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ABSTRACT
Currently, a significant proportion of cancer patients do not benefit from programmed cell death-1 (PD-1)- 
targeted therapy. Overcoming drug resistance remains a challenge. In this study, single-cell RNA sequencing 
and bulk RNA sequencing data from samples collected before and after anti-PD-1 therapy were analyzed. Cell- 
cell interaction analyses were performed to determine the differences between pretreatment responders and 
nonresponders and the relative differences in changes from pretreatment to posttreatment status between 
responders and nonresponders to ultimately investigate the specific mechanisms underlying response and 
resistance to anti-PD-1 therapy. Bulk-RNA sequencing data were used to validate our results. Furthermore, we 
analyzed the evolutionary trajectory of ligands/receptors in specific cell types in responders and nonrespon-
ders. Based on pretreatment data from responders and nonresponders, we identified several different cell-cell 
interactions, like WNT5A-PTPRK, EGFR-AREG, AXL-GAS6 and ACKR3-CXCL12. Furthermore, relative differences 
in the changes from pretreatment to posttreatment status between responders and nonresponders existed in 
SELE-PSGL-1, CXCR3-CCL19, CCL4-SLC7A1, CXCL12-CXCR3, EGFR-AREG, THBS1-a3b1 complex, TNF-TNFRSF1A, 
TNF-FAS and TNFSF10-TNFRSF10D interactions. In trajectory analyses of tumor-specific exhausted CD8 T cells 
using ligand/receptor genes, we identified a cluster of T cells that presented a distinct pattern of ligand/ 
receptor expression. They highly expressed suppressive genes like HAVCR2 and KLRC1, cytotoxic genes like 
GZMB and FASLG and the tissue-residence-related gene CCL5. These cells had increased expression of survival- 
related and tissue-residence-related genes, like heat shock protein genes and the interleukin-7 receptor (IL-7R), 
CACYBP and IFITM3 genes, after anti-PD-1 therapy. These results reveal the mechanisms underlying anti-PD-1 
therapy response and offer abundant clues for potential strategies to improve immunotherapy.
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SYNOPSIS

Cell-cell interactions in cancers were analyzed using single-cell 
RNA sequencing data to provide insights into the mechanisms 
underlying response or resistance to anti-PD-1 therapy. The 
results may offer abundant clues for potential strategies to 
improve immunotherapy.

INTRODUCTION

Immunotherapy, for example, immune checkpoint inhibitors 
(ICIs), has recently shown broad clinical applicability across 

several tumors.1 Nevertheless, the response rates of cancers to 
ICIs have been only modest. Among ICI strategies, pro-
grammed cell death-1 (PD-1)-targeted therapy has been com-
monly used in cancer treatment in recent years. The specific 
mechanisms of tumor resistance to anti-PD-1 therapy remain 
unclear. According to the treatment response after the applica-
tion of anti-PD-1 therapy, resistance to anti-PD-1 therapy is 
classified into two types: primary resistance and adaptive 
resistance.2 Primary resistance refers to cases in which there 
is no response to anti-PD-1 therapy from the beginning to the 
end of treatment. The mechanisms of primary resistance to 
anti-PD-1 therapy are complex. It is known that proper 
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activation of T cells by antigen-presenting cells, trafficking and 
infiltration of T cells into tumors, recognition of tumor cells by 
cytotoxic T cells and release of lytic granules to kill tumor cells 
are essential for the success of immune surveillance.3 

Perturbations in any of these steps can lead to the failure of 
anti-PD-1 therapy. Thus, tumor resistance to anti-PD-1 ther-
apy can be affected by multiple factors in the tumor micro-
environment (TME), including intrinsic tumor factors and 
extrinsic tumor factors.4 It is now widely accepted that cell- 
cell interactions exist across the majority of cell types in the 
TME. All cell types in the TME form a complex network and 
respond to anti-PD-1 therapy. Multiple types of cells, like 
cancer-associated fibroblasts (CAFs), myeloid-derived sup-
pressor cells (MDSCs) and regulatory T cells (Tregs), are 
known to play negative roles in immune surveillance, while 
myofibroblasts, natural killer (NK) cells and other immune 
cells are being increasingly identified to play complex roles in 
immune surveillance. However, it is still unclear how interac-
tions between these cells in the TME affect anti-PD-1 therapy 
response.

Single-cell RNA sequencing (scRNA-seq) makes it possible to 
investigate the cell-cell interaction network in the TME,5,6 which 
may facilitate a better understanding of tumor response or resis-
tance to anti-PD-1 therapy. Cell-cell interaction analyses based on 
scRNA-seq data from paired samples taken before and after anti- 
PD-1 therapy can contribute to determining critical cell-cell inter-
actions involved in response or resistance to anti-PD-1 therapy.

In the current study, we explored the mechanisms of response 
or resistance to anti-PD-1 therapy based on scRNA data from 
basal cell carcinoma (BCC) and several other immunotherapy 
datasets. Our study mainly explores the mechanisms underlying 
response or resistance to immunotherapy from the perspective 
of ligand-receptor interactions among cells. We believe that the 
efficacy of immunotherapy is affected by many factors, and 
among these, the effect of cell-cell communications on immu-
notherapy has not been systemically explored thus far. We 
identified several crucial cell-cell interactions that may play 
critical roles in immunotherapy. Furthermore, we identified 
a cluster of tumor-specific CD8 T cells in responders (which 
highly coexpressed CD39 and CD103) that presented a distinct 
pattern of ligand/receptor expression.7–9 This cluster of cells not 
only highly expressed negative regulatory ligands/receptors, like 
HAVCR2, CD52, CSF1, CD74, KLRC1, and CD96,10–15 but also 
highly expressed positive regulatory ligands/receptors related to 
immune activation or cytotoxicity, such as GZMB, GNLY, 
NKG7, FASLG, CLEC2B, TNFRSF9 and CCL5.16,17 Of note, 
these cells had increased expression of survival- and residence- 
related genes after anti-PD-1 therapy. Identification of this clus-
ter of cells may contribute to improving adoptive cellular immu-
notherapy in cancers. Together, these findings provide in-depth 
insights into the mechanisms underlying and the critical cell-cell 
interactions that play roles in anti-PD-1 therapy response.

MATERIALS AND METHODS

Materials

scRNA-seq data and bulk-RNA sequencing data regarding 
anti-PD-1 therapy response were obtained from the Gene 

Expression Omnibus (GEO) database (scRNA-seq data, 
GSE123814; bulk-RNA sequencing data, GSE78220, 
GSE91061, PRJEB23709 and GSE145996). scRNA-seq data 
were derived from pretreatment and posttreatment site- 
matched basal cell carcinoma (BCC) samples from the same 
patient treated with pembrolizumab or cemiplimab.9 Among 
the patients, su001, su002, su003, su004, su009, and su012 were 
responders to anti-PD-1 therapy, and su005, su006, su007, 
su008, and su010 were nonresponders to anti-PD-1 therapy. 
The bulk-RNA sequencing data of GSE78220 were derived 
from the pretreatment tumors of 28 patients who received 
pembrolizumab or nivolumab.18 The data were used for the 
identification of critical cell-cell interactions that differ 
between responders and nonresponders. The bulk-RNA 
sequencing data of GSE91061 were derived from matched 
pretreatment and posttreatment tumor samples taken from 
patients who received nivolumab.19 These data were used for 
the identification of critical cell-cell interactions that showed 
relative differences in pretreatment to posttreatment changes 
between responders and nonresponders. Finally, the 
PRJEB23709 and GSE145996 datasets were used for 
validation.20,21 Sample information for the 5 abovementioned 
datasets is listed in Supplemental Table 1.

Single-cell RNA sequencing data quality control and 
processing

ScRNA data were processed by Cell Ranger (v.2.1.0, 10x 
Genomics) using the GRCh38 reference genome provided by 
10x Genomics. Subsequent analyses were performed using 
Seurat (version 3.1). Cells that had fewer than 200 detected 
genes or had >10% mitochondrial gene counts were filtered 
out. Then, we applied SCTransform to the scRNA-seq data in 
Seurat, which replaces the “NormalizeData”, “ScaleData” and 
“FindVariableFeatures” functions in the previous version of 
Seurat. During normalization, we removed confounding 
sources of variation (nCount_RNA and mitochondrial map-
ping percentage).

Principal component analysis and UMAP clustering

Dimensionality reduction was performed by principal compo-
nent analysis (PCA). Thirty principal components (PCs) were 
used in subsequent cell cluster analysis with a resolution of 0.8. 
Nonlinear dimensional reduction was performed using UMAP 
to visualize the scRNA dataset. Differentially expressed genes 
were identified using “FindAllMarkers” or “FindMarkers” in 
Seurat. Gene set variation analysis (GSVA) between specific 
cell types was performed using the “GSVA” R package.

Annotation of cell clusters

We largely adopted the annotations of cell clusters used in the 
Yost et al. study9 and added ACTA2 (α-SMA) as a marker for 
myofibroblasts, with cells identified as follows: T cells (CD3D, 
CD3G, CD3E, and CD2), CD8 + T cells (CD8A and GZMA), 
CD4 + T cells/Tregs (CD4 and FOXP3), NK cells (KLRC1 and 
KLRC3), B cells (CD19 and CD79A), plasma cells (SLAMF7 
and IGKC), macrophages (FCGR2A and CSF1R), dendritic 
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cells (DCs; FLT3), plasmacytoid dendritic cells (pDCs; 
CLEC4C), fibroblasts (COL1A2), myofibroblasts (α-SMA, 
MCAM, and MYLK), cancer-associated fibroblasts (CAFs; 
FAP and PDPN), malignant cells (EPCAM and TP63), 
endothelial cells (PECAM1 and VWF), and melanocytes 
(PMEL and MLANA). First, cells were clustered into broad 
cell types (B cells, NK cells, T cells, CAFs, myofibroblasts, 
endothelial cells, macrophages, DCs, pDCs, plasma cells, 
tumor cells and melanocytes). Next, tumor cell and T cell 
data were isolated from the complete dataset and reclustered 
based on the first 20 PCs with k = 30 and resolution = 0.4 for 
tumor cells and resolution = 0.3 for T cells. Finally, cells were 
clustered into 18 clusters, including 2 malignant clusters 
(tumor_1 and tumor_2), 2 CD4 + T cell clusters, 3 CD8 + T 
cell clusters, proliferating T cells, endothelial cells, melano-
cytes, myofibroblasts, CAFs, DCs, macrophages, pDCs, 2 
B cell clusters (B_cells_1 and B_cells_2), and 1 NK cell cluster. 
Validation of malignant cells was further performed by single- 
cell copy number variation (CNV) estimation as described in 
the Yost et al. study. For UMAP visualization, we used the first 
30 PCs, a minimum distance of 0.3 and 30 neighbors.

Cell-cell interaction score calculation using cellphoneDB

We investigated cell-cell interactions across all cell types with 
CellPhoneDB (https://www.cellphonedb.org/). CellPhoneDB is 
an emerging and frequently used method to uncover cell-cell 
communication.22,23 Several ligand-receptor databases, such as 
UniProt, Ensembl, PDB, the IMEx consortium, and IUPHAR, 
serve as references for CellPhoneDB. To assess cellular crosstalk 
between different cell types, CellPhoneDB predicts enriched recep-
tor–ligand interactions between two cell types based on the expres-
sion of a receptor by one cell type and the expression of a ligand by 
another cell type. To identify the most relevant interactions 
between cell types, CellPhoneDB looks for cell-type specific inter-
actions between ligands and receptors. Only receptors and ligands 
expressed in more than 10% of the cells in the specific cluster are 
considered significant. CellPhoneDB then performs pairwise com-
parisons between all cell types. First, CellPhoneDB randomly 
permutes the cluster labels of all cells (1,000 times as a default) 
and determines the mean of the average receptor expression level 
in a cluster and the average ligand expression level in the interact-
ing cluster. For each receptor–ligand pair in each pairwise com-
parison between two cell types, this generates a null distribution. 
By calculating the proportion of the means that are equal to or 
higher than the actual mean, CellPhoneDB obtains a p value for 
the likelihood of cell-type specificity of a given receptor–ligand 
complex. Finally, the adjusted p value was calculated by the false 
discovery rate (“FDR”) method proposed by Yoav Benjamini and 
Yosef Hochberg for multiple comparison correction across the 384 
ligand-receptor pairs and 324 cell pairs. Significant ligand-receptor 
interaction pairs with adjusted p value <.05 were included in the 
subsequent analyses.

Profiles of cell-cell interactions between cell pairs

We stratified the scRNA-seq dataset into four groups based on 
treatment status and response status: pretreatment responders, 
posttreatment responders, pretreatment nonresponders and 

posttreatment nonresponders. To assess the profiles of cell-cell 
interactions, we calculated the total interaction score of each cell 
pair. The total interaction score was the summation of the scores 
of all ligand-receptor pairs within a cell pair (Figure 2a & B and 
Figure 3a, B, C & D; a deeper red color indicates a higher total 
interaction score). The total score reflects the abundance and 
expression levels of ligand-receptor pairs within each cell pair, 
regardless of whether the interaction involves positive regulatory 
ligands/receptors or negative regulatory ligands/receptors for 
antitumor immunity. To visualize the differences in total inter-
action scores between subgroups, we calculated the ratio of total 
interaction scores between groups (Figure 2c, the ratio between 
pretreatment responders and nonresponders; Fig. 3 E & F, the 
ratio between pretreatment and posttreatment status). If the 
ratio was >1, a red color was used. If the ratio was <1, a blue 
color was used. Relative differences in the changes from pre-
treatment to posttreatment status between responders and non-
responders are shown in Figure 3g, as determined by calculating 
the relative ratio ((the ratio of the posttreatment/pretreatment 
value in responders)/(the ratio of the posttreatment/pretreat-
ment value in nonresponders)). In addition, the size of the circle 
of each cell pair reflects the number or the ratio of numbers of 
ligand-receptor pairs within a cell pair.

Comparison between pretreatment responders and 
nonresponders

To identify ligand-receptor pairs with significant differences 
between pretreatment responders and nonresponders, the 
Mann-Whitney U test was performed to compare the interac-
tion scores of each ligand-receptor pair in all cell pairs between 
pretreatment responders. The FDR method proposed by Yoav 
Benjamini and Yosef Hochberg was applied to calculate the 
adjusted p value. Ligand-receptor pairs with adjusted p value 
<.05 were preserved.

For visualization, the ratio of responder/nonresponder 
interaction scores were calculated as follows:

Ratio (pretreatment responders to nonresponders) = score 
(pretreatment responders)/score (pretreatment nonresponders)

If Ratio (pretreatment responders/nonresponders) >1, 
a higher level of interaction existed in responders than in 
nonresponders (indicated with a red color). If Ratio (pretreat-
ment responders/nonresponders) <1, a lower level of interaction 
existed in responders than in nonresponders (indicated with 
a blue color) (Figure 2d & E).

Comparison of Relative Differences in Changes from 
Pretreatment to Posttreatment between Responders and 
Nonresponders

We calculated the changes in interaction scores from pre-
treatment to posttreatment status in responders and nonre-
sponders as follows:

(1) Ratio (post/pre) = posttreatment score/pretreatment 
score;

The Ratio (post/pre) reflected the changes from pretreat-
ment to posttreatment status. To identify ligand-receptor 
pairs with significant differences in changes from pretreatment 
to posttreatment between responders and nonresponders, the 
Ratio (post/pre) was adopted as a variable and the Mann- 
Whitney U test was performed to compare the Ratio (post/ 
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pre) values between responders and nonresponders. The FDR 
method proposed by Yoav Benjamini and Yosef Hochberg was 
applied to calculate the adjusted p value. Ligand-receptor pairs 
with adjusted p value <.05 were preserved.

For visualization, we calculated the relative differences 
(responders versus nonresponders) in cell-cell interaction changes 
(pretreatment to posttreatment status) as described below:

(2) Relative Ratio = Ratio (posttreatment/pretreatment in 
responders)/Ratio (posttreatment/pretreatment in 
nonresponders)

The Relative Ratio reflects the relative difference in changes 
from pretreatment to posttreatment status between responders 
and nonresponders. If the Relative Ratio value between respon-
ders and nonresponders was >1, the specific ligand-receptor 
interaction relatively increased in responders or relatively 
decreased in nonresponders during treatment (indicated with 
a red color in Figure 4, 5 & 6c). If the Relative Ratio value 
between responders and nonresponders was <1, the specific 
ligand-receptor interaction relatively decreased in responders 
or relatively increased in nonresponders during treatment 
(indicated in a blue color in Figure 4, 5 & 6c).

Identification of “ligand-receptor pairs related to response 
before treatment” and “ligand-receptor pairs related to 
response on treatment” with immunotherapy bulk-RNA 
sequencing data

Patients who received anti-PD-1 therapy were enrolled in the 
Hugo et al. study,18 and bulk-RNA sequencing data were 
obtained. Differentially expressed genes (DEGs) were deter-
mined by comparing data between pretreatment responders 
and nonresponders. We intersected the DEGs from Hugo’s 
study and the ligand/receptor genes we identified by compar-
ing the scRNA-seq data (derived as mentioned above) between 
pretreatment responders and nonresponders to yield the 
“Ligand-receptor Pairs related to response before treatment”.

Riaz et al. also collected matched pretreatment and posttreat-
ment samples from the same patients.19 In the Riaz et al. study, 
DEG analysis was performed between pre- and posttreatment 
samples, and genes that changed differentially in responders 
versus nonresponders were considered. We intersected the 
DEGs from the Riaz study and the ligand/receptor genes we 
identified by comparing the relative differences in changes from 
pretreatment to posttreatment status between responders and 
nonresponders using the scRNA data mentioned above to yield 
the “Ligand-receptor Pairs related to response on treatment”.

Validation of “ligand-receptor pairs related to response 
before treatment” and “ligand-receptor pairs related to 
response on treatment” with other datasets

To test whether the “Ligand-receptor Pairs Related to 
Response Before Treatment” and the “Ligand-receptor 
Pairs Related to Response on Treatment” could predict 
the response to immunotherapy, we developed predictive 
models using XGBoost. We calculated the interaction 
scores of the “Ligand-receptor Pairs Related to Response 
Before Treatment” and the “Ligand-receptor Pairs Related 

to Response on Treatment” by single-sample gene set 
enrichment analyses (ssGSEA); for example, WNT5A and 
PTPRK were considered a gene set. Then, we developed 
predictive models based on the Hugo dataset (the “Ligand- 
receptor Pairs Related to Response Before Treatment” 
model) and the Riaz dataset (the “Ligand-receptor Pairs 
Related to Response On Treatment” model. The change 
from pretreatment to posttreatment status was calculated 
as a variable to develop the model). To avoid overfitting, 
we used the “xgb.train” method with the “xgboost” pack-
age in R statistics to develop the models. Two melanoma 
datasets were used to validate our results (Figure 8). We 
used the pretreatment data of set 1 
(Melanoma_PRJEB23709, 41 samples) and set 2 
(Melanoma_GSE145996, 14 samples) to validate the 
“Ligand-receptor Pairs Related to Response Before 
Treatment” model (Figure 8a & B). We used the data of 
relative changes from pretreatment to posttreatment status 
from set 1 (Melanoma_PRJEB23709, 9 samples) to validate 
the “Ligand-receptor Pairs Related to Response On 
Treatment” model (Figure 8c).

Trajectory analyses using ligand-receptor genes

Trajectory analyses of all cell types in responders and nonre-
sponders were performed using 970 ligand-receptor gene pairs 
(Supplemental Table 2) by Monocle3. Marker ligand/receptor 
pairs in each cell type were identified using the “top_markers” 
function based on ligand-receptor genes in Monocle3. 
Trajectory maps were plotted with the “learn_graph” and 
“plot_cells” functions in Monocle3. To investigate the evolu-
tionary trajectories of ligand/receptor pairs in specific cell types, 
we isolated subsets of cell types of interest, like exhausted CD8 
T cells in responders, for further analyses. Coexpression analysis 
of ligands/receptors was performed with the Pearson correlation 
coefficient test and the WGCNA package in R statistics.

Analyses focusing on CAFs and myofibroblasts

To further clarify the functions of CAFs and myofibroblasts, we 
compared the expression level of several immune-related genes 
which were considered to be “pro-tumor” or “immune- 
suppressive” between CAFs and myofibroblasts. We also inves-
tigated the pathway activity difference using GSVA analysis 
based on GO terms.

Statistical analysis

All statistical analyses were performed using R (http://www. 
rproject.org), SPSS version 25.0 and Python (https://www. 
python.org/). The detailed statistical methods used for each 
analysis are described within the figure legends. Two-sided 
paired or unpaired Student’s t-tests, unpaired Wilcoxon rank- 
sum (Mann-Whitney U) tests or chi-square tests were used 
where indicated. The FDR method proposed by Yoav 
Benjamini and Yosef Hochberg was applied to calculate the 
adjusted p value. An adjusted p value < .05 was considered to 
indicate statistical significance. Single-cell analyses were 
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performed mainly with Seurat and Monocle3. All plots were 
produced with R software and refined with Adobe Illustrator.

RESULTS

The study overview is shown in Figure 1a. To explore the cell-cell 
interactions in cancer patients who received anti-PD-1 therapy, 
we used scRNA-seq and bulk-RNA sequencing data associated 
with anti-PD-1 therapy in cancer patients from the GEO database. 
Among these data, scRNA-seq data were derived from paired, 
site-matched samples taken before and after anti-PD-1 treatment 
from the same patient and same site with basal cell carcinoma 
(BCC). A total of 11 patients were included; of these, 6 patients 
were responders and 5 patients were nonresponders to anti-PD-1 

therapy. Overall, scRNA-seq data from 53,030 cells were obtained 
after quality control. Among the cells, 26,881 cells were from 
responders (8,836 cells were taken before treatment, and 18,045 
cells were taken after treatment), and 26,149 cells were from 
nonresponders (12,492 cells were taken before treatment, and 
13,657 cells were taken after treatment). We largely adopted the 
cell annotations used in the Yost et al. study, and all cells were 
assigned to 19 clusters. Then, cells were assigned to 4 groups 
stratified by response to anti-PD-1 therapy and treatment status 
(Figure 1b, C, D & E): pretreatment responders, posttreatment 
responders, pretreatment nonresponders, and posttreatment non-
responders. Of note, immune cells and stromal cells from different 
groups clustered together, indicating the consistency of the 
immune cell and stromal cell types across patients and treatment 

Figure 1. Study overview, analysis of the tumor microenvironment in patients before and after anti-PD-1 treatment with scRNA-seq, and marker ligands/receptors in 
specific cell types. (A) Study overview. (B, C, D & E) UMAP plots of cells from pretreatment responders, posttreatment responders, pretreatment nonresponders, and 
posttreatment nonresponders, with each cell color coded to indicate the associated cell type. (F, G, H & I) Proportions of each cell type in the four groups. The chi- 
square test was used to compare the cell composition among groups. (J) Tumor mutation burden of responders vs. nonresponders (pretreatment status). The Mann- 
Whitney U test was used to compared the tumor mutation burden of the two groups. (K) PD-L1 (CD274) expression level in specific cell types in pretreatment 
responders vs. nonresponders. The Mann-Whitney U test was used to compared the expression levels of the two groups. (L) Marker ligand/receptor pairs in specific cell 
types. The top 4 representative markers for each cell type are shown. Notes: *, p < .05; **, p < .01; ***, p < .001; ns, not significant.
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statuses. Malignant cells were further determined by single-cell 
CNV estimation, as performed in the Yost et al. study. The 
proportions and counts of each cell type in the four groups are 
shown in figure 1f, G, H & I. Next, we analyzed the level of PD-L1 
and tumor mutation burden (TMB), which are generally believed 
to be predictive markers of response to immunotherapy, in pre-
treatment samples. We found that the expression levels of PD-L1 
in tumor cells, CAFs and plasma cells were higher in nonrespon-
ders than in responders. The TMB did not show a significant 
difference between responders and nonresponders. This result 
may have been caused by the small sample size (Figure 1j & K). 
The marker ligand/receptor pairs of each cell type are shown in 
Figure 1l. We show the top 4 representative ligand/receptor pairs 
for each cell type.

Comparison of cell-cell interactions between pretreatment 
responders and nonresponders

The total interaction scores within each cell pair in pretreat-
ment responders and pretreatment nonresponders are shown 
in Figure 2a & B, respectively. The ratios of total scores 

between pretreatment responders and nonresponders are 
shown in Figure 2c. The abundance and expression of ligand- 
receptor pairs in CD4 T cells, activated CD8 T cells and NK 
cells compared to other cells was lower in pretreatment respon-
ders than in nonresponders, which indicated that there was 
more communication between CD4 T cells, activated CD8 
T cells, and NK cells and other cells in nonresponders than in 
responders. The specific details of the differences are provided 
for each cell pair from pretreatment responders and nonre-
sponders in Supplemental Figure 1.

The results of specific comparisons of each ligand-receptor 
interaction in pretreatment responders with that of nonrespon-
ders are shown in Figure 2d (fold difference >2 or <0.5 pre-
sented). Consistently, lower levels of WNT5A-, TNF-, NRP2-, 
CTLA-4-, COL7A1-, CD28- and CCL4-related ligand-receptor 
pairs were found in pretreatment responders than in nonre-
sponders. In contrast, consistently higher levels of SELE-, 
MDK-, ICAM1-, CXCL12- and CD74-related ligand-receptor 
pairs were found in pretreatment responders than in nonre-
sponders. WNT5A-related ligand-receptor pairs were largely 
found between CAFs and CAFs/myofibroblasts/tumor cells. 

Figure 2. Comparison of pretreatment responders and nonresponders. (A & B) Cell-cell interactions across all cell pairs in pretreatment responders and pretreatment 
nonresponders. (C) Comparison of cell-cell interactions between pretreatment responders and pretreatment nonresponders. We calculated the ratio of the total 
interaction scores taking into account all interaction pairs within each specific cell pair between pretreatment responders and pretreatment nonresponders. (D) Specific 
comparison of each ligand-receptor interaction in pretreatment responders with each ligand-receptor interaction in pretreatment nonresponders. Overlapping genes 
within the ligand or receptor genes and the 693 DEGs identified between pretreatment responders and pretreatment nonresponders in the Hugo et al. study are shown. 
Differentially expressed ligands/receptors identified in the Hugo et al. study are shown in bold and italic text. (E) Significantly different ligand-receptor pairs with 
adjusted p value <.05 between pretreatment responders and pretreatment nonresponders are shown. We called these genes the “Ligand-receptor Pairs Related to 
Response before Treatment”. The Mann-Whitney U test was used to compare the scores of the specific ligand-receptor pair between pretreatment responders and 
nonresponders, taking into account the scores of that ligand-receptor pair in all cell pairs. The adjusted p value was calculated by “FDR” method. Notes, in Fig. 2A & B, 
the number of ligand-receptor pairs is represented by circles: larger circles reflect more ligand-receptor pairs within the cell pair, and a deeper red color indicates 
a higher interaction intensity. In Fig. 2 C, D & E, a Ratio (pretreatment responders/nonresponders) >1 indicates that a higher interaction intensity existed in responders 
than in nonresponders (shown in red). A Ratio (pretreatment responders/nonresponders) <1 indicates that a lower interaction intensity exists in responders than in 
nonresponders (shown in blue).
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WNT5A-ROR2/PTPRK/FZD1 interactions between CAFs and 
CAFs were weaker in responders than in nonresponders. 
Collagen-related ligand-receptor interactions between myofi-
broblasts and tumor cells were weaker in responders than in 
nonresponders. PLXNB2-PTN, EGFR-AREG, and CXCL12- 
DPP4/ACKR3 (CXCR7) interactions were largely stronger in 
responders than in nonresponders.

Next, we intersected the ligand/receptor pairs with 693 
DEGs identified between pretreatment responders and nonre-
sponders in the Hugo et al. study, which also included pre-
treatment tumor samples from patients who would receive 
anti-PD-1 therapy (Figure 2d, Supplemental Figure 2). To 
identify ligand-receptor pairs that differed significantly in all 
cell pairs between pretreatment responders and nonrespon-
ders, the Mann-Whitney U test was performed to compare 
the interaction scores of each ligand-receptor pair in all cell 
pairs between pretreatment responders, and ligand-receptor 
pairs with adjusted p value <.05 were preserved 
(Supplemental Table 3). WNT5A-PTPRK, EGFR-AREG, AXL- 
GAS6 and ACKR3-CXCL12 were identified. We called these 
intersecting ligand-receptor pairs “Ligand-Receptor pairs 
Related to Response Before Treatment” (Figure 2e).

Comparison of the relative differences in changes from 
pretreatment to posttreatment status between responders 
and nonresponders
To visualize the differences in total interaction scores within 
each cell pair between groups, we calculated the ratio of total 
interaction scores (Figure 3e & F, ratio between pretreatment 
and posttreatment status). The relative differences in changes 
from pretreatment to posttreatment status between responders 
and nonresponders are shown in Figure 3g, as derived by 
calculating the relative ratio: ratio (posttreatment/pretreatment 
in responders)/ratio (posttreatment/pretreatment in nonre-
sponders)). On the whole, cell-cell interactions between CD4 
T cells/activated CD8 T cells/myofibroblasts/NK cells/plasma 
cells/proliferative T cells and other cells were relatively upre-
gulated in responders compared with nonresponders, while 
those between B cells/CAFs/endothelial cells/macrophages 
and other cells were relatively downregulated. The specific 
details of the relative differences are provided for each cell 
pair from responders and nonresponders in Supplemental 
Figure 3.

Next, we intersected the ligand/receptor gene pairs with 
2,670 DEGs that changed differentially from pretreatment to 

Figure 3. Relative differences in changes from pretreatment to posttreatment status between responders and nonresponders. (A, B, C & D) Cell-cell interactions across 
all cell pairs in responders and nonresponders before and after anti-PD-1 treatment. A deeper red color indicates a higher intensity. (E & F) Changes in responders and 
nonresponders from pretreatment to posttreatment status; the posttreatment total interaction scores and numbers of ligand-receptor pairs in each cell pair were 
divided by the respective pretreatment values. (G) Relative differences (responders vs. nonresponders) in changes from pretreatment to posttreatment status. Notes, in 
Fig. 3A, B, C & D, larger circles reflect more ligand-receptor pairs within the cell pair, and a deeper red color indicates a higher interaction intensity. In Fig. 3 C & D, a Ratio 
(post/pre) >1 indicates a higher interaction intensity exists in posttreatment data than in pretreatment data (shown in red). A Ratio (post/pre) <1 indicates that a lower 
interaction intensity exists in posttreatment data than in pretreatment data (shown in blue). The size of the circles reflects the ratio of the number of ligand-receptor 
pairs (post/pre). In Fig. 3E, a “Relative Ratio” between responders and nonresponders >1 means that the interaction intensity was relatively increased in responders or 
relatively decreased in nonresponders during treatment (shown in red). A “relative ratio” between responders and nonresponders <1 means that the interaction 
intensity was relatively decreased in responders or relatively increased in nonresponders during treatment (shown in blue). The size of the circles reflects the relative 
changes in the number of ligand-receptor interactions within cell pairs during treatment between responders and nonresponders.
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posttreatment status between responders and nonresponders 
in the Riaz et al. study, which also contained paired pretreat-
ment and posttreatment samples from the same patient who 
received anti-PD-1 therapy (Figures 4 & 5, “Ratio (post/pre)” 

>2 or <0.5 presented, Supplemental Figure 4). To identify 
ligand-receptor pairs with significant relative differences in 
changes between responders and nonresponders, the Mann- 
Whitney U test was performed, and ligand-receptor pairs with 

Figure 4. Relative differences in changes in specific ligand-receptor pairs between responders and nonresponders with “Relative Ratio” >2 or <0.5 (overlapping with 
DEGs from the Riaz et al. study). (A) CD8 T cells and NK cells as the ligand-expressing cells, and other cells as the receptor-expressing cells. (B) CAFs and myofibroblasts as 
the ligand-expressing cells, and other cells as the receptor-expressing cells. (C) Macrophages, DCs and pDCs as the ligand-expressing cells, and other cells as the 
receptor-expressing cells. Notes, the left and middle columns show the change in the cell-cell interaction in responders and nonresponders from pretreatment to 
posttreatment status; if ratio (post/pre) >1, there was a higher interaction intensity in the posttreatment data than in the pretreatment data (shown in red). If Ratio 
(post/pre) <1, there was a lower interaction intensity in the posttreatment data than in the pretreatment data (shown in blue). The right column shows the relative 
differences in changes in responders and nonresponders from pretreatment to posttreatment status. If the “Relative Ratio” between responders and nonresponders was 
>1, the interaction intensity was relatively increased in responders or relatively decreased in nonresponders during treatment (shown in red). If the “Relative Ratio” 
between responders and nonresponders was <1, the interaction intensity relatively decreased in responders or relatively increased in nonresponders during treatment 
(shown in blue).
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adjusted p value <.05 were preserved (Supplemental Table 4). 
SELE-SELPLG, CXCR3-CCL19, CXCL12-CXCR3, CCL4- 
SLC7A1, TNF-TNFRSF1A, TNF-FAS, TNFSF10- 
TNFRSF10D, THBS1_a3b1 complex and EGFR-AREG inter-
actions were identified as “Ligand-receptor Pairs Related to 
Response on Treatment” (Figure 6).

Ligand-receptor Pairs Relatively Upregulated in Responders 
or Downregulated in Nonresponders During Treatment

CCL19-CXCR3/CCRL2 interactions were relatively upregu-
lated in responders versus nonresponders; the CCL19-CXCR3 
interaction was mainly observed between DCs and all T cells/ 
NK cells, and the CCL19-CCRL2 interaction was observed 
between DCs and macrophages. CCL4-SLC7A1/CCR8/CCR5 
interactions were relatively stronger between activated CD8 
T cells/macrophages and DCs/proliferative T cells/Tregs/ 
tumor cells in responders than in nonresponders; among 
them, the CCL4-SLC7A1 interaction between activated CD8 
T cells and DCs/proliferative T cells/tumor cells was drastically 
downregulated in nonresponders compared with responders, 
and the CCL4-CCR8 interaction between activated CD8 T cells 

to Tregs was drastically upregulated in responders compared 
with nonresponders. TNF-related ligand-receptor pairs, like 
TNF-TNFRSF1A and TNF-FAS, were largely upregulated 
between activated CD8 T cells and other cells in responders, 
while they were largely downregulated between activated CD8 
T cells/macrophages and other cells in nonresponders. THBS1- 
a3b1 complex interactions were relatively downregulated 
between CAFs/endothelial cells/macrophages/myofibroblasts/ 
tumor cells and tumor cells in nonresponders. NPR2-VEGFA 
/SEMA3C/PGF interactions between CAFs/DCs/endothelial 
cells/macrophages and other cells were upregulated in respon-
ders compared with nonresponders. LAIR1-LILRB4 interac-
tions were downregulated between macrophages and DCs/ 
macrophages in nonresponders. IL15-IL15RA interactions 
were relatively upregulated between DCs and CAFs/plasma 
cells in responders versus nonresponders. EREG-EGFR inter-
actions between macrophages and CAFs/tumor cells and 
HBEGF-EGFR interactions between tumor cells and CAFs/ 
tumor cells were upregulated in responders compared with 
nonresponders.

Figure 5. Relative differences in changes in specific ligand-receptor pairs between responders and nonresponders with “Relative Ratio” >2 or <0.5 (overlapping with 
DEGs identified in the Riaz et al. study). (A) B cells, plasma cells, endothelial cells, proliferative T cells and Tregs as the ligand-expressing cells, and other cells as the 
receptor-expressing cells. (B) Tumor cells as the ligand-expressing cells, and other cells as the receptor-expressing cells. Notes, the left and middle columns show the 
change in the cell-cell interaction in responders and nonresponders from pretreatment to posttreatment status; if Ratio (post/pre) >1, there was a higher interaction 
intensity in the posttreatment data than in the pretreatment data (shown in red). If Ratio (post/pre) <1, there was a lower interaction intensity in the posttreatment data 
than in the pretreatment data (shown in blue). The right column shows the relative differences in changes in responders and nonresponders from pretreatment to 
posttreatment status. If the “Relative Ratio” between responders and nonresponders was >1, the interaction intensity relatively increased in responders or relatively 
decreased in nonresponders during treatment (shown in red). If the “Relative Ratio” between responders and nonresponders was <1, the interaction intensity relatively 
decreased in responders or relatively increased in nonresponders during treatment (shown in blue).
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Ligand-receptor pairs relatively downregulated in 
responders or upregulated in nonresponders during 
treatment

SELP/SELL/SELE-SELPLG interactions became relatively 
stronger in nonresponders; among them, SELE-SELPLG inter-
actions between endothelial cells and T cells/pDCs/plasma cells 
were drastically relatively upregulated in nonresponders versus 
responders. TNFSF10/MIF-TNFRSF10D interactions between 
other cells and endothelial cells and TNFSF13-related ligand- 
receptor interactions between pDCs/macrophages and other 
cells were consistently weaker in responders than in nonre-
sponders. AREG-EGFR interactions between macrophages/ 
pDCs/NK cells/tumor cells and CAFs/tumor cells, TGFB1- 
EGFR interactions between tumor cells and activated CD8 
T cells/exhausted CD8 T cells, COPA-EGFR interactions 
between tumor cells and exhausted CD8 T cells/memory CD8 
T cells were relatively weaker in responders than in nonre-
sponders. CXCL12-CXCR3/CXCR4/CXCR7(ACKR3)/DPP4 
interactions were consistently downregulated in responders 
but upregulated in nonresponders; among them, CXCL12- 
CXCR3/CXCR4/CXCR7 interactions were mainly observed 
between CAFs/endothelial cells and other cells, and CXCL12- 
DPP4 interactions were observed between CAFs and CAFs/T 
cells/tumor cells. CCL5-CCR5/CCR4 interactions between 
T cells/NK cells and T cells/endothelial cells were upregulated 
in both responders and nonresponders, but the increases were 
sharper in nonresponders; CCL5-CCR4 interactions between 
exhausted CD8 T cells/NK cells and CD4 T cells/Tregs/prolif-
erative T cells were significantly stronger in nonresponders 
than in responders. CD74-MIF/COPA/APP interactions were 

significantly downregulated in responders and upregulated in 
nonresponders. CD74-MIF/COPA/APP interactions were 
slightly upregulated between B cells/DCs and other cells and 
were drastically upregulated between macrophages and other 
cells in nonresponders versus responders. CD55-ADGRE5 
interactions were broadly downregulated between several 
kinds of cells and B cells/CD8 T cells/NK cells/proliferative 
T cells but upregulated between other immune cells and tumor 
cells in responders; however, in nonresponders, they showed 
a different pattern. LGALS9-related ligand-receptor interac-
tions between DCs/endothelial cells/macrophages/pDCs and 
other cells were relatively stronger in nonresponders than 
responders, while LGALS9-CD44 interactions were weaker.

Roles of CAFs and myofibroblasts in anti-PD-1 therapy

We found that CAFs and myofibroblasts seemed to play dif-
ferent roles in anti-PD-1 therapy. For example, interactions 
between FN1 and integrin between CAFs and other cells were 
drastically upregulated in nonresponders, while these interac-
tions between myofibroblasts and other cells were drastically 
upregulated in responders. We investigated the expression 
levels of several immune-related genes in CAFs and myofibro-
blasts and performed GSVA for CAFs and myofibroblasts 
(Supplemental Figure 5 and Supplemental Tables 5 & 6).

Trajectory analyses using ligand-receptor genes

We analyzed the evolutionary trajectory of all cells in respon-
ders and nonresponders using Monocle3 with 970 ligand- 

Figure 6. “Ligand-receptors Pairs Related to Response On Treatment” with significant relative differences in changes between responders and nonresponders in our 
study. (A) Changes from pretreatment to posttreatment status in responders. (B) Changes from pretreatment to posttreatment status in nonresponders. (C) Relative 
differences in the changes between responders and nonresponders. The Mann-Whitney U test was performed to compare the “Ratio (post/pre)” values between 
responders and nonresponders. The false discovery rate (FDR) method proposed by Yoav Benjamini and Yosef Hochberg was applied to calculate the adjusted p value. 
Ligand-receptor pairs with adjusted p value <.05 were called the “Ligand-receptor Pairs Related to Response On Treatment”. ***, p < .001; **, p < .01; *, p < .05. Notes, in 
Fig. 6A, B & C, a Ratio (post/pre) >1 indicates that a higher interaction intensity existed in the posttreatment data than in the pretreatment data (shown in red). A Ratio 
(post/pre) <1 indicates that a lower interaction intensity existed in the posttreatment data than in the pretreatment data (shown in blue).
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Figure 7. Trajectory Analyses of All Cell Types and Tumor-Specific CD8 T cells Using Ligand/Receptor-Related Genes. (A) Trajectory analyses of all cell types in responders 
and nonresponders. (B) Distribution of CD39 (ENTPD1) and CD103 (ITGAE) coexpression in tumor-specific CD8 T cells. The figures shows that tumor-specific CD8 T cells 
were enriched in the exhausted CD8 T cells. (C) Trajectory analysis of the abovementioned exhausted (tumor-specific) CD8 T cells of responders using ligand receptor- 
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receptor genes. Cells clustered well according to their specific 
cell type, which indicated that each cell type had a specific 
ligand-receptor expression pattern. Overall, there were differ-
ences in ligand-receptor expression between cells in responders 
and nonresponders. It is worth noting that the exhausted CD8 
T cells were clearly divided into several branches, some of 
which were close to other CD8 T cells, while others were 
close to CD4 T cells and Tregs, implying that the ligand- 
receptor expression patterns of these exhausted CD8 T cells 
are similar to those of CD4 T cells and Tregs (Figure 7a). In the 
Yost study, the researchers found that exhausted CD8 T cells 
were tumor-specific, coexpressed CD39 (ENTPD1) and CD103 
(ITGAE), and showed a large number of expanded clones after 
anti-PD-1 treatment. Our analysis found that among respon-
ders, there was a substantial proportion and number of tumor- 
specific CD8 T cells coexpressing CD39 and CD103, and the 
proportion was further increased after treatment. However, in 
nonresponders, the number and proportion of these tumor- 
specific CD8 T cells were very low. Even though there were 

a large number of activated CD8 T cells in nonresponders, less 
than 10% of cells coexpressed CD39 and CD103, and the ones 
that did were probably bystander cells (Figure 7b). Focusing on 
the tumor-specific cells, we found that their ligand-receptor 
expression patterns changed in three ways, and we divided the 
cells into four branches: branch 0, branch 1, branch 2, and 
branch 3 (Figure 7c). We analyzed ligand-receptor coexpres-
sion in the exhausted CD8 T cells and then analyzed the 
differences in ligand-receptor gene expression and pathway 
activity (using GO terms) in the four branches of cells 
(Figure 7d, e & F; Supplemental Tables 7 & 8). We found that 
the level of coexpression of CD39 and CD103 was the highest 
in the cells of branch 1. It is worth noting that although the cells 
of branch 1 expressed higher levels of immunosuppressive 
ligands and receptors, such as HAVCR2, CD52, CSF1, CD74, 
KLRC1, and CD96, they also expressed higher levels of ligands 
and receptors related to immune activation or cytotoxicity, 
such as GZMB, GNLY, NKG7, FASLG, CLEC2B, and 
TNFRSF9. In addition, the cells of branch 1 also highly 

related genes. The results showed that these cells developed along four branches. (D) Differentially expressed gene analysis among the four branches using ligand- 
receptor-related genes. The left two columns show highly expressed genes in branch 1, and the right column shows highly expressed genes in branch 2 or 3. (E) 
Coexpression analysis of the abovementioned exhausted (tumor-specific) CD8 T cells using ligand receptor-related genes. The results showed the expression 
correlations among genes. The left annotation column shows genes that were highly expressed in the corresponding cell branch. (F) GSVA of the four branches 
using GO terms. (G) Differentially expressed gene analysis comparing branch 1 cells between pretreatment status and posttreatment status.

Figure 8. Validation of the “Ligand-receptor Pairs Related to Response Before Treatment” and the “Ligand-receptor Pairs Related to Response On Treatment) with 
additional immunotherapy datasets. The receiver operating characteristic (ROC) curves of the predictive models in the validation sets and the confusion tables of the 
best model’s classification of the validation sets. (A & B) The “Ligand-receptor Pairs Related to Response Before Treatment” model was validated by validation set 1 
(including 41 patients who received nivolumab or pembrolizumab, with samples obtained before treatment) and validation set 2 (including 14 patients who received 
nivolumab or pembrolizumab, with samples obtained before treatment). (C) The “Ligand-receptor Pairs Related to Response On Treatment” model was validated by the 
pretreatment and posttreatment data in validation set 1 (including 9 patients who received nivolumab or pembrolizumab, with samples obtained both before 
treatment and after treatment from the same patients).
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expressed CCL5 (which is related to tissue residence). The cells 
of branch 2 and branch 3 were similar; the cells of branch 2 
highly expressed CCR4, CCR7, CXCR4, and KLRB1, and the 
cells of branch 3 highly expressed CXCL13, IGFL2, and LTB. 
With regard to pathway activity analyses (GO terms), we found 
that the ligand-receptor pair expression pattern of branch 1 
cells was enriched in cell adhesion, T cell antiapoptotic 
mechanisms, immune activation (TLR9/7 and the JAK path-
way), NK cell recruitment, type 2 immune response, and 
chronic inflammation. On the other hand, the branch 2 cells 
showed enrichment in signaling related to induction of cell 
differentiation, regulation of apoptosis of neutrophils and mye-
loid cells and recruitment of DCs. The cells of branch 3 showed 
enrichment of pathways related to B cell recruitment. We 
further analyzed the changes in branch 1 cells before and 
after anti-PD-1 treatment (Figure 7g; the DEGs are listed in 
Supplemental Table 9), and we found that the genes of the heat 
shock protein family were upregulated, such as HSP70 
(HSPA1A and HSPA1B), HSP40 (DNAJB1), HSP90A1, and 
HSP110 (HSPH1). CACYBP is related to the G checkpoint of 
the cell cycle, IL7R maintains T cell homeostasis and long-term 
survival, IFITM3 maintains the long-term survival of tissue- 
resident CD8 T cells, and IL16 recruits CD4 macrophages, and 
all of these genes were upregulated. Genes related to immuno-
suppression, such as ADGRE5, KLRC1 and CSF1, were 
downregulated.

Development and validation of a predictive model based 
on the “ligand-receptor pairs related to response before 
treatment” and the “ligand-receptor pairs related to 
response on treatment”

We developed predictive models using XGBoost to test 
whether the “Ligand-receptor Pairs Related to Response before 
Treatment” and the “Ligand-receptor Pairs Related to 
Response On Treatment” could predict response to anti-PD-1 
therapy. We validated the efficacy of the models using two 
melanoma datasets, which included patients receiving anti- 
PD-1 therapy. The model using the “Ligand-receptor Pairs 
Related to Response Before Treatment” achieved an area 
under the curve (AUC) value of 0.8775 and 0.9111, and the 
accuracies were 87.8% and 85.7% in the two validation sets, 
respectively (Figure 8a & B). The model using the “Ligand- 
receptor Pairs Related to Response On Treatment” achieved an 
AUC value of 0.8, and the accuracy was 77.8% (Figure 8c).

Furthermore, we investigated whether the ligands/receptors 
mentioned in our study were also highly expressed or 
expressed at low levels in other immunotherapy datasets 
using the TIDE platform. We found that some ligands/recep-
tors, like TNFRSF10D, TNFRSF1A, FAS, AXL and AREG, 
were highly positively correlated with immune checkpoint 
blockade (ICB) benefit in the majority of tested immunother-
apy datasets (Supplemental Figure 6).

DISCUSSION

Resistance to anti-PD-1 therapy in cancers is a major challenge. 
Searches for strategies to overcome resistance to anti-PD-1 
therapy and improvements in the efficacy of immunotherapy 

are urgently needed. Cell-cell interactions were analyzed based 
on scRNA-seq data obtained from paired tumor samples taken 
before and after anti-PD-1 therapy. We identified several dif-
ferent cell-cell interactions based on pretreatment data from 
responders and nonresponders, such as WNT5A-PTPRK, 
EGFR-AREG, AXL-GAS6 and ACKR3-CXCL12. 
Furthermore, relative differences in the changes from pretreat-
ment to posttreatment status between responders and nonre-
sponders existed for the SELE-PSGL-1, CXCR3-CCL19, CCL4- 
SLC7A1, CXCL12-CXCR3, EGFR-AREG, THBS1-a3b1 com-
plex, TNF-TNFRSF1A, TNF-FAS and TNFSF10-TNFRSF10D 
interactions. In addition, we identified a cluster of tumor- 
specific CD8 T cells that existed in responders but not non-
responders and had a distinct ligand-receptor expression pat-
tern. This cluster of cells coexpressed exhaustion-related genes 
and cytotoxicity-related genes. They highly expressed ligands/ 
receptors involved in pathways related to cell adhesion, T cell 
anti-apoptotic mechanisms, immune activation (TLR9/7 and 
the JAK pathway), NK cell recruitment, type 2 immune 
response and chronic inflammation. After anti-PD-1 therapy, 
this cluster of cells had increased expression levels of survival- 
related genes like heat shock proteins, CACYBP, IL7R and 
IFITM3. Identification of this cluster of cells may contribute 
to improving adoptive cellular immunotherapy for cancer. 
Together, these results provide in-depth insights into the 
mechanisms underlying response and resistance to anti-PD-1 
therapy and highlight promising genes that may be targeted by 
agents in combination with anti-PD-1 therapy.

Some of the “Ligand-receptor Pairs Related to Response On 
Treatment” identified in the current study have rarely been 
reported to affect the efficacy of anti-PD-1 therapy. 
Amphiregulin (AREG), an epidermal growth factor (EGF) 
receptor ligand, was shown to induce chemoresistance in can-
cer cells, and targeting AREG seemed to be a potential strategy 
that could be used in combination with anti-PD-1 antibodies.24 

In our study, the EGFR-AREG interaction was broadly and 
consistently downregulated between CAFs/tumor cells and 
macrophages/NK cells/pDCs/tumor cells in responders com-
pared with nonresponders. This result seems to strongly imply 
that targeting AREG can improve the efficacy of anti-PD-1 
therapy. PSGL-1 (SELPLG), an adhesion molecule, has been 
identified as an immune checkpoint and has been shown to 
induce T cell exhaustion.25,26 Knockout of PSGL-1 in mice was 
shown to be conducive to tumor control. In our study, the 
SELE-SELPLG interaction was significantly and broadly upre-
gulated between endothelial cells and other cells (CAFs/CD4 
T cells/effector CD8 T cells/exhausted CD8 T cells/memory 
CD8 T cells/pDCs/plasma cells/Tregs) in nonresponders. The 
PSGL-1-related interaction seems to function as another criti-
cal mechanism of tumor immune evasion in anti-PD-1 therapy 
by affecting various types of immune cells. LGALS9 (galectin 9), 
a ligand of HAVCR2 (TIM-3), has been shown to both pro-
mote and inhibit tumor activity depending on its interactions 
with different cell types.27 LGALS9 has been correlated with 
tumor adhesion, migration and tumor cell aggregation in pre-
vious studies. In our study, LGALS9-related interactions 
between endothelial cells/DCs/macrophages and other cells 
were upregulated in nonresponders compared with respon-
ders. Whether there is a relationship between the upregulation 
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of LGALS9 interactions in these cells and resistance to anti-PD 
-1 therapy needs to be determined. IL-15 is a stimulator of both 
the innate and adaptive immune systems. It was reported that 
DCs deprived of PD-1 ligands and equipped with IL15/IL15RA 
expression can induce expansion of CD8 T cells from trans-
planted cancer patients.28 Similarly, in our study, IL15-IL15RA 
interactions between DCs and CAFs/plasma cells were 
increased.

Notably, several ligand-receptor pairs identified in the cur-
rent study not only have a positive effect on antitumor immu-
nity but also show direct suppression of tumor cells. It was 
reported that targeting WNT5A could suppress the metastasis 
of melanoma.29 On the other hand, WNT5A secreted by mel-
anoma cells can drive DC tolerance, and inhibition of WNT5A 
can reverse DC tolerance and enhance anti-PD-1 efficacy.30,31 

In our study, the WNT5A-PTPRK interactions between CAFs 
and CAFs/endothelial cells/myofibroblasts/tumor cells were 
decreased. Therefore, WNT5A-related interactions seem to 
play a negative role in immune surveillance and anti-PD-1 
therapy. However, the specific mechanisms by which these 
WNT5A-related interactions between CAFs and other cells 
affect antitumor immunity require further clarification. CD74 
was shown to promote tumor cell survival by interacting with 
macrophage migration inhibitory factor (MIF).12 On the other 
hand, blockade of CD74-MIF signaling in macrophages and 
DCs could restore the antitumor immune response of macro-
phages and DCs and subsequently improve the antitumor 
ability of cytotoxic T cells.32 Consistent with this, in our 
study, the CD74-MIF interactions between DCs/macro-
phages/B cells and all types of cells were significantly different 
between responders (downregulated) and nonresponders 
(upregulated). In addition, the CD74-COPA and CD74-APP 
interactions showed the same patterns as the CD74-MIF inter-
action. However, no previous study has uncovered the anti-
tumor-related functions of these interactions, and further 
research is needed. CD55 and CD97 (ADGRE5), two mem-
brane-bound complement regulatory proteins (mCRPs), play 
a role in regulating the complement system. On the one hand, 
it was reported that CD97 could promote tumor aggressiveness 
in hepatocellular carcinoma.33 On the other hand, a previous 
study indicated that the binding of CD97 to CD55 could induce 
the differentiation of naïve T cells into cells that behave like 
Tregs, and some data have suggested that the presence of CD55 
and CD97 negatively regulates the response to checkpoint 
inhibitor therapy.34 Consistent with this idea, in our study, 
CD97-CD55 interactions between B cells/CD8 T cells/NK 
cells and B cells/CAFs/CD4 T cells/CD8 T cells/DCs/macro-
phages/myofibroblasts/NK cells/Tregs were relatively weaker 
in responders than in nonresponders.

Some chemokine-related axes were shown to be induced by 
anti-PD-1 therapy in the current study, and several of them 
have already been shown to be effective targets for combination 
therapy with anti-PD-1. Targeting the CXCL12-CXCR4 
/CXCR7 axis has been shown to influence tumor cell survival, 
migration and immune cell infiltration, and targeting CXCL12 
or CXCR4 in combination with ICIs was reported to be effec-
tive .35 CXCL12 can be produced by CAFs in some cancers, and 
the binding of CXCL12 to tumor cells can suppress the apop-
tosis of tumor cells and alter the characteristics of tumor cell 

adhesion. On the other hand, CXCL12 can influence the 
recruitment of lymphocytes. In our study, the CXCL12- 
CXCR4/CXCR7 (ACKR3) interactions between CAFs and 
CD8 T cells/CD4 T cells/Tregs/DCs/B cells were broadly 
downregulated in responders compared with nonresponders. 
CXCL12-CXCR4/CXCR7 interactions appear to influence 
these kinds of immune cells rather than tumor cells in the 
context of anti-PD-1 therapy. Of note, in our study, CXCL12 
was identified to function by binding not only to CXCR4 but 
also to CXCR3 and DPP4 among several types of cells. These 
pairs, in which CXCL12 is the ligand, were consistently down-
regulated. The CCL19-CCR7 axis plays a role in adaptive 
immunity, and it was reported that CCRL2 (CRAM-B) com-
petitively binds CCL19 and regulates the CCL19-CCR7 
axis.36,37 On the other hand, CCL19-CXCR3 was reported to 
be associated with the development of thymic metallophilic 
macrophages.38 It was reported that local injection of CCL19 
in combination with anti-PDL1 therapy suppressed tumors in 
a mouse model. However, very few studies have investigated 
the roles of CCL19-CCRL2 and CCL19-CXCR3 in antitumor 
immunotherapy. In our study, the CCL19-CCRL2 interaction 
between DCs and macrophages was upregulated and the 
CCL19-CXCR3 interaction between DCs and T cells/NK cells 
was upregulated in responders compared with nonresponders. 
The CCL19-related axes seem to affect anti-PD-1 therapy. 
CCL5 deficiency was reported to promote infiltration of CD8 
T cells into the TME and reduce resistance to anti-PD-1 ther-
apy in a mouse model.17 On the other hand, it was reported 
that antagonists of CCR4 could prevent the recruitment of 
Tregs into the TME and elicit antitumor responses in combi-
nation with anti-CTLA4 therapy.39 In our study, the CCL5- 
CCR4 interaction between effector CD8 T cells/exhausted CD8 
T cells/NK cells and CD4 T cells/proliferative T cells/Tregs was 
relatively stronger in nonresponders than in responders. 
A previous study showed that CCL4, a chemokine that recruits 
CD103+ DCs to the tumor by binding to CCR5, played a role 
in the response to ICIs.40 CCL4 was also found to regulate 
functions of lymphocytes including activation, migration and 
proliferation by binding to CCR8.41 To our knowledge, very 
few studies have investigated the function of the CCL4- 
SLC7A1 axis. In our study, CCL4-related interactions, includ-
ing CCL4-CCR5/CCR8/SLC7A1 interactions, between CD8 
T cells/macrophages and DCs/proliferative T cells/Tregs/ 
tumor cells were relatively stronger in responders than in 
nonresponders.

Several other mechanisms facilitating anti-PD-1 therapy 
have been reported. The myeloid cell receptor tyrosine kinase 
AXL was found to be correlated with the expression of PD-L1 
and CXCR6 in lung adenocarcinoma, and an AXL inhibitor 
decreased the expression levels of PD-L1 and CXCR6 in EGFR 
mutation-positive cell lines.42 Furthermore, an AXL inhibitor 
was found to augment anti-PD-1 therapy in previous 
studies.43,44 In our study, we also identified the AXL-GAS6 
interaction as a potential regulatory axis affected by anti-PD 
-1 therapy. Stimulation of TNFRSF4 (OX40) and simultaneous 
administration of anti-PD-1 antibodies has been predicted to 
improve survival in human cancer.45 In addition, it was 
reported that TNFRSF5 (CD40) agonists could reverse resis-
tance to anti-PD-1 therapy.46,47 Therefore, TNF-related axes 
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seem to play a role in immunotherapy. To our surprise, in our 
study, we found that TNF-TNFRSF1A and TNF-FAS interac-
tions between CD8 T cells/macrophages/tumor cells and other 
cells were consistently weaker in nonresponders than in 
responders, while the TNFSF10/MIF-TNFRSF10D interactions 
between other cells and endothelial cells and the TNFSF13- 
related ligand-receptor interactions between pDCs/macro-
phages and other cells were consistently weaker in responders 
than in nonresponders. It is possible that regulation of these 
TNF-related axes could improve the efficacy of anti-PD-1 
therapy. It has been reported that targeting TGF-β1 and 
TGF-β2 can enhance the efficacy of anti-PD-1 therapy.48 In 
our study, TGF-β was inconsistently affected across different 
cell-cell pairs in responders compared with nonresponders. 
TGFB1-TGFbeta interactions between CD8 T cells and tumor 
cells/CD8 T cells were downregulated. In contrast, TGFB1- 
TGFbeta interactions between NK cells/pDCs and CAFs/T 
cells/tumor cells were relatively and sharply downregulated in 
nonresponders versus responders. The TGFB1-TGFbeta recep-
tor axes appeared to have different implications for anti-PD-1 
therapy among different cell-cell pairs. We believe that selec-
tive targeting of specific TGFB1-related axes could be a better 
strategy than targeting all TGFbeta-related axes. Neuropilin-1 
(NRP-1) was shown to be a potential target for strategies to be 
used in combination with anti-PD-1 therapy.49 The interaction 
between NRP-1 and SEMA3A suppressed the migration and 
tumor-specific cytolytic function of cytotoxic T cells. To our 
surprise, in our study, we found that NRP-2 (an isoform of 
NRP-1)-related ligand-receptor interactions, specifically the 
NRP-2-SEMA3C and NRP-2-VEGFA interactions between 
CAFs/endothelial cells/DCs/macrophages/tumor cells and 
other cells, were relatively stronger in responders than in non-
responders. We speculate that NRP-1 and NRP-2 play opposite 
roles in antitumor immunity.

Previously, the tumor killing ability of exhausted CD8 
T cells was believed to be relatively weak, but in our research, 
we found that there were more exhausted CD8 T cells in 
responders than in nonresponders to anti-PD-1 therapy. In 
Yost’s study, the researchers found that these exhausted CD8 
T cells had a large number of expanded clones after anti-PD-1 
therapy, while other CD8 T cells had few expanded clones. 
They found that these cells highly coexpressed CD39 and 
CD103, two markers considered to be tumor-specific T cell 
identification markers.7,8,50 These findings suggest that these 
tumor-specific exhausted CD8 T cells may be the main cells 
killing tumors. Therefore, in our study, we analyzed the evolu-
tionary trajectory of these exhausted CD8 T cells using ligand- 
receptor gene analyses. We found that these cells developed in 
three directions, and we divided the cells into four clusters. We 
found that one cluster of cells expressed the highest levels of 
CD39 and CD103, and this cluster had a distinct ligand- 
receptor expression pattern. The cells highly coexpressed 
immunosuppressive ligands/receptors such as HAVCR2,51 

CD74,52 CSF1,11 KLRC1,13 and CD9610 and highly coexpressed 
cytotoxicity-related or positive regulatory ligands/receptors 
such as GZMB, GNLY, NKG7, FASLG,16 CLEC2B,53 

TNFRSF9 and the tissue residence-related gene CCL5.54 

During anti-PD-1 therapy, these cells upregulated genes 
related to cell survival, like heat shock protein genes55 and 

CACYBP,56 IFITM3,57 and IL7R,58 and downregulated several 
immunosuppressive genes, like KLRC1, ADGRE5,33 and CSF1. 
We speculate that this cluster of tumor-specific cells actually 
responds to anti-PD-1 treatment and plays a major role in 
killing tumors. This finding may be helpful for the improve-
ment of adoptive cellular immunotherapy.

Fibroblasts have gained extensive attention from research-
ers in the field of cancer research in recent years. Fibroblasts 
activated in the TME are termed CAFs or myofibroblasts 
depending on their characteristics. Recently, researchers have 
favored the idea that different subpopulations of fibroblasts in 
the TME serve heterogeneous functions in cancers. A review of 
fibroblasts indicated that CAFs (which have high expression of 
FAP) and myofibroblasts (which have high expression of α- 
SMA (also known as ACTA2)) are likely to play opposite roles 
in cancers.59 In our study, CAFs (marked by FAP) expressed 
higher levels of immunosuppressive and protumor factors, 
such as SDF1 (CXCL12), CXCL14, IL-6, S100A4, SFRP2, 
WNT5A, WNT2 and MMPs, than myofibroblasts (marked by 
α-SMA).60–67 This finding indicates that CAFs are very likely to 
have protumor effects, while myofibroblasts are likely to have 
normal or tumor-suppressive effects. Of note, the interactions 
of myofibroblasts with other cells were found to be increased in 
responders compared with nonresponders to anti-PD-1 ther-
apy. Among these interactions, the fibronectin-1 (FN1)- 
integrin interactions between CAFs/myofibroblasts and other 
cells showed contrasting changes in responders and nonre-
sponders. The FN1-integrin interactions between myofibro-
blasts and other cells in responders were broadly upregulated, 
while the FN1-integrin interactions between CAFs and other 
cells in nonresponders were broadly upregulated. To our 
knowledge, the functional role of FN1 in cancer development 
and treatment is complex and not yet fully understood. FN1 is 
known to be involved in cell adhesion, cell motility, opsoniza-
tion, wound healing, and maintenance of cell shape. We spec-
ulate that, on the one hand, myofibroblasts can alter the 
architecture of tumors and can replace the role of CAFs in 
the TME to a certain degree, which probably alters the “bar-
rier” function of the TME to immune cells or drugs; on the 
other hand, myofibroblasts establish different functional inter-
actions with other cells and play a positive role in antitumor 
immunity. However, the specific mechanisms remain to be 
investigated.

Limitations exist in the current study. This study is 
a hypothesis-driven study based on scRNA-seq data. The 
roles of some of the genes proposed in the current study 
in immunotherapy have already been uncovered in several 
previous studies. However, there has not yet been biolo-
gical corroboration of the functions and roles of some of 
the ligands/receptors mentioned in this study in 
immunotherapy.

In summary, in this work, cell-cell interaction analyses 
based on scRNA-seq data from paired tumor samples collected 
before and after anti-PD-1 treatment were performed to 
uncover the specific mechanisms underlying response and 
resistance to anti-PD-1 therapy in cancers. We identified sev-
eral cell-cell interactions that may affect the efficacy of anti-PD 
-1 therapy. We also identified a cluster of tumor-specific CD8 
T cells that presented a distinct pattern of expression of ligands 
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and receptors. These results can be a valuable resource for 
investigating novel strategies aimed at overcoming resistance 
to anti-PD-1 therapy and developing new strategies for immu-
notherapy in cancer patients.
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