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Regulation of global gene 
expression and cell proliferation by 
APP
Yili Wu1,2,4, Si Zhang2, Qin Xu3, Haiyan Zou3, Weihui Zhou1,2, Fang Cai3, Tingyu Li1,2 & 
Weihong Song1,2,3

Down syndrome (DS), caused by trisomy of chromosome 21, is one of the most common genetic 
disorders. Patients with DS display growth retardation and inevitably develop characteristic 
Alzheimer’s disease (AD) neuropathology, including neurofibrillary tangles and neuritic plaques. 
The expression of amyloid precursor protein (APP) is increased in both DS and AD patients. To reveal 
the function of APP and elucidate the pathogenic role of increased APP expression in DS and AD, we 
performed gene expression profiling using microarray method in human cells overexpressing APP. A set 
of genes are significantly altered, which are involved in cell cycle, cell proliferation and p53 signaling. 
We found that overexpression of APP inhibits cell proliferation. Furthermore, we confirmed that the 
downregulation of two validated genes, PSMA5 and PSMB7, inhibits cell proliferation, suggesting that 
the downregulation of PSMA5 and PSMB7 is involved in APP-induced cell proliferation impairment. 
Taken together, this study suggests that APP regulates global gene expression and increased APP 
expression inhibits cell proliferation. Our study provides a novel insight that APP overexpression may 
contribute to the growth impairment in DS patients and promote AD pathogenesis by inhibiting cell 
proliferation including neural stem cell proliferation and neurogenesis.

Down syndrome (DS), caused by trisomy of chromosome 21, is one of the most common genetic disorders. 
Patients with DS display growth retardation, cardiac and gastrointestinal abnormalities, immune system defects 
and inevitably develop characteristic Alzheimer’s disease (AD) neuropathology including neuritic plaques 
and neurofibrillary tangles. Neuritic plaques, the unique feature of AD neuropathology, mainly consist of 
amyloid-beta protein (Aβ )1,2. Aβ  is derived from amyloid precursor protein (APP) after sequential cleavages by 
β - and γ -secretase. APP expression is increased in both DS patients and AD patients, contributing to an increase 
of Aβ  generation and neuritic plaque formation3–10. However, in addition to promoting Aβ  generation and neu-
ritic plaque formation, the pathogenic role of increased APP expression in DS and AD remains elusive.

The APP gene, located on chromosome 21, spans approximately 290,586 bp of genomic DNA. It is ubiqui-
tously expressed in a wide variety of human tissues and highly expressed in human brains. APP, a type I trans-
membrane protein, is predominantly cleaved by α -secretase, generating an N-terminal secreted soluble APPα  
(sAPPα ) and a C-terminal 83-amino acid fragment (C83). C83 is further cleaved by γ -secretase to release a 3 kDa 
fragment (P3) and APP intracellular domain (AICD)11–14. The minority of APP is cleaved by β -site APP cleaving 
enzyme 1 (BACE1), the β - secretase in vivo, to generate a C-terminal fragment of 99 amino acids or 89 amino 
acids (C99 or C89), which will be further cleaved to generate Aβ  or truncated Aβ  and AICD by γ -secretase15–19. In 
addition, APP is also cleaved by BACE2 (beta-site APP cleaving enzyme 2), a θ -secretase, to generate a C-terminal 
fragment of 80 amino acids followed by γ -secretase cleavage20–22.

In addition to Aβ  generation and neuritic plaque formation, additional functions of APP have been impli-
cated. For example, APP knockout mice display various abnormalities, such as reduced body weight and size, 
increased frequency and severity of kainite-induced seizures, and deficits in learning and memory23–26. Moreover, 
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triple knockout of APP and its two homologs, APLP1 and APLP2, is early postnatal lethal, indicating that APP, 
APLP1 and APLP2 are functionally redundant to certain extent and play a key role in survival27. sAPPα  also 
shows neurotrophic property27–31. AICD is not only involved in APP trafficking but also plays a potential role 
in transcription regulation via its interaction with Fe65 and Tip6032–34. APP may serve as a cell surface receptor 
mediating the signal transduction and Aβ  is one of the ligands35–37. Furthermore, APP/APP interaction plays 
an important role in cell and synaptic adhesion38,39. Interestingly, the role of APP in cell proliferation is contro-
versial due to the different APP fragments and mouse strains used in the studies40–48. Recently, we reported that 
overexpression of APP promotes stress-induced apoptosis10. Taken together, the evidence indicates that APP is 
a multifunctional protein by itself and the proteolytic fragments of APP also possess major cellular functions.

APP expression is increased in both DS patients and AD patients9. However, few studies have addressed 
the pathogenic role of increased APP expression in DS and AD pathogenesis other than its role in promoting 
Aβ  generation and neuritic plaque formation. Although gene expression profiles of transgenic mice carrying 
Swedish mutant APP have been reported49, the effect of increased wildtype APP expression in DS and some 
sporadic AD cases on gene regulation remains unknown. To investigate the gene expression profiles in human 
cells overexpressing wildtype APP, we performed the microarray experiment followed by qRT-PCR to validate 
the gene expression. We found that the expression of 2304 genes are significantly altered, which distribute on all 
chromosomes. In addition, 197 gene ontology (GO) categories of biological processes and 13 canonical pathways 
are significantly affected, including basal metabolism, cell cycle and cell proliferation etc. Moreover, we demon-
strated that APP overexpression leads to proliferation impairment in human cells and the downregulation of two 
identified genes, PSMA5 and PSMB7 may play a role in APP overexpression –induced proliferation impairment.

Results
Transcriptional profiling in APP overexpression cells.  To investigate the role of APP overexpression 
in the regulation of global gene expression, the wildtype human APP was stably transfected into HEK 293 cells 
as HAW cells. Compared with parental HEK293 cells, exogenous full-length APP and C-terminal fragment of 
APP with 83 amino acids (C83) were detected by C20 antibody which recognizes the last 20 amino acids of APP 
C-terminal (Fig. 1A). Whole genome expression assay was performed to profile the differential gene expres-
sion between HAW and HEK293 cells. Compared with HEK293 cells, 3003 genes of total 37847 illumina gene 
IDs were significantly altered in HAW cells at p <  0.05, including 1240 upregulated genes and 1763 downregu-
lated genes. The normalization, background extraction and illumina custom false discovery rate correction were 
applied. The expression of 2491 genes is significantly changed at ±1.49 fold cut-off. 2304 genes including 963 
upregulated genes and 1341 downregulated genes were counted when unidentified gene symbols and genes on 
unknown chromosome were ignored (Fig. 1B).

It was reported that the differentially expressed genes in DS patients distribute on all chromosomes, ranging 
from 3–6.6%, except for 27% genes on chromosome 2150. However, the effect of each individual gene on global 
gene expression is unknown. Although studies suggested that APP may play an important role in gene transcrip-
tion regulation via sAPP, Aβ  or AICD, no study has examined the transcriptional profiling of APP in human cells. 
Here we specifically investigated the role of APP in whole genome expression in human cells. The differentially 
expressed genes distributed on all 23 chromosomes, ranging from 20 to 234 genes on each chromosome. Since 
the number of genes on each chromosome has huge difference, we presented the percentage of differentially 

Figure 1.  Transcriptional profiling in APP overexpression cells. (A) Cell lysates from HEK293 and HAW 
cells were resolved on 10% Tris-Glycine or 16% Tris-Tricine SDS-PAGE. Full-length APP and C-terminal 
fragment of APP with 83 amino acids (C83) were detected by C20 antibody. β -actin served as internal control 
was detected by mouse anti-actin antibody (Sigma). (B) Amplified RNA from HEK293 and HAW cells was 
used to perform whole genome expression assay with illumina system. At ±1.49-fold cut-off, 2304 genes were 
significantly regulated in HAW cells, p <  0.05, analyzed by Beadstudio software. (C) Chromosome distribution 
of significantly altered genes in HAW cells. Values represent the percentage of differentially expressed genes on 
each chromosome at ±1.49-fold cut-off.
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expressed genes on each chromosome. There are 7.49%, 6.18%, 9.41%, 5.15%, 6.65%, 6.91%, 6.01%, 5.94%, 8.09%, 
6.11%, 6.62%, 6.55%, 7.41%, 8.38%, 5.52%, 9.93%, 7.28%, 4.93%, 8.43%, 6.75%, 4.00%, 8.07% and 8.48% signifi-
cantly altered genes on chromosome 1to X, respectively (Fig. 1C). The data indicate that APP has global effect on 
gene transcription, covering all chromosomes.

Gene ontology, canonical pathway and network analysis.  To reveal the potential function of differ-
entially expressed genes by APP overexpression in HAW cells, the enrichment analysis of gene ontology (GO) was 
performed by DAVID, a web-based software for gene expression analysis. 2169 genes were identified by DAVID, 
including 910 upregulated and 1259 downregualted genes. 197 GO categories of biological processes were sig-
nificantly affected (p <  0.05), including DNA replication (33 genes), transcription (268 genes), translation (99 
genes), cell cycle (117 genes), negative regulation of cell proliferation (57 genes), cell morphogenesis involved 
in differentiation (40 genes), and regulation of neuron differentiation (24 genes) etc. (Fig. 2A). Subcategories of 
transcription (DNA-dependent transcription and RNA splicing), translation (initiation, elongation and ribo-
some biogenesis), and cell cycle (cell cycle process, mitotic cell cycle and cell cycle arrest) were also significantly 
affected (Fig. 2A). To further dissect the function of dysregulated genes, GO enrichment analysis was performed 
on upregulated and downregulated genes, respectively. The upregualted genes were involved in neucleosome 
organization (10 genes), regulation of transcription (156 genes), negative regulation of translation (5 genes), 
neuron differentiation (41 genes), cell adhesion (52 genes), cellular response to stress (39 genes), positive reg-
ulation of I-kappaB kinase/NF-kappaB cascade (16 genes), death (45 genes), negative regulation of cell cycle (9 
genes) and regulation of cell proliferation (48 genes) etc.141 biological processes, p <  0.05. The subcategories of 
some processes are also involved (Fig. 2B). On the other hand, the downregulated genes were involved in 222 
biological processes (p <  0.05), particularly including DNA replication, DNA-dependent transcription, transla-
tion, ubiquitin-dependent protein catabolic process, cell cycle, cell proliferation and their subcategories (Fig. 2C). 
Moreover, total altered genes, upregulated genes and downregulated genes were involved in 70, 17 and 74 GO 
categories of molecular function, respectively (p <  0.05). 63, 37 and 73 GO categories of cell component were 
significantly affected by total, upregulated and downregulated genes,respectively (p <  0.05).

GO enrichment analysis only presents each function independently. Pathway analysis considers the function 
dependency and molecular interaction51. Thus we performed canonical pathway analysis by using IPA. There are 
13 significant affected pathways (p <  0.05), including pyrimidine metabolism, polyamine regulation in colon can-
cer, CDK5 signaling, propanoate metabolism, aminoacyl-tRNA biosynthesis, urea cycle and metabolism of amino 
groups, semaphoring signaling in neurons, p53 signaling, phenylalanin/tyrosine/tryptophan biosynthesis, purine 
metabolis, cell cycle-G1/S checkpoint regulation, cell cycle regulation by BTG family proteins and mitotic roles 
of Polo-like kinase (Fig. 2D). Based on the functional and biological connectivity, 25 networks were generated by 
IPA. Two of the top ranked networks were presented, which are RNA post-transcriptional modification/cancer/
cell cycle network with the score of 45 and 33 associated genes (Fig. 2E), and nucleic acid metabolism/small mole-
cule biochemistry/genetic disorder network with the score of 33 and 28 associated genes (Fig. 2F). The data highly 
suggested that the basal metabolic rate, cell cycle and cell proliferation are dysregulated by APP overexpression.

Alteration of the genes involved in basal metabolism, cell cycle and cell proliferation.  To con-
firm the altered gene expression by APP in microarray experiments, quantitative PCR following reverse tran-
scription (qRT-PCR) was performed by using three sets of independent samples. As GO enrichment analysis and 
pathway analysis clearly showed that APP overexpression significantly affected DNA replication, transcription, 
translation, cell adhesion, cell cycle and cell proliferation, 12 genes involved in these GO categories and path-
ways were selected to be validated. Data from microarray experiments showed that the expression of SSBP1 
(DNA replication), POLR1C (transcription), POLR2C (transcription), RPL4 (translation), EIF2A (translation), 
PSMA5 (cell cycle), PSMB7 (cell cycle), PSMB10 (cell cycle), PRMT5 (cell proliferation) and CCND1 (cell cycle) 
was reduced to 0.58, 0.47, 0.55, 0.23, 0.50, 0.52, 0.41, 0.26, 0.25 and 0.42 fold, respectively, while the expres-
sion of TP53INP1 (cell cycle arrest and apoptosis) and PCDH19 (cell adhesion) was increased to 6.48 and 53.06 
fold. Consistently, qRT-PCR results showed that the expression of SSBP1, POLR1C, POLR2C, RPL4, EIF2A, 
PSMA5, PSMB7, PSMB10, PRMT5 and CCND1 was reduced to 0.35 ±  0.04, 0.42 ±  0.08, 0.58 ±  0.09, 0.50 ±  0.09, 
0.33 ±  0.04, 0.30 ±  0.06, 0.44 ±  0.01, 0.26 ±  0.04, 0.25 ±  0.04 and 0.40 ±  0.08 fold, respectively, while the expres-
sion of TP53INP1 and PCDH19 was increased to 5.11 ±  0.69 and 35.35 ±  7.24 fold (P <  0.05) (Fig. 3A). To fur-
ther confirm the gene expression at protein level, the expression of two identified genes, PSMA5 and PSMB7, was 
examined by Western blot (Fig. 3A). The levels of PSMA5 and PSMB7 in HAW cells were markedly reduced to 
0.57 ±  0.03 and 0.60 ±  0.02 fold, respectively (p <  0.05) (Fig. 3C,D). The alteration of the genes involved in basal 
metabolism, cell cycle and cell proliferation suggested that APP overexpression may affect cell proliferation.

APP overexpression inhibits cell proliferation and PSMA5 and PSMB7 downregulation is 
involved in proliferation impairment.  To assess the effect of APP on cell growth, the number of cell pop-
ulation doublings (PDs) was examined in both HEK293 and HAW cells, and the growth curve was plotted after 
12 day’s culture. The growth rate of the HAW cells was 77.18% of HEK293 cells, 8.80 ±  0.46 PDs vs. 11.40 ±  0.36 
PDs (p <  0.05) (Fig. 4A). To further examine the effect of APP on cell cycle and cell proliferation, the rate of 
BrdU uptake in HAW cells and HEK293 cells was measured (Fig. 4B). After 6 hours incubation, cells labeled with 
BrdU were significantly less in HAW cells than those in HEK293 cells, 46.61 ±  0.87% vs. 57.46 ±  0.53% (p <  0.05) 
(Fig. 4C).

To determine whether APP-induced inhibition of cell proliferation is mediated by the dysregulated genes 
identified by microarray and qRT-PCR, knockdown experiments were performed in HEK293 cells by using siR-
NAs of two identified genes involved in cell cycle and cell proliferation, PSMA5 and PSMB7, respectively. Three 
days after PSMA5 or PSMB7 siRNA transfection, the expression of PSMA5 or PSMB7 was markedly reduced 
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Figure 2.  Gene ontology, canonical pathway and network analysis. (A) Significantly affected GO categories 
(black bar) and subcategories (white bar) of biological process are plotted, p <  0.05 by DAVID. (B) Significantly 
affected GO categories (black bar) and subcategories (white bar) by upregulated genes are plotted, p <  0.05 by 
DAVID. (C) Significantly affected GO categories (black bar) and subcategories (white bar) by downregulated 
genes are plotted, p <  0.05 by DAVID. (D) Canonical pathway analysis was performed by using IPA. 13 significant 
affected pathways are generated, p <  0.05 (-log p-value >  1.30). According to the functional and biological 
connectivity, 25 networks are constructed by IPA. Two of top ranked networks, (E) RNA post-transcriptional 
Modification/Cancer/Cell Cycle network and (F) nucleic acid metabolism/small molecule biochemistry/genetic 
disorder network, generated by IPA are presented. Red and green colored genes represent up- and downregulated 
genes, respectively. Solid lines and dash lines denote direct or indirect interactions, respectively.
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compared with that in scrambled siRNA transfected cells (Fig. 4D). The BrdU cell proliferation assay was per-
formed following PSMA5 and PMB7 knockdown (Fig. E). After 6 hours incubation with BrdU, less cells were 
labeled with BrdU in PSMA5 or PMSB7 knockdown cells compared with cells transfected with scrambled siRNA, 
40.54 ±  1.63% or 37.54 ±  1.43% vs. 53.87 ±  2.64%, (p <  0.05) (Fig. 4F). The data indicate that the downregualtion 
of PSMA5 and PSMB7 is involved in APP overexpression-induced inhibition of cell proliferation.

Discussion
Dysregulation of gene expression has been implicated in DS10,52–56. APP expression is increased in both DS 
patients and AD patients and increased APP expression could play multiple roles in the pathogenesis of DS and 
AD in addition to the increase in Aβ  generation and neuritic plaque formation. A recent study showed that wild-
type human APP overexpression promotes cognitive deficits in mice which is unrelated to Aβ 57. To profile the 
whole genome expression by APP overexpression could reveal the function of APP and elucidate the pathogenic 
role of increased APP expression. Previously, gene expression profiles in APPswe transgenic mice, DS mouse 
model and DS human brains have been reported49,50,58,59. However, it should be considered that data from mouse 
cannot fully represent changes in human. Moreover, APP with Swedish mutation is processed differently com-
pared with wildtype APP, and APPswe leads to early onset AD which is not evidenced in wildtype APP15. Thus, 
profiling the gene expression in human cells overexpressing wildtype APP would provide valuable information of 
the function of APP and the pathogenic role of APP overexpression in both DS and AD.

In this study we performed whole genome gene expression assay in a human cell line. 3003 genes of 37847 
illumina genes are significantly altered, around 8% of total genes, indicating that APP has global effects on gene 
regulation, not limiting to a small number of genes. Moreover, the affected genes distribute on23 chromosomes, 
ranging from 4.00% to 9.93%. It suggests that increased APP expression relatively equally affects the gene regula-
tion on all chromosomes with no specific chromosomal preference. In addition, APP overexpression does regu-
late the expression of genes on chromosome 21 (9 upregulated and 11 downregulated genes). APP overexpression 
can further increase the expression of 9 genes on chromosome 21, indicating that the expression level of genes 
on chromosome 21 could increase to more than 1.5 fold in DS. Meanwhile, APP also reduces the expression of 
another 11 genes on chromosome 21, which may partially explain that the expression level of a group of genes on 
chromosome 21 does not change in DS patients. The data is consistent a previous report that only 27% genes on 
chromosome 21 are differentially expressed in DS patients50.

GO enrichment analysis showed that the processes involved in basal metabolism, cell cycle, cell proliferation, 
and cell differentiation are affected by APP overexpression. Pathway analysis by IPA further supports the results 
of GO enrichment analysis, e.g. P53 signaling pathway which is involved in both cell cycle and cell prolifera-
tion. To further dissect the function of dysregulated genes, GO enrichment analysis was performed on upreg-
ulated and downregulated genes separately. We found that the upregulated genes are significantly involved in 
cell death, apoptosis and cell adhesion, which not only supports previous observations that APP overexpression 
promotes apoptosis and cell adhesion but also provides potential molecular mechanisms underlying these effects. 
Moreover, the upregulated genes are involved in negative regulation of transcription, translation, cell cycle and 

Figure 3.  Validation of gene expression. (A) Significantly altered genes identified by microarray experiments 
(white bar) were validated by qRT-PCR (black bar) at mRNA level. (B) The expression of two identified genes, 
PSMA5 and PSMB7, were validated at protein level. Lysates of HEK293 and HAW cells were subjected to 
Western blot analysis. PSMA5 or PSMB7 was detected by PSMA5 or PSMB7 antibody. β -actin served as internal 
control was detected by mouse anti-actin antibody. (C,D) Quantification of (B). Values represent mean ±  SEM. 
N >  =  3, *p <  0.05 by student t-test.
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cell proliferation, while the downregulated genes are involved in transcription, translation, cell cycle process 
and cell proliferation. It highly suggests that APP overexpression may reduce cell basal metabolism and inhibit 
cell proliferation via upregulating or downregulating genes involved in aforementioned processes. Moreover, we 
demonstrated that the downregulation of PMSA5 and PMSB7 involved in cell cycle process, which may con-
tribute to APP overexpression-induced proliferation impairment. Our data indicate that increased APP may 
contribute to the growth retardation and developmental delay in DS by inhibiting basal metabolism and cell 
proliferation.

Methods
Cell culture, transfection and drug treatment.  Human embryonic kidney (HEK) 293 cells and stable 
cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 1% sodium 
pyruvate, 1% L-glutamine and 1% penicillin/streptomycin (Invitrogen). HAW cells are HEK293 cells stably over-
expressing wildtype APP. Transfections were performed with Lipofectamine 2000 (Invitrogen). Scramble siRNA 
and pre-designed siRNA of PSMA5 or PSMB7 were purchased from Applied Biosystems.

Whole-genome gene expression assay and Real-time PCR.  RNA was isolated from cells using 
TRI-Reagent (Sigma-Aldrich). Thermoscript Reverse Transcription kit (Invitrogen) was used to synthe-
size the first strand cDNA following the manufacturer’s instruction. cRNA was amplified and purified by 
using IlluminaTotalPrep RNA amplification kit (Life Technologies). 1.5 μg cRNA of each sample was used for 
whole-genome gene expression direct hybridization assay with humanHT-12 v4 Expression Beadchip (Illumina) 
following the manufacturer’s instructions. Real-time PCR was performed following the Taqman One-Step 
RT-PCR protocol using premade primers and probes for each gene (Applied Biosystems). Amplification and 

Figure 4.  APP overexpression inhibits cell proliferation and the downregulation of two identified genes 
is involved in proliferation impairment. (A) Growth curve of HEK293 cells and HAW cells. Equal number of 
cells was seeded on 35 mm dishes and the cell number was counted every 3 days. The growth curve was plotted 
after 12 day’s culture. Values represent mean ±  SEM. N =  3, *p <  0.05 by ANOVA. (B) BrdU cell proliferation 
assay of HEK293 and HAW cells. After 6-hour incubation with BrdU, BrdU incorporation was detected by 
BrdU antibody followed by cy3-conjugated anti-goat IgG (Red). Nuclei were stained with DAPI (Blue).  
(C) Quantification of BrdU positive cells in HEK293 and HAW cells. The percentage of BrdU-positive cells in 
each line was presented. Values represent mean ±  SEM. N >  =  3, *p <  0.05 by student t-test. (D) 3 days after 
scramble, PSMA5 or PSMB7siRNA transfection, the expression of PSMA5 or PSMB7 was examined by Wstern 
blot. PSMA5 or PSMB7 was detected by PSMA5 or PSMB7 antibody. β -actin served as internal control was 
detected by mouse anti-actin antibody. (E) 3 days after scramble, PSMA5 or PSMB7siRNA transfection, BrdU 
cell proliferation assay was performed. BrdU incorporation was detected by BrdU antibody followed by cy3-
conjugated anti-goat IgG (Red). Nuclei were stained with DAPI (Blue). (F) Quantification of BrdU positive 
cells. The percentage of BrdU-positive cells in each line was presented. Values represent mean ±  SEM. N >  =  3, 
*p <  0.05 by student t-test.
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detection were performed with the Smart cycler II (Cepheid). Three independent samples were assayed for each 
group.

Immunoblotting.  Cells were lysed in RIPA-Doc lysis buffer (1% Triton X100, 1% sodium deoxycholate, 0.1% 
SDS, 0.15 M NaCl, 0.05 M Tris-HCl, pH 7.2) supplemented with protease inhibitors (Boehringer Mannheim). 
50 μg or 100 μg of total protein were resolved on 10–12% Tris-Glycine SDS-PAGE or 16% tris-tricine SDS-PAGE 
and transfered to polyvindylidinefluoride (PVDF-FL) membranes followed by immunoblotting. Rabbit anti-APP 
antibody C20 was used to detect APP and its C-terminal fragments (CTFs)60. β -actin served as internal control 
was detected by mouse anti-actin antibody (Sigma). PSMA5 and PSMB7were detected by a rabbit anti-PSMA5 
antibody (Cell signaling) and anti-PSMB7 antibody (Abgent). IRDye 800CW-labelled goat anti-mouse antibody 
and IRDye 680RD-labelled goat anti-rabbit antibody were used as secondary antibodies, which were visualized 
on the Odyssey system (LI-COR Biosciences).

Cell growth and Bromodeoxyuridine (5-bromo-2’-deoxyuridine, BrdU) proliferation assay.  To 
monitor the growth rate of HAW cells, 2.5 ×  105 cells were seeded on 35 mm dishes and the cell number was 
counted every three days. To monitor the proliferation ability, the cells were incubated with 10uM BrdU for 
6 hours. After incubation, the cells were washed with PBS and fixed with 4% paraformaldehyde for 20 minutes at 
room temperature. 2 M HCl was applied for 30 minutes at 37 °C followed by neutralization for 30 minutes with 
0.1 M sodium borate. After permeabilization with 0.2% Triton solution for 15 minutes at room temperature, cells 
were blocked with goat serum followed by 2-hour incubation with goat anti-BrdU antibody (Sigma). Cells were 
washed with PBS and incubated with Cy3-conjugated anti-goat IgG (Thermo Scientific) for 1 hour. After washed 
with PBS, cells were stained with 4, 6-diamidino-2-phenylindole (DAPI) (Sigma). Cell images were taken by 
fluorescent microscope (Axiovert200, Carl Zeiss Inc.).

Statistical analysis.  Student’s t test was performed for the quantification of immunoblotting and BrdU labe-
ling. Values of P   < 0.05 were considered significant. Differential gene expression, biological processes, canonical 
pathways and networks were analysed by Beadstudio, DAVID and Ingenuity Pathway Analysis software.
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