths 

of negative feedback.

(E) Oscillations occur when negative feedback is too strong.

(F) Negative feedback is mediated by the formation of an inactive complex between X1 by T 
rather than by inhibitory modification of X1. The inhibitor I binds to both active (X1) and 

inactive forms X1
i .

(G) Dose responses for negative feedback mediated by protein sequestration (red) and in the 

absence of feedback (blue). See STAR Methods for details.

(H) Kinetic scheme of a cascade with negative and positive feedback loops from the output 

protein to the upstream activator that is a primary drug target.
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Figure 3. Transcriptional feedback loops and weak spots of the integral control in cell signaling
(A) A diagram of the JNK signaling pathway featuring negative transcriptional and positive 

phosphorylation feedbacks.

(B) Time course of the JNK activity response to JNK inhibition. A transient, prolonged 

period of reactivation and overshoot of the JNK activity occurs because of the delay in the 

negative feedback circuit of DUSP1 expression.

(C) A signaling pathway that includes an integral control module consisting of two species 

Y1 and Y2, where Y1 activates the conversion of an inactive form X1
i  to active form (X1). 

Designations are the same as in Figure 2.

(D and E) Dose response (D) and time courses (E) of the output activity T show the lack of 

complete reactivation for this pathway.
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(F) A signaling pathway with an integral control module where Y1 catalyzes the synthesis of 

the inactive kinase form, X1
i .

(G and H) Dose responses (G) and time courses (H) of T to drug inhibition of X1 and X2 

(blue lines), the kinases downstream of X2, including output T (orange), or the species in the 

control module (green). See STAR Methods for equations and parameters.
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Figure 4. Two feedforward connections, positive and negative, can lead to complete signaling 
reactivation
(A) Kinase X1, which is a primary drug target, activates the output T through pathway X and 

also activates pathway Y that inhibits T.

(B) Negative feedforward connection from RAS to ERK is mediated by the p38 pathway.

(C and D) Dose responses show different modes of paradoxical activation of the output T by 

an inhibitor (I). The negative (C) or positive (D) feedforward dominates. The output activity 

is normalized by its activity in the drug absence, and doses are normalized by the drug Kd.

(E) The output T feeds back to the kinase at the crosstalk point, which is the primary drug 

target. Feedback can be positive or negative.

(F and G) Dose responses are modulated by feedback. Negative feedback (magenta) 

narrows, whereas positive feedback (blue) expands the range of drug doses where signaling 
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is paradoxically activated by pathway crosstalk. Green curves, no feedback (STAR 

Methods).
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Figure 5. A negative feedback loop from ERK to SOS facilitates ERK paradoxical activation by 
RAF inhibitors 
(A) A diagram of a structure-based dynamic model of the ERK pathway featuring negative 

feedback loops from ERK to RAF and SOS (see STAR Methods).

(B and C) Time courses of the ERK activity responses to RAF inhibitors, which induce (B) 

or do not induce (C) RAF dimerization.

(D and E) Steady-state ERK signaling responses to type I½ RAF and MEK inhibitors and 

their combinations are analyzed using Loewe isoboles. IC25 and IC50 lines correspond to the 

drug doses that achieve 25% or 50% ERK inhibition, respectively. In cells with a 

BRAFV600E mutation and WT RAS synergy between type I½ RAF and MEK inhibitors is 

observed at wider dose ranges for (D) low (~25 nM RAS-GTP of 750 nM total RAS) than 

(E) high WT RAS activities (~100 nM RAS-GTP of 750 nM total RAS).
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Figure 6. A combination of type I½ and type II RAF inhibitors efficiently suppresses reactivation 
of the ERK pathway in mutant RAS cells
(A and B) Calculated Loewe isoboles of ERK signaling responses to combinations (A) of 

MEK and type II RAF inhibitors and (B) type I½ and type II RAF inhibitors for cells with 

mutant RAS (~250 nM RAS-GTP) and WT RAF.

(C) ERK signaling responses to the MEK inhibitor trametinib and its combination with 30 

nM type II RAF inhibitor TAK-632 measured in growing MEL-JUSO cells (NRASQ61L/WT, 

HRASG13D/G13D).

(D and E) Combinations of type I½ RAF inhibitor (vemurafenib or encorafenib) and type II 

RAF inhibitor (TAK-632) suppress ERK signaling more effectively than a combination of 

the MEK inhibitor cobimetinib with TAK-632 in growing (D) MEL-JUSO (NRASQ61L/WT, 

HRASG13D/G13D) and (E) OCI-AML-3 (NRASQ61l/Q61L) cells.
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Signaling responses (C–E) are measured by western blots and quantified using ImageJ. Error 

bars show standard errors of the mean for 3 biological replicates. The asterisk indicates p < 

0.05 calculated using unpaired t test.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-MAP Kinase (ERK-1, ERK-2) antibody produced in 
rabbit

Sigma-Aldrich Cat. No. M5670; RRID: AB_477216

Monoclonal Anti-MAP Kinase, Activated 
(Diphosphorylated ERK-1&2) antibody produced in 
mouse

Sigma-Aldrich Cat. No. M8159; RRID: AB_477245

Anti-rabbit IgG, HRP-linked Antibody Cell Signaling Technologies Cat. No. 7074; RRID: AB_2099233

Anti-mouse IgG, HRP-linked Antibody Cell Signaling Technologies Cat. No. 7076; RRID: AB_330924

Critical commercial assays

Phospho(Thr202/Tyr204; Thr185/Tyr187)/Total ERK1/2 
Assay Whole Cell Lysate Kit

MesoScale Discovery K15107D

Pierce BCA Protein Assay Kit ThermoFisher Scientific/Pierce Cat. No. 23225

Chemicals, peptides, and recombinant proteins

Vemurafenib (PLX4032) Selleckchem Cat. No. S1267

Cobimetinib Selleckchem Cat. No. S8041

TAK-632 Selleckchem Cat. No.S7291

Trametinib Selleckchem Cat. No. S2673

Encorafenib (LGX818) Selleckchem Cat. No. S7108

Experimental models: Cell lines

MEL-JUSO DSMZ ACC 74; RRID: CVCL_1403

OCI-AML-3 Gift from Prof. Ken Mills, Queen’s 
University Belfast

RRID: CVCL_1844

Software and algorithms

Python N/A N/A

Sage (The Sage) N/A

SciPy N/A N/A

MatplotLib N/A N/A

BioNetGen Borisov et al., 2008;
Chylek et al., 2014

N/A

Model codes in SBML format This study Data S1, S2, and S5
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