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Neuroinflammation in the central nervous system (CNS) is characterized by increased production
of chemokines and cytokines, altered integrity of the blood-brain-barrier, influx of leukocytes
as well as the activation of microglia and astroglia. Although not all characteristics are
present under the following conditions, stimuli eliciting a neuroinflammatory response can be
toxins, infections, autoimmune reactions, traumatic injury, psychological stress, and epileptic
seizures (Vezzani et al., 2011; Barnum et al., 2012; Xanthos and Sandkühler, 2014). Further,
neuroinflammation has been linked to mechanisms of disease and clinical outcomes in
neurodegenerative disorders like Alzheimer’s and Parkinson’s disease (Amor et al., 2010). In
the following, we will mainly concentrate on Multiple Sclerosis (MS) as the prototype for an
autoimmune inflammatory and degenerative disorder of the CNS. According to our current
understanding, the immunopathogenesis of MS is as heterogeneous as its clinical manifestations
and course and may be mediated by myelin-reactive T lymphocytes, leading to oligodendroglial
cell death and demyelination, as well as to bystander axonal degeneration, neuronal loss and,
finally, gliosis (Hartung et al., 2014). B cells may have a fundamental role in presenting antigens
to T cells and as a consequence trigger an aberrant T cell response. Moreover, upon differentiation
into plasmablasts and plasma cells that manufacture antibodies (Yuseff et al., 2013; Nutt et al.,
2015), they may induce demyelination through antibody-mediated complement activation (Holers,
2014). Of note, while remyelination may occur in early stages of disease, regeneration is severely
compromised as the disease progresses (Kremer et al., 2016). However, the etiology and cause
for disease progression and failure of recovery remain largely elusive. Regarding possible factors,
reactive oxygen (ROS), and nitrogen species (RNS) have attracted increasing interest in the last two
decades. Focusing on MS we will discuss the role of ROS and RNS in disease onset and progression
of this disabling disease and further emphasize the role of specific redox signaling modulating
protein activity and its underestimated role in the development of new therapeutic agents.

OXIDATIVE AND NITROSATIVE STRESS IN MULTIPLE
SCLEROSIS ONSET AND PROGRESSION

The onset of MS is characterized by inflammation-mediated demyelination due to lymphocyte
infiltration from the peripheral blood and microglial activation in situ. Subtle signs of
neurodegeneration are identifiable from the beginning, characterized by axonal transection
within white matter lesions (Trapp et al., 1998; Kuhlmann et al., 2002). This is of clinical
importance particularly in chronic stages of disease, when extended cortical demyelination occurs
which in aggregate represent the pathological substrate of permanent neurological disability
(Zipp and Aktas, 2006). In both disease stages accumulation of ROS and RNS has been
observed (Carvalho et al., 2014). In this context, one has to consider that the terms “ROS”
and “RNS” summarize a variety of molecular species which substantially differ in chemical
nature, cellular localization, and biological function (Figure 1). Unfortunately, these recent
advances in our understanding of redox biology still go unrecognized by many researchers.
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FIGURE 1 | Gross (unspecific) treatment of oxidative stress vs. targeted modulation of enzyme-based thiol redox modifications. Neuroinflammation

affects CNS cells by increasing the amounts of ROS and RNS. Panel (A) shows a simplified view on intracellular effects and therapeutic strategies aiming in the overall

change of the amount of ROS and RNS. Panel (B) shows a more detailed explanation of cellular redox responses during neuroinflammation and potential therapeutic

strategies aiming in the control of specific enzyme-based redox events mediated by nitric oxide synthase, transcription factors (such as Nrf2) or oxidoreductases

thioredoxin (Trx), glutaredoxin (Grx) and peroxiredoxin (Prx) as well as other antioxidant enzymes, e.g., glutathione peroxidase (GPx).

The majority of these molecular species are non-radicals:
All oxygen radicals are ROS, but not all ROS are oxygen
radicals. Moreover, depending on the origin, cellular functions
of the respective oxygen radicals could be even oppositional
(Prozorovski et al., 2015). Nevertheless, increased ROS levels
are a prerequisite for and a consequence of oxidative stress. Per
definition, oxidative stress is an imbalance between oxidants and
antioxidants in favor of the oxidants, leading to a disruption
of redox signaling and control and/or molecular damage (Sies
and Jones, 2007). Clearly, such an imbalance does not imply
a change in the overall cellular redox state. There is no
general redox state of a given cell, although some researchers
still use the Nernst equation and the glutathione: glutathione
disulfide redox couple to determine a cellular redox state.
However, this concept ignores all other redox couples, the
compartmentalization of redox potentials, and the issue that
glutathione requires enzymes to exert its biological functions
(Flohé, 2013; Berndt et al., 2014). In the CNS, activated immune
cells like microglia are a major source of reactive species. The
neural parenchyma in the CNS is highly sensitive to oxidative
damage, DNA double strand breaks, membrane disruption and
protein degradation, due to its high cellular metabolic activity
and enrichment in polyunsaturated fatty acids (Bazinet and
Layé, 2014). Further, amounts of antioxidant molecules like α-
tocopherol and antioxidant enzymes like superoxide dismutases
(SOD), catalase, or glutathione peroxidases (GPx) are decreased
in the brain compared to other tissues (Dringen, 2000; Chiurchiù
et al., 2016). These CNS-specific characteristics might reinforce
mitochondrial DNA damage based on pathological accumulation
of reactive species which has been invoked as a possible reason for
chronic neurodegeneration as well as for failure of remyelination
(Li et al., 2005; Campbell et al., 2014; Witte et al., 2014).
Extensively secreted nitric oxide (NO) reacts rapidly with O−·

2

forming ONOO− and by this induces protein nitration in lesion
areas. Nitrotyrosine is considered a hallmark of oxidative damage
in neurodegenerative diseases (Pacher et al., 2007). Furthermore,
iron accumulation in lesion areas promote oxidative damage
of proteins, lipids, and nucleotides (Hametner et al., 2013). In
summary, oxidative stress is considered as a major contributor to
neuroinflammatory diseases including MS (Haider, 2015; Mahad
et al., 2015). However, the direct and specific contribution of ROS
and RNS to disease progression still remains elusive.

CURRENT THERAPEUTICS IN MULTIPLE
SCLEROSIS

The onset of MS is most commonly characterized by a relapsing
remitting disease form (RRMS) which later progresses into
a secondary progressive form (SPMS). Disease-modifying
treatments (DMTs) for RRMS are known to prevent or
reduce the frequency of harmful immune responses targeted
to CNS antigens and thereby slow or halt progression of
disease pathology and accrual of neurologic disability. The
implementation of easy-to-use magnetic resonance imaging
(MRI)-guided proof of concept studies has paved the way
for regulatory approval of 12 DMTs for RRMS including
first-line medications like INFβ and glatiramer acetate,
dimethyl fumarate (DMF) as well as teriflunomide and
second-line options like natalizumab and alemtuzumab
(humanized monoclonal antibodies), fingolimod and the
immunosuppressant mitoxantrone (Fox, 2006; Ingwersen et al.,
2016). Thereby, currently available therapeutics act mainly by
modulating disease-relevant early immune activation steps, but
fail to address repair of already damaged brain and spinal cord
areas. Moreover, molecular mechanisms of the mode of action
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are still not entirely known for some of these drugs. However,
more recently the mechanisms of function were investigated
in greater detail underlining additional neurobiological effects
of several DMTs, for instance fingolimod (Foster et al., 2007),
as first-in-class spingosine-1-phosphate receptor modulator
(Ingwersen et al., 2012) and DMF (Dubey et al., 2015). The
molecular mechanism of DMF links this drug to prevention
against oxidative stress (Albrecht et al., 2012).

The identification of oxidants and antioxidants involved
in disease processes raised the hope that treatment with
antioxidants could combat diseases connected to oxidative stress.
In the last two decades a variety of clinical studies were initiated
to test the impact of antioxidant donation itself and as adjunct
medication in RRMS. Surprisingly, the majority of those studies
failed (Gilgun-Sherki et al., 2004; Carvalho et al., 2016) although
the respective compounds such as lipid peroxyl scavengers
(Hall, 1992), low molecular weight antioxidants (Hansen et al.,
1995), and others showed to some extent an influence on the
progression of inflammation in cell culture or animal models
(Chiurchiù et al., 2016). The failure of such clinical studies might
be explained by the hitherto neglected roles of specific ROS,
especially H2O2 and NO, as important second messengers in
cellular signaling. Thus, excess of antioxidants does not just
attenuate oxidative stress, but could also interfere with anti-
inflammatory response (Ohl et al., 2016) and with physiological
redox signaling and thus harmfully impact recovery processes.

REDOX SIGNALING

During recent years, redox signaling, and redox regulation
emerged as one of the major physiological control mechanisms
in all yet investigated cell types. Redox signaling is even a
regulator of other well-established and accepted signaling
pathways, e.g., phosphorylation (Corcoran and Cotter,
2013), and can affect signaling by regulation of transcription
factors or enzymatic activities via thiol modifications. Thiols
can undergo several reversible oxidative posttranslational
modifications, e.g., nitrosylation, glutathionylation, formation
of disulfides, and sulfenic acid. Key enzymes in thiol redox
regulation are oxidoreductases of the thioredoxin family, namely
thioredoxins (Trx), glutaredoxins (Grx), and peroxiredoxins
(Prx) (Hanschmann et al., 2013; Lillig and Berndt, 2013), which
display cell type specific expression in the rat CNS (Aon-
Bertolino et al., 2011) and catalyze the reduction and oxidation
of specific cysteinyl residues and the intracellular level of the
second messenger H2O2. Another protein regulating the amount
of H2O2 is GPx (Deponte, 2013).

Redox regulation of transcription is well established
(Brigelius-Flohé and Flohé, 2011). Very important in defense
against oxidative damage is Nuclear Factor-E2-related factor 2
(Nrf2), a transcription factor controlling the transcription of
several antioxidant enzymes. Activity of Nrf2 itself is regulated
by the thiol redox state of Kelch-like ECH associated protein 1
(Keap1). In its reduced state, Keap1 promotes ubiquitination
and subsequent degradation of Nrf2. Oxidized Keap1 allows
the accumulation of Nrf2 in the nucleus and the expression of

its target genes. Keeping this in mind, important redox events
induced by the formation of reactive species during disease onset
and progression might be simplified as oxidative or nitrosative
stress. To date, it is not clarified whether redox changes may
have different roles according to disease stage. Obviously, during
CNS inflammatory attacks, invading lymphocytes, and activated
macrophages/microglia initiate an acute and massive ROS/RNS
challenge of the tissue characterized by damage of proteins,
lipids, and nucleotides and thereby leading to immediate
structural demise. In contrast, mild but persistent exposure
to inflammation—as found in post-acute/chronic progressive
stage—may result in alteration of specific redox regulation
accompanied by targeted modification of redox-sensitive
signaling pathways.

CONSEQUENCES FOR FUTURE
THERAPIES

Increased knowledge of enzyme-based redox events involved
in disease onset and progression as well as potential redox-
related modes of action of already existing drugs might pave the
way for new therapeutic strategies, even approaches targeting
regeneration in MS. For instance, preclinical studies revealed
antioxidant properties of DMF acting via the translocation
of Nrf2 into the nucleus and thereby promoting defense
mechanisms against oxidative damage (Albrecht et al., 2012).
Thereby, DMF treatment attenuates neuroinflammation and
affects progression of MS and other neurodegenerative diseases
(Johnson and Johnson, 2015; Buendia et al., 2016). It has been
proposed that this mechanism is also the reason for the recently
discovered neuroprotective and myelin-protective functions of
DMF (Dubey et al., 2015). Of note, Nrf2 is upregulated in
active MS lesions (Licht-Mayer et al., 2015). So far, the number
of studies investigating the role of oxidoreductases or other
antioxidant enzymes during MS is very limited, although these
proteins are important during inflammatory processes, e.g.,
activation of macrophages (Salzano et al., 2014). Activity of GPx
is dramatically decreased in cerebrospinal fluid and in serum of
MS patients (Calabrese et al., 1994; Socha et al., 2014). In contrast,
Prx5 as well as the mitochondrial oxidoreductases Trx2 and Prx3
are upregulated within MS lesions (Holley et al., 2007; Nijland
et al., 2014) and Prx6 is increased in the spinal cord of mice
that underwent experimental autoimmune encephalomyelitis, a
common animal model of MS (Yun et al., 2015). Transgenic mice
overexpressing Prx6 displayed attenuated blood-brain barrier
leakage and neuroinflammation after induction of this model.
Besides novel potent anti-inflammatory therapies, regeneration
might be achieved by enzyme-based thiol redox modulation:
Collapsin response mediator protein 2 (CRMP2) was proposed
as a potential novel drug target for axonal regeneration after
neuroinflammation (Petratos et al., 2010). Interestingly, CRMP2
mediated axonal outgrowth depends on redox regulation via
Grx2 and Trx1 (Bräutigam et al., 2011; Morinaka et al., 2011).

Thus, instead of unspecific application of ROS scavengers or
other broadly active antioxidants, therapies aiming at the specific
modulation of enzyme-based redox regulation and signaling
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might be the promising future of what is called “redox medicine”
(Figure 1) (Sies, 2015).

CONCLUSION

In summary, recent insights have fundamentally changed
our understanding of disease-related redox processes.
Obviously, the unspecific use of the term “oxidative stress”
has competed with latest insights indicating that subtle changes
of the redox status of single molecules have a profound
effect on both, endogenous signaling pathways relevant for
inflammation as well as neuroregeneration. Basic as well
as translational and clinical research in this area should
consider these recent shifts in paradigms regarding oxidative

stress, cellular redox potentials, ROS and RNS, and redox
signaling.
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