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Abstract: AbstractBackground: Upregulation of Heath Shock Protein 70 (HSP70) chaperones sup-
ports cancer cell survival. Their high homology causes a challenge to differentiate them in experi-
mental or prevention and treatment strategies. The objective of this investigation was to determine
similarities and differences of Hsp70, hsc70, Grp78 and Mortalin members of the HSP70 family en-
coded by HSPA1, HSPA8, HSPA5 and HSPA9 genes, respectively. Methods: Literature reviews were
conducted using HSPA1, HSPA5, HSPA8 and HSPA9 gene or protein names or synonyms combined
with biological or cancer-relevant terms. Ingenuity Pathway Analysis was used to identify and
compare profiles of proteins that directly bind individual chaperones and their associated pathways.
TCGA data was probed to identify associations of hsc70 with cancer patient survival. ClinicalTri-
als.gov was used to identify HSP70 family studies. Results: The chaperones have similar protein
folding functions. Their different cellular effects are determined by co-chaperones and client proteins
combined with their intra- and extra-cellular localizations. Their upregulation is associated with
worse patient prognosis in multiple cancers and can stimulate tumor immune responses or drug
resistance. Their inhibition selectively kills cancer over healthy cells. Conclusions: Differences in
Hsp70, hsc70, Grp78 and mortalin provide opportunities to calibrate HSP70 inhibitors for individual
cancers and combination therapies.

Keywords: Hsp70; hsc70; Grp78; mortalin; chaperone; cancer; cellular localization; biomarker;
prevention; combination therapy

1. Introduction

Heat shock proteins (HSPs) play critical roles in cancer development, progression
and drug resistance by assuring proper folding or degradation of unfolded or misfolded
proteins (client proteins) [1,2]. Proper folding is critical for the function of proteins, and
misfolded proteins can be toxic to the cell. Stressful conditions experienced by cancer cells
often lead to increased misfolding of proteins and the need for molecular chaperones to
maintain homeostasis. Thus, it is not surprising that HSP proteins are found to be elevated
in cancer and targeted in the development of cancer treatment and prevention [3–5]. The
HSPs function as complexes of chaperones, co-chaperones and nucleotide exchange factors
(NEFs), in which each component plays a specific role [6]. In the human genome there are
332 genes encoding molecular chaperone and co-chaperones, and the HSP subset of these
genes are subcategorized based on the molecular weights of their encoded proteins [6,7].
Upregulation of the 70 kD subset of HSP proteins (HSP70s) has been shown to be vital to
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the survival of cancer cells and has been targeted by multiple therapeutic strategies [5].
These HSP70 proteins are encoded by the HSPA genes and have been called by a variety
of names in the scientific literature (Table S1). Their similarity in size and homology have
resulted in mislabeling, misinformation and misunderstandings about the specific identify
of the individual HSP70 protein described [7]. For instance, the term Hsp70 has been used
to refer to both Hsp70 encoded by HSPA1 and heat shock cognate 70 (hsc70) encoded by
HSPA8 or to all 70 kD HSPs. The Hsp70 family member encoded by the HSPA1 gene is
the most well-characterized and targeted by therapeutic strategies in cancer [8,9]. Most of
the recent reviews describing HSP70 proteins do not differentiate between the individual
proteins [5,10–13].

The purpose of this analysis of literature and data is to evaluate how a subset of
HSPA proteins are similar and different from the well-characterized Hsp70 protein. Three
HSPA proteins were chosen for this comparison, hsc70, glucose regulated protein 78 (Grp78
encoded by HSPA5) and mortalin (encoded by HSPA9), because they are bound, and their
complexes disrupted, by the cancer new investigational agent, Sulfur Heteroarotinoid A2
(SHetA2, NSC 726189) [14]. The natural functions of these proteins will be contrasted with
their roles in cancer, the profiles of their protein binding partners will be compared, and
their utilization as cancer biomarkers and targets for development of cancer prevention
and treatment strategies will be reviewed.

2. Materials and Methods

The strategic approach of this investigation is illustrated in Figure 1.
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Figure 1. Methodologic approach.

2.1. Literature Review

Each of the authors independently performed literature searches in online databases
(PubMed and Ovid MEDLINE) for articles related to Hsp70, hsc70, Grp78 and mortalin
between 1965 and 2021. The search terms used were the HSPA1A, HSPA5, HSPA8 and
HSPA9 gene and their synonyms listed in Table S1 in combination with neoplasia, cancer,
immun*, exosome, membrane, nucleus, mitochondria, endoplasmic reticulum, blood,
biomarker, drug, prevention, therapeutic, clinical trial, prognosis, or survival. Publications
between 2019 and 2021 were first reviewed to establish themes and then earlier articles
relevant to the themes were included to assure thoroughness of the review. The reference
lists of the articles identified were examined for potential additional pertinent references.
For specific findings that had numerous publications, either the original or the most recent
publications were cited depending on the context of the sentence.
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2.2. Bioinformatic Analysis

The synonyms and locations for the individual proteins were collated from GeneCards
(https://www.genecards.org/ last accessed on 24 September 2021), UniPort (https://www.
uniprot.org/ last accessed on 24 September 2021), National Center for Biotechnology
Information (NCBI) (https://www.ncbi.nlm.nih.gov/ last accessed on 09/24/2021), and
Ingenuity (Qiagen) databases. The proteins which bind to hsp70/HSPA1, Grp78/HSPA5,
hsc70/HSPA8 and mortalin/HSPA9 were identified using the Ingenuity Pathway Analysis
(IPA) Software (Qiagen) by inserting these genes into a newly created IPA pathway and
using the “grow” tool with limits set to experimentally observed, direct protein–protein
interactions. Lists of the identified proteins were compared to create profiles of proteins that
uniquely bind to individual HSPA-encoded proteins and those that are bound by multiple
HSPA-encoded proteins. The molecular, cellular, physiological and disease pathways of the
profiles were identified by IPA using direct interactions only. The Cancer Genome Atlas
(TCGA) data was probed for significant associations of tumoral hsc70 mRNA expression
with patient survival probability using the University of Alabama Cancer (UALCAN)
website (ualcan.path.uab.edu). The clinicaltrials.gov website was searched using the terms
heat shock protein, HSPA, Hsp70, Grp78 or mortalin and cancer.

3. Results
3.1. Similarities and Differences in HSP70 Functions

The HSP70 proteins have similar structural domains and chaperone functions respon-
sible for proper folding of their client proteins [5,12] (Figure 2).
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and mortalin.

The N-terminal contains a nucleotide binding domain responsible for hydrolyzing
ATP to generate the energy needed to drive the client protein folding and release functions.
The C-terminal region contains a substrate or peptide-binding domain, which binds to ex-
posed hydrophobic areas of newly synthesized polypeptide chains or unfolded/misfolded
client proteins. These two domains are connected by a flexible linker domain. Adjacent
to the substrate binding domain is a lid domain that can fold over the substrate binding
domain during folding reactions. The HSP40 chaperones assists in bringing client proteins
to ATP-bound HSP70 chaperones, then triggers the HSP70 ATP hydrolysis function and
subsequently leaves HSP70s in the ADP-bound state. Increasing evidence supports that
HSP70s only partially fold the client protein, which then spontaneously folds into the
proper conformation upon release from the Hsp70 chaperone complex [12]. NEFs prefer-
entially bind to ADP-bound HSP70s and stabilize a conformation of HSP70s that allows
release of ADP. Subsequent binding of ATP to the HSP70/NEF complex causes release of
the NEF and completion of a cycle that allows the regenerated ATP-bound HSP70 to fold
proteins again. Additional proteins become involved in this cyclic process to modulate
protein aggregation and degradation. Another activity of HSP70-containing complexes
is to pull unfolded proteins through a membrane pore using an entropy-based process,

https://www.genecards.org/
https://www.uniprot.org/
https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/
clinicaltrials.gov
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which brings newly synthesized proteins to their primary organelle localizations [10]. The
HSP70 chaperones also exert similar effects at the cellular level and in cancer [5]. The main
differences in Hsp70, hsc70, Grp78 and mortalin HSP70 chaperone functions (Table 1) are
related to their primary locations within or outside of the cell (Table 2) as described in
detail below.

Table 1. Comparison of HSP70 protein functions.

HSP70
Protein ATPase Protein Folding Facilitates Protein

Degradation Through:
Protein Localization

Control
Lysosome
Protection

Immune Function
Regulation

Cell Cycle, Survival
and Death

Hsp70 X X UPS X X X

Hsc70 X X CMA, EmiA Cytoplasm vs.
lysosome or nucleus X X

Grp78 X X UPR, UPS,
macroautophagy

Retrograde ER
transport X X

Mortalin X X UPRmt
Cytoplasm vs.

mitochondria or
nucleus

X X

Table 2. Comparison of cellular localizations of HSP70 proteins.

Cytoplasm Nucleus Mitochondria ER Plasma Membrane Extracellular Exosomes

Hsp70 ++ + + + +
Hsc70 ++ T + + +
Grp78 + + + ++ + + +

Mortalin + + ++ + + + +

+: observed to be present at indicated location; ++: primarily present at indicated location; T: transiently present at indicated location.

3.1.1. Hsp70

The Hsp70-1 and Hsp70-2 proteins encoded by the HSPA1 and HSPA2 genes, respec-
tively, differ by only two amino acids and are difficult to differentiate in experimental
assays, and therefore will be referred to in this article collectively as Hsp70, unless the
specific analysis or report is focused on the individual Hsp70-1 or Hsp70-2 proteins. Hsp70
is primarily located in the cytoplasm and nucleus, but also is present at the lysosome and
in membrane-anchored and secreted states, especially in diseased conditions. Cellular and
extracellular levels of Hsp70 are increased by heat and other stresses [15]. Hsp70 is the only
one of the Hsp70, hsc70, Grp78 and mortalin group that has been shown to be induced
by heat. Heat shock increases the Hsp70 content of exosomes, while having no effect on
the rate of exosome secretion [16]. Hsp70 cellular and physiologic functions in health and
cancer have been extensively reviewed elsewhere [13] and are highlighted in contrast to
hsc70, Grp78 and mortalin in Figure 3 and described below.

3.1.2. hsc70

The hsc70 protein differs in amino acid sequence from Hsp70 by only 25%, and also
differs in that it is constitutively expressed. The primary localization of hsc70 is in the
cytoplasm where it has been shown to support multiple oncogenic processes through its
regulation of client proteins. For example, Hsc70 binds and folds newly synthesized cyclin
D1 and supports assembly and function of the cyclin D1/cyclin dependent kinase 4 (CDK4)
holoenzyme [17]. Cyclin D1 is amplified and overexpressed in multiple cancers and the
cyclin D1/CDK4/6 holoenzyme complex is stimulated by mitogenic signaling cascades to
accelerate cancer cell proliferation [18]. In colon cancer cells, Hsc70 prevented proteomic
stress-induced degradation of the Ras family member Rab1A and apoptosis [19]. Hsc70 has
been studied most extensively in glioma where its regulation of proliferation and apoptosis
was shown to involve binding and regulation of β4-galactosyltransferase 5 [20]. Overall,
depletion of hsc70 significantly reduces cell proliferation, migration and invasion, and
promotes cell apoptosis in cancer cells [21,22].
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Roles of hsc70 in maintaining cellular homeostasis involve its ability to shuttle pro-
teins between the cytoplasm and organelles. In transporting proteins between the cyto-
plasm and lysosomes, hsc70 is the only chaperone known to mediate a cellular recycling
program called chaperone mediated autophagy (CMA). To perform CMA, hsc70 binds
unfolded/misfolded proteins that have an exposed KFERQ amino acid sequence motif and
brings them to the lysosome [23]. The hsc70/KFERQ-containing client protein complex
then interacts and binds to the cytosolic tail of the monomer form of lysosome-associated
membrane protein 2A (LAMP-2A), which acts as a receptor in CMA. A conformational
change of LAMP-2A then takes place and the client protein is transferred to a lysosomal
form of Hsc70 (lys-Hsc70), which pulls the client protein into the lysosome for degra-
dation. Subsequently, LAMP-2A is disassembled into its monomer form to bind to new
proteins [24–26]. Through the degradation of soluble cytosolic substrates, CMA plays a
role in the regulation of the cell cycle and diseases. For example, in many types of cancer
cells CMA is upregulated and is considered a pro-survival pathway. In this instance, CMA
plays a protective role in stress-induced microenvironments and nutrient depletion [26].
However, in non-cancer cells CMA has anti-tumorigenic functions [24,26]. Two recent
reviews explain in greater detail the role of CMA in diseases [24,26]. The hsc70 chaperone
also mediates an endosomal-selective form of microautophagy (EmiA), in which hsc70
loads KFERQ-containing proteins into late endosomes/multivesicular bodies that eventu-
ally fuse into the lysosome for degradation of the contents [27,28]. Hsp70 is also present
at the lysosome where it protects against lysosomal permeabilization and subsequent cell
death [29]. Hsc70 appears to regulate shuttling of various proteins, including MHC major
histocompatibility complex class II (MHC II), into exosomes [30].

Another unique property of hsc70 is that it shuttles between the cytoplasm and nucleus
while facilitating import/export of different client proteins into the nucleus. Specifically,
hsc70 controls nucleocytoplasmic transport systems by facilitating nuclear export of import
receptor proteins, such as importin α/β and transportin [31]. Under stress, hsc70 is retained
in the nucleus thereby limiting its function to the nuclear compartment [32]. Upon recovery
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from stress, hsc70 is released from nucleus and normal nucleocytoplasmic transport is
re-established [32]. Lack of hsc70 relocation into the cytoplasm has been shown to alter the
ability of cells to survive under stress conditions [33]. In esophageal cancer cells, hsc70 has
been found to be upregulated and localized to nuclear pore complex [34].

Although hsc70 is constitutively expressed within the cell, several studies have demon-
strated that its plasma membrane and secreted forms can be stimulated by factors that do
not affect membrane or secreted Hsp70. Secretion of hsc70 protein is induced by contact
inhibition or serum deprivation and repressed by the cathepsin D lysosomal protease, while
intracellular levels remain the same [35]. This secreted hsc70 inhibited proliferation and
stimulated cellular contact inhibition. Use of peptide sequencing and specific antibodies
demonstrated that the secreted 70kD protein consisted entirely of hsc70, and not hsp70.
Hsp70 and hsc70 differ in their inducibility by cytokines. Interferon γ (IFNγ) induced
intracellular Hsp70, but not hsc70, while increasing plasma membrane levels of hsc70, but
not Hsp70 [36]. The Hsp70 and hsc70 proteins are similar in that both are released from
cells during viral infection [37]. Extracellular Hsp70 and hsc70 are similar in that both have
a dual effect on the tumor immune microenvironment, by stimulating and suppressing
anti-tumor immune responses [38–40].

3.1.3. Grp78

Grp78 is primarily localized in the endoplasmic reticulum (ER), however, it has been
observed also in the cytosol, nucleus, mitochondria and plasma membrane, and extracellu-
lar space [41]. Grp78 is also present in exosomes. Exosomal levels of Grp78 are reduced
by histone de-acetylase inhibitors, which lead to increased levels of acetylated Grp78
that become aggregated in the ER and bound by VPS34, a class III phosphoinositide-3
kinase, which mediates autophagic degradation of the Grp78 aggregates [42]. Grp78 is
induced by stresses, such as accumulation of unfolded proteins in the ER, but not by
the heat shock. At the ER membrane under non-stressed conditions, Grp78 binds and
inhibits, inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α), PKR-like
ER kinase (PERK) and Activating Transcription Factor 6 (ATF6). Upon buildup of un-
folded/misfolded proteins in the ER, Grp78 releases IRE1α, PERK and ATF6, which allows
them to induce the unfolded protein response (UPR) [43]. UPR restores ER homeostasis
and supports cell survival by increasing the ratio of chaperone to general protein synthesis
and directing retrograde transport of misfolded proteins back through the ER to the cy-
toplasm for degradation by the ubiquitin-proteasome system (UPS). Once the buildup of
unfolded/misfolded proteins is reduced, normal Grp78 expression and binding to IRE1α,
PERK and ATF6 are restored [43]. In situations where UPR cannot restore homeostasis,
uncontrolled UPR leads to macroautophagy or apoptosis [44]. Macroautophagy, also called
autophagy, can be induced by a variety of stimuli, such as nutrient deprivation or Grp78
upregulation, and involves formation of autophagosomes surrounding cytoplasmic areas,
including organelles, that fuse with lysosomes to degrade the contents and release the
components for recycling [43]. Uncontrolled UPR leads to apoptosis through upregula-
tion of CCAAT/-enhancer-binding protein homologous protein (CHOP), which induces
expression of Growth arrest and DNA damage 34 (GADD34), unless autophagy induction
is sufficient to prevent this [43].

Grp78 has been shown to be upregulated in various cancers, which contributes to
increased tumor cell proliferation and stemness, and angiogenesis, invasion, metastasis
and chemotherapy resistance through its endogenous cytoprotective mechanisms and
altered metabolism [45–50]. Grp78 suppresses immune responses through a variety of
mechanisms including alterations in lipid metabolism [51]. Overexpression of Grp78 has
been also shown to exert anti-apoptotic function by stabilizing mitochondrial permeability,
reducing the release of mitochondrial cytochrome c and suppressing caspase-7/12 activa-
tion [52]. High Grp78 levels have been associated with more aggressive features and worse
prognosis [53]. Grp78 expressed at the surface of cancer and endothelial cells, regulates
various signaling cascades which are pro-proliferative, antiapoptotic and promigratory,
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which has been reviewed elsewhere [54]. Extracellular Grp78 was shown to inhibit immune
responses to tumor metastases in the liver [30] and tumor response to the anti-angiogenic
agent, Bortezomib [55].

3.1.4. Mortalin

After translation in the cytoplasm, mortalin is transported primarily into mitochon-
dria, but also has been observed in the cytosol, nucleus, ER, cytoplasmic vesicles, plasma
membrane and extracellular space [56,57]. Mortalin is not induced by heat but can be in-
duced by ionizing radiation and oxygen or glucose deprivation [58–60]. This chaperone has
been shown to regulate diverse cellular functions, including proliferation, stress response,
chromosome replication and apoptosis [61]. Its activity and function are determined by
localization in the cell and binding partners. In the mitochondria, mortalin forms the core
essential ATPase component of the import machinery for mitochondrial proteins that are
encoded by the nuclear genome and synthesized in the cytoplasm [62]. Thus, mortalin
function is essential for maintenance of the mitochondrial integrity, energy metabolism,
free-radical generation and biogenesis [61]. Furthermore, mortalin is upregulated by a mi-
tochondrial version of UPR (UPRmt) and assists in UPRmt alleviation of unfolded proteins
in the mitochondria [63,64]. Just outside the mitochondria, mortalin couples the inositol 1,
4, 5-triphosphate receptor (IP3R) on ER to the voltage dependent anion channel (VDAC1)
on mitochondria to facilitate Ca2 + transfer from the ER lumen to the mitochondrial ma-
trix [65–67]. In the nucleus, mortalin facilitates maintenance of telomere length, and also
regulates genetic processes through control of centrosome duplication during chromosome
replication and division, and mRNA processing and transport [57]. Mortalin has been
shown to play a role in cellular release of exosomes [68,69], while Hsp70 present on the
surface of cells and exosomes can stimulate an immune reaction and lead to tumor immu-
nity and autoimmunity [70,71]. Although secreted mortalin does not appear to regulate
the immune function, mortalin is stimulated by complement attack to relocate from the
mitochondria to the plasma membrane where its ATPase binding domain binds C5b-9
complex and prevents it from forming pores that would lyse and kill the cell [72–75]. Hsp90
also binds C9 and co-operates with hsp70 in protecting cells from complement-mediated
cell death [76].

In stressed and cancer cells, cytosolic mortalin sequesters upregulated p53 protein in
cytoplasm thereby inhibiting nuclear or mitochondrial p53-induction of apoptosis inducing
genes [77,78]. Mortalin also inhibits p53 transcriptional activity when these two proteins
are localized in the nucleus [57], and also binds and super-activates the kinase Mps1,
which promotes chromosome duplication [79]. Elevated mortalin levels repress p53 at
the centrosome and allow aberrant centrosome duplication and consequently survival of
cancer cells that are aneuploid as a result of genetic instability or paclitaxel treatment [80].

Overexpression of mortalin is involved in development, progression, metastases and
drug resistance of cancers [81–84]. The mortalin HSPA9 gene was cloned via its differential
cytoplasmic staining pattern in immortalized compared to mortal cells [85,86]. Expression
of mortalin in cancer at higher levels than in stem cells, including human embryonic
stem cells (hESCs) and induced pluripotent stem cells (iPSCs), implicates maintenance of
telomere length as a mechanism by which mortalin supports carcinogenesis [87]. Mortalin
expression has been shown to promote carcinogenesis, and to be sequentially upregulated
with increasing cancer aggressiveness [78,88,89]. The molecular mechanisms of mortalin in
driving cancer include upregulation of the MAPK/ERK signaling pathway [82]. Secretion
and binding of mortalin and podoplanin has been shown to be coordinated in oral squa-
mous carcinoma cells, while their binding on the cell surface was identified primarily at
the invading front of tumors suggesting a pro-migration role for extracellular mortalin [88].
Hsp70 has also been shown to promote cancer cell migration [89–91].
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3.2. Bioinformatic Analysis of Protein Binder Profiles

Cellular effects of Hsp70, hsc70, Grp78 and mortalin are mediated through their effects
on client proteins and modulated by other protein binders involved in their function. A
proteomic study of client proteins for Hsp70 and hsc70 in human cells identified that they
have unique, but overlapping, profiles of co-chaperones and client proteins which change
upon presence of unfolded proteins [92]. In this current study, a bioinformatic approach
using publicly available data was used to compare the profiles of proteins which directly
bind Hsp70-1, Hsp70-2, hsc70, Grp78 and mortalin (Table S2). The hsc70 chaperone had
by far the greatest number of direct binding proteins identified (1352), followed by Grp78
(969), Hsp70 (571) and mortalin (493). Numbers of proteins that uniquely bind to these
chaperones or that bind to each set of two of the chaperones were determined (Table S2
and Figure 4).
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Bioinformatic analysis confirmed considerable overlap in the canonical pathways,
molecular, cellular, physiological and disease functions of the direct binding protein profiles
for Hsp70-1, hsc70, Grp78 and mortalin. Comparison of the −Log p-values of the canonical
pathways associated with the binding protein profiles identified considerable overlap
(Figure 5).

As expected, major outliers for individual HSP70s included Huntington’s Disease
Signaling for hsc70 [93] (−Log p = 33.3), ER Stress Pathway for Grp78 (−Log p = 8.6) and
Mitochondrial Dysfunction for mortalin (−Log p = 10.3). Differences in outliers of pathway
significance levels were noted for EIF2 signaling with hsc70 having higher significance
EIF2 signaling (−Log = 42.3) compared to Hsp70 (−Log p = 6.9), NRF2-mediated Oxidative
Stress Response having higher significance in Hsp70 (−Log p = 29.8) compared to mortalin
(−Log p = 8.4), TNFR2 Signaling having higher significance for mortalin (−Log p = 23.8)
compared to Hsp70 (−Log p = 4.0, Regulation of eIF4 and p70S6K Signaling having higher
significance for hsc70 (−Log p = 21.1) compared to Grp78 (−Log p = 3.5) and mTOR
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signaling with hsc70 having a higher significance (−Log p = 17.7) compared to mortalin
(−Log p = 2.4).
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When each HSPA binding profile was evaluated individually, IPA identified cell death
and survival and cell cycle as the top two molecular and cellular functions significantly
associated with direct protein binding profiles of these chaperones (Table S3). Addition-
ally, gene expression, cellular development, and cellular growth and proliferation, were
included in the top five for each. Gene expression was included in the top five functions
associated with Hsp70-1, Hsp70-2, hsc70 and mortalin, while this was replaced with protein
synthesis for Grp78. IPA identification of physiological systems significantly associated
with the direct protein binding profiles (Table S4) included organismal survival, embryonic
development, connective tissue development and function, and tissue morphology to be in
the top five most significantly associated with each of Hsp70-1, hsc70 and Grp78. While
mortalin also had embryonic development, organismal survival and tissue morphology in
its top five most significantly associated diseases, the other two (lymphoid tissue structure
and development and hematological system development and function) in the top five
were unique from the other three chaperones evaluated. IPA identified cancer as the disease
most significantly associated with each of the of chaperone direct binding protein profiles
(Table S5). Additionally, organismal injury and abnormalities was included as the second
most significantly associated disease with hsc70, Grp78 and mortalin and the third diseases
most significantly associated with Hsp70-1. Endocrine system disorders were in the top
five diseases most significantly associated each of the HSPA chaperones. There were no
common individual diseases among the top five significantly associated diseases for these
four chaperones.

3.3. Utilization as Cancer Biomarkers

In general, the presence of heat shock proteins in the blood has been considered
a biomarker of damage, stress or inflammation. High cellular or circulating levels of
Hsp70 or Grp78 have been reported to be prognostic in multiple cancers and reviewed
elsewhere [94–96]. Twenty cancer-focused clinical trials listed on clinicaltrials.gov measure
Hsp70 as biomarker of stress, drug response or toxicity, or cancer diagnosis or burden

clinicaltrials.gov
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(Supplementary Table S6). High cellular or circulating mortalin levels have been reported to
be significantly associated with worse outcomes of patients with hepatocellular carcinoma,
serous ovarian carcinoma, colorectal cancer, pancreatic cancer, non-small cell lung cancer
and invasive ductal carcinoma of the breast [84,97–103]. There are relatively fewer publica-
tions evaluating hsc70 as a prognostic indicator in cancer patients. In a study of clear cell
renal cell carcinoma, the presence versus absence of hsc70 expression was significantly asso-
ciated with worse overall survival [104]. Although expression levels of hsc70 or LAMP2A
as indicators of CMA were not associated with each other in pulmonary squamous cell
carcinomas, high expression levels of either of these proteins were predictive of worse
overall survival [105]. One study of hsc70 as a biomarker (NST03252717: Predictive Role of
New Biomarkers for Hypersensitive Patients to Radiation in Breast Cancer (BIORISE)) is
listed in clincialtrials.gov. This currently active clinical study aims to validate hsc70 and
other identified protein levels in blood as biomarkers of radiation-induced late effects in
breast cancer patients. Hsp70 cross-reactivity of the antibodies used in these two hsc70
studies was not reported.

As Hsp70 and hsc70 antibodies are known to have slight cross-reactivity due to the
high homology of these two proteins and there are scant reports of hsc70 as a cancer
biomarker, this study probed TCGA data to identify significant associations of tumoral
hsc70 mRNA expression with survival probability of several cancers. High hsc70 expression
was associated with worse survival probability in breast (p = 0.019), cervical (p = 0.01),
hepatocellular carcinoma (p = 0.0023) and mesothelioma (p = 0.043). In contrast, low hsc70
expression was associated with worse survival probability in renal cell carcinoma (p = 0.014).
Hsc70 was not associated with survival probability of the other TCGA studied cancers. A
TCGA analysis published by others found high hsc70 mRNA expression to be significantly
associated with overall survival of acute myeloid leukemia (AML) patients [106].

Hsc70 exhibited gender-specific associations with several cancers in TCGA data. In
colorectal cancer, low/medium hsc70 expression predicted worse survival probability
compared to high hsc70 expression in males (p = 0.027), but not in females (p = 0.99).
While hsc70 was not associated with overall head and neck squamous carcinoma (HNSCC)
survival probability (p = 0.23), female patients with high hsc70 expression had significantly
worse survival probability compared to females with low hsc70 expression (p < 0.0001),
males with high hsc70 expression (p < 0.0001) and males with low/medium hsc70 expres-
sion (p = 0.0009), suggesting that hsc70 is prognostic only in females. The worse survival
probability of hepatocellular carcinoma cancer patients described in the above paragraph
appears to be driven primarily by male patients, since high hsc70 was associated with
worse survival probability (p < 0.0001), while there was no association of hsc70 expression
with survival probability in female patients (p = 0.59).

3.4. Utilization as Cancer Therapeutic Drug Targets

Cancer therapeutic drugs based on synthetic and natural compounds and biologics
are in development for heat shock proteins [107,108]. The compounds being developed for
HSP70s in general often bind to more than one of the highly homologous chaperones and
are limited in their clinical development due to adverse toxicities [108]. Efforts to improve
the therapeutic ratios (toxicity/efficacy) of HSP70 targeted drugs have included designing
the investigational agents to bind allosteric pockets outside of the nucleotide and peptide
binding domains of the chaperone molecules, or to be selective for individual HSPs and/or
subcellular compartments [108,109]. Currently the only small molecule HSP70 inhibitor in
clinical trial as a cancer therapeutic is SHetA2, which is being evaluated in an oral capsule
formulation for treatment of advanced or recurrent gynecologic cancers (NCT 04928508).

Promising immune-based approaches have taken advantage of the immune stimu-
latory property of Hsp70 to stimulate an anti-tumor immune response [110,111]. There
are six cancer therapeutic clinical trials utilizing Hsp70 vaccines alone or in combination
with drugs or other antigens listed on clinicaltrials.gov (Table 3), however, the results of
these studies have not yet been reported. One of these trials (NCT00005633) is a Phase 1

clincialtrials.gov
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trial comparing the tolerability and immune response of three doses of Hsp70 and Grp78
antigens combined with other immunogens in advanced stage melanoma. There is one
therapeutic trial listed for a Grp78 inhibitor on clinicaltrials.gov. This Phase 1 study found
that a monoclonal antibody to Grp78 (PAT-SM6) was well tolerated and was associated
with 33.3% stable disease in relapsed or refractory multiple myeloma [112].

Table 3. Therapeutic clinical trials testing Hsp70 and/or Grp78 (BiP) antigens.

Title Status Intervention ID

Study Using Vaccination with Heat Shock
Protein 70 (HSP70) for the Treatment of

CML in Chronic Phase
Completed Heat Shock Protein 70 HSP70 NCT00027144

Vaccine Therapy in Treating Patients with
Chronic Myelogenous Leukemia Completed

Recombinant 70-kD
heat-shock protein;

Ganetespib;
Sirolimus

NCT00030303

Vaccine Therapy in Treating Patients with
Stage III or Stage IV Melanoma Completed

OVA BiP peptide; gp209-2M
antigen; recombinant 70-kD

heat-shock protein; tyrosinase
peptide

NCT00005633

AG-858 in Patients Who Are
Cytogenetically Positive After Treatment

with Gleevec™
Terminated

Autologous HSP-70
Protein-Peptide Complex
(AG-858) Plus Gleevec™

NCT00058747

Targeted Natural Killer (NK) Cell Based
Adoptive Immunotherapy for the

Treatment of Patients with Non-Small Cell
Lung Cancer (NSCLC) After
Radiochemotherapy (RCT)

Suspended Hsp70-peptide TKD/IL-2
activated, autologous NK cells NCT02118415

Personalized Cancer Vaccine in Egyptian
Cancer Patients Recruiting Peptide cancer vaccine NCT05059821

Vaccine Therapy in Treating Patients with
Stage III or Stage IV Melanoma Completed Anti-GRP78 monoclonal IgM

antibody PAT-SM6 NCT01727778

Cancer therapeutic strategies to avoid development of drug resistance combine drugs
that target complementary intracellular signaling pathways. The goal is for one drug
to prevent cancer cells from developing alterations in one pathway that can bypass the
inhibition of the complementary pathway targeted by the other drug. Preclinical studies
support combinations of Hsp70 inhibitors with Hsp90 inhibitors or cisplatin [113]. Current
evidence supports inhibiting mortalin to prevent or overcome cancer resistance to inhibitors
of the raf/MAPK/MEK/ERK signaling pathway [114,115] and to paclitaxel [116] and to
complement inhibition of mutant p53 [78]. Clinical studies indicate that Grp78 upregulation
is a cause and prognostic biomarker of cancer resistance to chemotherapy, while preclinical
and clinical studies provide data to support the theory that inhibition of Grp78 can increase
chemotherapy and molecularly targeted agents with acceptable toxicity [96].

3.5. Utilization in Cancer Prevention Strategies

Vaccination against Hsp70 has been studied in clinical trials for prevention of high-
risk breast and cervical cancers. The clinicaltrials.gov website lists three trials of vaccine
therapy using DNA plasmids expressing Hsp70 for prevention of cancer in patients with
pre-neoplastic conditions (Table 4). All of these studies evaluate prevention of cervical
cancer in women diagnosed with (CIN) lesions, atypical squamous cells (ASC) or low-grade
squamous intraepithelial lesion (LSIL). One of these trials (NCT00121173) has reported
results, which show that three out of nine (33%) patients receiving the highest of three
doses of the vaccine had no cervical intraepithelial lesions (CINs) assessed by colposcopy

clinicaltrials.gov
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and biopsy(ies) at the week 15 visit. There were no serious adverse events or mortality in
the study.

Table 4. Hsp70 vaccination cervical cancer prevention trials.

Title Status Intervention ID

Vaccine Therapy with or Without
Imiquimod in Treating Patients With Grade

3 CIN
Recruiting

TA-HPV, pNGVL4a-
Sig/E7(detox)/HSP70 DNA

vaccine, imiquimod
NCT00788164

Vaccine Therapy in Preventing Cervical
Cancer in Patients with CIN Completed

pNGVL4a-
Sig/E7(detox)/HSP70 DNA

vaccine
NCT00121173

Phase II Study of Treatment for HPV16+
ASC-US, ASC-H and LSIL Recruiting PVX-2; placebo NCT03911076

The role of mortalin in cellular immortalization and early carcinogenesis support
its targeting in cancer prevention studies. A major consideration in development of
cancer chemoprevention strategies is to avoid unnecessary toxicity to the patients. The
selective presence of mortalin chaperone complexes with client proteins such as p53 in
cancer compared to healthy cells [77] indicates that the drugs targeted at disruption of
mortalin/client protein complexes will not have significant toxicity. Indeed, minimal to no
toxicity has been proven for drugs and a natural product shown to disrupt the mortalin/p53
complex [117–119]. Renal toxicity which halted clinical development of the MKT-077
allosteric inhibitor of mortalin [120,121] appears to be caused by nonspecific accumulation
of the drug in kidneys [122]. Disruption of mortalin/p53 complexes by SHetA2 was shown
to prevent establishment of ovarian cancer without toxicity in a preclinical model of ovarian
cancer maintenance therapy [78], thus suggesting a role for mortalin inhibitors in secondary
cancer prevention. In this preclinical study, synergistic activity in cell culture and additive
activity in the animal model was observed between SHetA2 and PRIMA-1MET, a drug that
reactivates wild type p53 apoptosis activity in mutant p53 molecules. Lack of significant
toxicity of SHetA2 at doses 50-fold above the effective dose in animal models, suggests
high potential for this agent in cancer chemoprevention [117].

4. Discussion

HSP70 maintenance of proper subcellular localization, folding and function of a wide
range of client proteins and complexes provides a survival mechanism to protect cells
experiencing stress. The Hsp70, hsc70, Grp78 and mortalin HSP70 family members have
overlapping and unique activities that are likely needed to fine-tune cell survival responses
and maintenance of homeostasis. Differences in their inducibility, subcellular localization,
co-chaperones and affinity for binding unique profiles of client proteins provide the cell
with a way to calibrate survival responses to stress. For each of the chaperones, cell death
and survival, and cell cycle were identified as the top two cellular processes, and cancer
was identified as the top disease most significantly affected by their unique profile of direct
binding proteins. Pre-cancer and cancer cells that upregulate these chaperones develop
an evolutionary advantage that drives tumorigenesis and cancer therapy resistance. In
general, cancer patients with higher levels of these HSP70 proteins have worse prognosis.

The upregulation of HSP70 proteins in cancer provides an opportunity to image
cancers based on heightened cell surface expression, and to develop drugs with selective
cytotoxicity to cancer cells without harming healthy cells. Despite promising pre-clinical
evidence for multiple HSP70 natural and synthetic small molecule inhibitors, only SHetA2
is currently being tested in a cancer therapeutic clinical trial. Targeting mortalin with
MKT-077 failed in clinical trials due to non-specific toxicity. Strategies that target Hsp70,
hsc70, Grp78 and mortalin in development of cancer therapeutics are limited by the high
homology of these proteins making it difficult to take advantage of the selective properties
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of the individual chaperones. As has been suggested for Hsp90 inhibitors [4], targeting the
compounds to protein domains responsible for specific protein–protein interactions offers
a reasonable approach for optimizing HSP70-based therapy. Therefore, there is a critical
need for development of experimental tools that can differentiate the individual proteins
and their specific interactions with co-chaperones and client proteins.

In this study, HSP70-1, hsc70, Grp78 and mortalin each were found to directly bind
hundreds of proteins in profiles that partially overlapped. A logical approach to HSP70
drug discovery would be to first target direct-protein binders for the individual HSP70s,
and then consider combining various drugs with complementary targets. This type of
precision medicine approach focusing on specific molecular alterations in the cancer target
tissue may also need to take into consideration the type of cancer targeted. For example, in
this study we found that hsc70 overexpression has significant prognostic value in breast
cancer, cervical cancer and mesothelioma, and gender-specific association in HNSCC and
hepatocellular carcinoma, while low hsc70 expression was significantly associated with
worse prognosis in renal cell carcinoma. These types of selective associations of individual
HSP70 proteins with prognosis of different cancers may be due to specific molecular
alterations that commonly occur in different cancers but may also be affected by more
complex anatomical and physiological factors.

Other important considerations for developing anti-cancer strategies targeted at the
HSP70 proteins is co-operation of various HSP types with the HSP70s in protein folding
and cellular compensation to HSP70 inhibition by upregulation of other heat shock proteins.
For instance, treatment of ovarian cancer cells with an Hsp90 inhibitor led to increased
expression of Hsp70, hsc70, Hsp27 and Hsp47 [123]. On the other hand, genetic reduction
of hsc70 expression led to increased expression of Hsp70, and no effect on Hsp90 inhibitor
sensitivity in multiple colon and ovarian cell lines [124]. However, when both Hsp70 and
hsc70 were simultaneously inhibited, there was an increase in proteasomal degradation
of Hsp90 client proteins, cell cycle arrest and apoptosis. The complementary effects of
inhibiting HSP70s and Hsp90 suggests that combinations of drugs targeted at different
HSP proteins could be used to optimize and personalize cancer therapies, once sufficient
information can be gathered about the milieu of chaperones, co-chaperones and client
proteins in a patient’s cancer. Additionally, drugs, such as SHetA2, that simultaneously
target multiple HSP70 proteins could be used. A promising aspect of these studies was
that simultaneous inhibition of Hsp70, hsc70 and Hsp90, or hsc70, Grp78 and mortalin,
induced apoptosis in cancer cells with drastically reduced effects in non-cancer cells.

Preclinical data support targeting cell surface HSP70 proteins to stimulate anti-cancer
immune responses, image tumors and alter cancer-driving signaling down-stream of the
cell surface HSP70s [125,126]. Multiple trials have been conducted using Hsp70 as an
antigen to stimulate immune attack against developing or established tumors in cancer
prevention and therapy, respectively. Grp78 is also beginning to be targeted in these
strategies. Given the known immune regulation by Hsp70, hsc70, Grp78 and mortalin,
they all represent rational targets for development of immune-based cancer prevention
and treatment strategies that prime immune cells with the HSP70 antigens.

A unique strength of this review is the systematic delineation of different direct
binding proteins and their signaling pathways for Hsp70, hsc70, Grp78 and mortalin. Very
limited studies have differentiated HSP70 proteins on the basis of their specific client
proteins or binding partners. In this quest, for the first time, we provided a detailed
bioinformatic analysis showing overlapping and unique binding partners associated with
overlapping and outstanding pathways for the different HSP70s. A weakness of this study
is that it is limited to only four HSP70s, while the other HSP70 proteins not discussed are
likely to influence the activities of Hsp70, hsc70, Grp78 and mortalin.
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5. Conclusions

The protection of pre-cancer and cancer cells by elevated HSP70 proteins represents a
rational target for imaging, diagnostic and drug development strategies. The complexity of
their multiple cellular and extracellular locations, co-chaperones and client proteins offers
an opportunity to fine-tune and personalize the strategies for individual cancers or tumors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10112996/s1, Table S1: Names and aliases for proteins encoded by HSPA genes, Table S2.
Unique and common proteins that bind to Hsp70-1 (HSPA1A), hsc70 (HSPA8), Grp78 (HSPA5) and
mortalin (HSPA9), Table S3. Top five most significant molecular and cellular functions associated
with Hsp70-1, hsc70, Grp78 and mortalin, Table S4. Top five most significant physiological system,
development and functions associated with Hsp70-1, hsc70, Grp78 and mortalin, Table S5. Top
five most significant diseases and biological functions associated with Hsp70-1, hsc70, Grp78 and
mortalin, Table S6. Cancer clinical trials utilizing Hsp70 as a biomarker. Video S1. Video Abstract,
Graphical Abstract.
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