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Depth estimation plays an important role in vision-based laparoscope surgical navigation systems. Most learning-based depth estimation
methods require ground truth depth or disparity images for training; however, these data are difficult to obtain in laparoscopy. The authors
present an unsupervised learning depth estimation approach by fusing traditional stereo knowledge. The traditional stereo method is used
to generate proxy disparity labels, in which unreliable depth measurements are removed via a confidence measure to improve stereo
accuracy. The disparity images are generated by training a dual encoder–decoder convolutional neural network from rectified stereo
images coupled with proxy labels generated by the traditional stereo method. A principled mask is computed to exclude the pixels, which
are not seen in one of views due to parallax effects from the calculation of loss function. Moreover, the neighbourhood smoothness term
is employed to constrain neighbouring pixels with similar appearances to generate a smooth depth surface. This approach can make the
depth of the projected point cloud closer to the real surgical site and preserve realistic details. The authors demonstrate the performance of
the method by training and evaluation with a partial nephrectomy da Vinci surgery dataset and heart phantom data from the Hamlyn Centre.
1. Introduction: Estimating the depth of a surgical site’s surface
is one of the key challenges in the field of computer-assisted
laparoscopic surgery. This process reconstructs the intraoperative
organ surface, and then, the surface can be used for registration
to preoperative models derived from computed tomography or
magnetic resonance image scans. To accurately predict the depth
of the organ surface based on laparoscopic images or video is
essential for vision-based surgical navigation systems.

In minimally invasive surgery, stereo laparoscopes have been
introduced to provide surgeons with a 3D view of surgical site
and to provide the fundamental input of stereo algorithms for
recovering the 3D geometry without any external devices [1].
Stoyanov et al. [2] presented a semidense reconstruction approach
for robotic assisted surgery by first identifying a set of candidate
feature matches as seeds, and then, a region growing method
was used to propagate disparity information around the seeds to
reconstruct a semidense surface. Penza et al. [3] proposed two
methods that followed the traditional approach of sum of absolute
difference based and census transform and then refined the disparity
image using super-pixel segmentation. Chang et al. [4] introduced a
dense stereo reconstruction approach using convex optimisation
cost-volume to reconstruct the model in the surgical scene. Wang
et al. [5] developed a variational disparity estimation to minimise
a global energy function over the entire image. In addition to the
stereo vision-based methods, monocular laparoscope can also
be taken as input to predict depth information. Mahmoud et al.
[6] presented an extended ORB-SLAM algorithm to simultaneously
reconstruct a semidense map of the surgical site and estimate the
laparoscope location.

In the last few years, depth estimation using convolutional neural
networks (CNNs) has shown promising results in computer vision
community. Eigen et al. [7] treated the depth prediction as a super-
vised learning problem and trained a coarse-to-fine scale CNN
model to estimate the depth from one monocular image. While
great success of such methods built on the base of large ground
truth image collections has been achieved, it is difficult to transfer
this method to the laparoscopic domain. The ground truth depth or
disparity data are difficult to obtain in laparoscopy, which inhibits
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the use of supervised methods. Garg et al. [8] proposed an unsuper-
vised CNN framework to estimate a single-view depth using stereo
pairs as training samples to generate an inverse warp image
and minimise the projection error. Similarly, Godard et al. [9]
proposed to train the unsupervised CNN model by enforcing left–
right disparity consistency and introduced the encoder–decoder
network like DispNet [10]. However, the appearance of the laparo-
scopic image is very different from the image in the natural scene
and prevents the direct deployment of approaches from the com-
puter vision community to laparoscope. Nevertheless, there are
some research groups that have addressed the depth estimation of
surgical site using deep learning methods. Ye et al. [11] presented
a self-supervised Siamese network for depth estimation with stereo
image pairs as the training examples in robotic surgery. Liu et al.
[12] proposed a self-supervised approach with the help of coordin-
ate transformation from a multi-view stereo method to train a
two-branch Siamese network for dense depth estimation.

Inspired by the successful work of Tosi et al. [13] and to address
the deficiency of ground truth data in laparoscopy, in this work, we
propose a method that fuses traditional stereo vision algorithms and
confidence measures to produce a highly reliable proxy label to
guide the training of a dual decoder–encoder disparity prediction
unsupervised CNN model. Our motivation is that there are count-
less stereo depth estimation methods for computer vision have
been proposed during the last few decades, particularly in the
field of laparoscopy, many of these methods have achieved the
state-of-the-art performance. Moreover, the confidence measures
which aim to detect unreliable depth measurements of the predicted
depth map can be used for distilling the error estimation. The results
from the traditional off-the-shelf stereo method can provide guid-
ance for the training of the unsupervised depth estimation CNN
model when laparoscopic ground truth data are not available.
Fig. 1 shows the architecture of our proposed dual encoder–
decoder unsupervised depth estimation CNN, which fuses tradition-
al stereo knowledge. Proxy disparity labels are generated by stand-
ard stereo algorithms that are distilled by the confidence measure
prior model training and only used during the training phase. The
rectified stereo pairs are fed into the dual encoder–decoder CNN,
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Fig. 1 Illustration of dual encoder–decoder unsupervised depth estimation
fusing traditional stereo knowledge CNN architecture
to generate the corresponding disparity maps. To focus attention on
pixels that can be seen on both views, a principled mask is com-
puted when calculating the training loss. In addition, we introduce
a neighbourhood smoothness term to constrain neighbouring pixels
with similar appearances, which can generate smooth depth surface
in reality. The effectiveness of our proposed unsupervised approach
is demonstrated by extensive training and evaluation with a partial
nephrectomy da Vinci surgery dataset and heart phantom data from
Hamlyn Centre [2, 14].

2. Methods: Most existing laparoscopic data with ground truth are
created based on phantom or ex vivo [2, 15, 16] experimental
settings; however, their appearances are very different from that
of the real surgical scene. Although these algorithms achieve
good performance on these data, they may suffer degradation
when transferred to the real surgical site. To address the above
challenge, we introduce a method for depth estimation by training
the model on a real surgical dataset, in an unsupervised manner,
by fusing traditional stereo knowledge to guide the network
training.

2.1. Dual encoder–decoder disparity network: Our disparity
estimation network architecture is shown in Fig. 2. The
Fig. 2 Dual encoder–decoder disparity network. The network outputs four differe
and dr4 from the left and right part, respectively. The numbers with circle are differe
loss, ③ proxy label loss

Healthcare Technology Letters, 2019, Vol. 6, Iss. 6, pp. 154–158
doi: 10.1049/htl.2019.0063
architecture consists of two branches for the encoder–decoder
network, which has the same architecture as [9], and both
branches share the weight in the training phase. The encoder part
of disparity network is built upon ResNet-50 [17]. The decoder
outputs four different scales disparity maps and uses skip
connections from encoder’s activation blocks that enable it to
resolve higher resolution details.

To fully use the image reconstruction information from
different views of the stereo pair, we set the left and right image
as the input of the two-branch network to obtain the left-to-right
and right-to-left disparity maps, respectively. Based on the pre-
dicted disparity maps and the original image, we can reconstruct
corresponding left and right images. The original stereo pair and
reconstructed images are constrained by photometric image recon-
struction loss Lr as in [9]. Furthermore, the proxy disparity label
acts as a sparse term to supervise the signal to the predicted dispar-
ity maps using L1 loss (see Section 2.2), which can make the esti-
mation of disparity closer to the real scene. Finally, the predicted
disparity maps of the two branches are evaluated by left–right dis-
parity consistency loss Lrc [9]. We believe that the stereo pair will
supply more useful information for the final estimation of disparity.
Therefore, the fusion of the finest scales of disparity maps is set as
the output in the testing phase.

2.2. Proxy disparity label: To generate accurate and reliable proxy
disparity labels, we adopt the conventional stereo algorithm
AD-CENSUS [18], and some of the quantitative evaluation of
confidence measures listed in [19] are used for distilling unreliable
estimation of the disparity map. More specifically, the stereo pair is
fed into the stereo algorithm to generate the disparity label while
the confidence measures, including left–right consistency checking
(LRC), uniqueness constraint (UC), distance to border (DB),
average peak ratio (APKR), and winner margin (WM) measure,
are employed to exclude the unreliable and incorrect prediction
pixels of the disparity map. Fig. 3 shows the result of the distillation
of the proxy disparity labels.

Given an input of stereo pair Il and Ir, the dual encoder–decoder
network can predict the corresponding disparity maps dl and dr,
respectively. Proxy disparity labels d̃ can be used as a guided
signal during the train of network. We define the proxy label loss
nt scales disparity maps. The final estimation of disparity is the fusion of dl4
nt loss terms: ① image reconstruction loss, ② left–right disparity consistency
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Fig. 3 Proxy disparity label
a Left image of stereo pair
b Right image of stereo pair
c Output of AD-CENSUS
d Result of disparity distillation
e Proxy label sampled on RGB image
f Disparity reprojected to 3D points
term Lp as

Lp =
1

Np

∑
i,j[V

dl(i, j)− d̃(i, j)
∣∣ ∣∣

+ dr(i+ dl(i, j), j)− d̃(i, j)
∣∣ ∣∣,

(1)

where Ω denotes the non-zero pixels in proxy disparity label, and
Np denotes sum of these non-zero pixels.
2.3. Neighbourhood smoothness loss: From the results produced
using the method [9], we observe that the depth varies even
in the same tissue. The performance of these methods will suffer
degradation on the surgical scene. Neighbouring pixels with
similar appearance in the same tissue or organ are similar to the
approximate depth or smooth surface in reality, except for the
pixels on the edges of different organs or surgical tools. This
phenomenon can be seen from Fig. 4 when the disparity map was
projected to 3D points based on camera parameters. The rectangles
in second row of Fig. 4 indicate the various depth estimation even
these pixels in the same region, which results in a smooth surface
after applying the neighbourhood smoothness constraint.

Consider the 4-neighborhood pixels pi and pj in the predicted
disparity map. Their depth values are denoted as Di and Dj , respect-
ively. We introduce the neighbourhood smoothness constraint
Fig. 4 Examples of the proposed model and method of [9]. Columns from left to r
cloud of [9], point cloud of our model. The rectangle indicates the improvement
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loss [20] Ls as

Ls = l
∑
j−i=1

Di − Dj

( )2
e−t(fi−fj)

2

, (2)

where λ and t are positive constants to balance the weight. fi and fj
refer to pixel values of pi and pj in the feature maps, respectively,
which correspond to the appearance of the two pixels. More specif-
ically, we adopt the output of convolution layers of the dual
decoder–encoder network as the feature map to measure the similar-
ity of adjacent pixels. The smoothness loss term is introduced
because neighbourhood pixels that have different appearances
have smaller weights, and those with similar appearances have
larger weights.

2.4. Training loss function: The total training loss consists of photo-
metric image reconstruction loss Lr, left–right disparity consistency
loss Lrc, proxy label loss Lp, and neighbourhood smoothness con-
straint loss Ls. All of these loss terms are calculated at four different
scales. Thereby, the total loss function is the combination of four
loss terms of four scales s as

Ltotal =
∑4
s=1

aLsr + bLsrc + gLsp + wLss (3)

where a, b, g, and w are constants to balance the weight between
different loss terms. Empirically, we set a = 1.0, b = 1.0,
g = 0.1, and w = 0.5 in our experiments.

2.4.1 Principled masks: Due to the parallax effects of stereo pairs,
some pixels near the edge of one image will not be seen on the
counterpart. These pixels will degrade the performance if they are
used in the loss calculation. We employ the same approach as
[21] to compute the validity masks to exclude pixels that are not
in both views.

2.4.2 Implementation details: We use TensorFlow [22] to imple-
ment the proposed network, and train it on an NVIDIA Tesla
V100 GPU with 32 Gb memory. The confidence measures listed
in [19] are used to generate the proxy disparity labels prior in the
training phase. The ResNet-50 backbone network is employed
for the encoder part, and the decoder part consists of five
ight: original image, disparity map of [9], disparity map of our model, point
of our model
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Fig. 6 Predicted point cloud fusion with ground truth data
a da Vinci data
b Heart 1
c Heart 2
Red points indicate proxy or ground truth data, white points are the
estimated points

Fig. 5 Heart phantom datasets [2, 14] and result of threshold
a–c Extracted from Heart 1
d–f Extracted from Heart 2
c and f are the predicted disparity maps by our proposed method

Table 1 Quantitative comparison on da Vinci dataset

Method Point count MAE, mm RMSE, mm

monodepth [9] 19387± 938 10.0 ± 3.7 12.6 ± 5.8
ours 19375± 846 8.3 ± 3.1 10.5 ± 3.7

Table 2 Quantitative comparison on heart phantom data

Dataset Method MAE, mm RMSE, mm

Heart 1 Godard et al. [9] 2.39 ± 0.62 2.99 ± 0.61
Wang et al. [5] 2.16 ± 0.65 —

Stoyanov et al. [2] 2.36 ± 0.92 3.88 ± 0.87
ours 1.84 ± 0.40 2.69 ± 0.58

Heart 2 monodepth [9] 1.79 ± 0.40 2.65 ± 0.28
Wang et al. [5] 2.14 ± 0.83 —

Stoyanov et al. [2] 3.20 ± 1.15 4.85 ± 1.82
ours 1.49 ± 0.41 1.90 ± 0.38
deconvolutions to upsample the feature map. Skip connections are
used to pass information from the encoder to the decoder part for
more effective feature aggregation. The principled masks [21] are
calculated during the bilinear sampling to focus the valid pixels
in the final loss calculation. The batch size is set to 8. Training is
performed for 50 epochs. The learning rate is initially set to
1 × 10−4 and varied based on training steps.

3. Experiments: We conduct two types of experiment to show the
validity and accuracy of our proposed method and compare the
results with those of the baseline method [9].

3.1. Dataset and evaluation: We first conduct an experiment to
demonstrate the validity of detail preserving of the proposed
method on in vivo data from [11], which consists of 34,240 pairs
training data and 7191 pairs testing data with 384 × 192 image resol-
ution. These images are collected in partial nephrectomy in da Vinci
surgery and have been rectified. Additionally, the camera para-
meters are provided. As ground truth data are not available for
this dataset, and the intraoperative models are not provided, we
cannot use the evaluation method as computer vision community
or as the method presented in [12]. A compromised evaluation
method is employed in our experiment. We use a rigid confidence
measurement, including LRC, UC, DB, APKR, WM and difference
with median, to generate the proxy disparity maps, then we triangu-
late to 3D point clouds based on the camera parameters to act as the
proxy ground truth data.
The second experiment is conducted based on two heart phantom

data from [2, 14] to show the depth estimation accuracy of our
method. The first heart phantom dataset includes 2426 frames,
and the second includes 3366 frames. Both datasets have the corre-
sponding ground truth data indexed from frame 0 to 19. The ground
truth data are excluded when training the models.
For fair comparison with other approaches, we adopt the com-

monly used metrics in the laparoscope image reconstruction field,
including reconstruction mean absolute errors (MAE) and root
mean square error (RMSE), defined as

MAE = 1

N

∑
i,j

D̃i,j − Di,j

∣∣∣ ∣∣∣, (4)

RMSE =
����������������������
1

N

∑
i,j

D̃i,j − Di,j

( )2√
, (5)

where N is the number of non-zero point in ground truth data, and
D̃i,j andDi,j are the predicted and ground truth depth values for pixel
i, j
( )

, respectively. The testing samples are excluded if the non-zero
point of proxy ground truth is <10,000 (i.e. N , 10, 000), which
can decrease the randomness in the evaluation of a particular
point. For the heart phantom evaluation, we use a threshold process-
ing to exclude the background pixels (as shown in Fig. 5).

3.2. Experimental results: Fig. 4 shows the qualitative result of our
proposed details preserved model, especially the region indicated
by rectangle. The four rows listed in Fig. 4 correspond to different
scenes in laparoscopic surgery, including normal state, bleeding,
smoking, and interaction with surgical tools. These images in
Fig. 4 show that our method can estimate the surface more realistic-
ally. The estimated points by the proposed method compared with
the da Vinci and heart phantom data are shown in Fig. 6. The red
points indicate the proxy or ground truth point cloud, demonstrating
the predicted point cloud can recover the truth geometry correctly.
The quantitative results are listed in Tables 1 and 2, which used

the da Vinci and heart phantom dataset, respectively. For the
da Vinci dataset, as we adopt the proxy ground truth for compari-
son, the non-zero-point count in proxy ground truth and predicted
point cloud, MAE and RMSE metrics are used to compare the
Healthcare Technology Letters, 2019, Vol. 6, Iss. 6, pp. 154–158
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performance between our method and the baseline [9]. Table 2
shows the comparison of our method and others on heart phantom.

4. Discussion: In a real application of depth estimation, such
as laparoscopic navigation, the point cloud of intraoperative
surgical sites is needed. Based on this consideration, we project
the predicted disparity maps to point clouds and evaluate the
performance of the reconstruction MAE and RMSE between the
estimated points and ground truth. Unfortunately, the ground
truth depth data of real surgical site, in vivo, are difficult to
obtain. There, we use a compromised method to evaluate the
performance of our proposed model by generating the proxy
ground truth disparity map employing a rigid confidence
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measure. Then, we triangulate to 3D point cloud to act as the proxy
ground truth data for evaluation. Due to the neighbourhood
smoothness loss term and the guidance of traditional information,
it can be seen from Fig. 4 that our model can preserve more
details, and it is closer to the actual surgical site in terms of
depth prediction when projecting the disparity map to the point
cloud than the baseline method [9]. The results shown in Fig. 4
(indexed by rows from top to bottom) also display four different
scenes, including the normal state, haemorrhage during the
operation, smoke and interaction with surgical tools. The
quantitative comparison results are listed in Table 1. The results
indicate that the performance of our model is obviously improved
compared with the method [9], which is the basis of our network
implementation.

Undoubtedly, although a more rigid confidence measure is used
to generate the proxy ground truth data for evaluation, there is a
certain degree of error in the method. Therefore, we conduct
another experiment based on heart phantom data, which have asso-
ciated ground truth, to further verify the accuracy of our proposed
method. The results listed in Table 2 show that our method has a
superior performance compared with that of the baseline method
[9] and the other traditional methods [2, 5].

5. Conclusion: In this work, we proposed an unsupervised
learning CNN model that fuses traditional stereo knowledge for
depth estimation in laparoscope. To preserve more details and
make the reconstructed point cloud closer to a real surgical site,
we introduce the disparity map, which excludes the incorrect
predicted pixels using confidence measures to guide the training
of the dual encoder–decoder disparity network, and we employ
the neighbourhood smoothness loss term to generate the same or
similar appearance of pixels that are closer to the depth. We show
that our model can dramatically improve the MAE and RMSE
performance metric, which can render our model very useful
towards real laparoscopic surgical navigation. In the future, we
will test our model to predict depth in monocular videos. We also
plan to evaluate our method on different datasets and compare it
with state-of-the-art depth estimation methods. Moreover, the
proxy disparity map will project to the 3D point cloud and guide
the training of the network.
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