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Abstract: Thermoelectric coolers (TECs) can reach temperatures below that obtained with a
steady-state current by applying an electrical current pulse which enables a transitory state in a Peltier
device. This effect is known as supercooling. In this paper, we study characteristics parameters, such
as the minimum cooling temperature and spatial temperature profile, in a TEC operated under current
pulses and a cooling load (Qc). Numerical analysis for a one-dimensional thermoelectric model of the
cooling system is developed, and a novel MATLAB programming code is proposed for the transient
state based on finite element analysis. We also investigate the influence of the thermoelement’s length
upon the cooling mechanism. A new parameter called the “characteristic cooling length” is proposed
to describe the length in which the minimum cooling temperature occurs along the elements of a
TEM. Results show the transient temperature profiles along the elements of the semiconductor P-type
element, and a “characteristic cooling length” is characterized. We also propose a general principle,
and the lowest cooling temperature values are obtained for a semiconductor’s small length and
variable pulse cooling load under current pulse operation. The present study will serve as guidance
for the geometric design of TECs under current pulse operations.
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1. Introduction

Thermoelectric cooling devices use electricity to generate a temperature gradient based on
the Peltier effect. Operation of thermoelectric coolers (TECs) consists of establishing continuous
temperature and voltage gradients along a thermoelectric element while maintaining the local
thermodynamic equilibrium [1]. Thermoelectric effects, such as the Seebeck effect, Peltier effect, and
Thomson effect, result from the interference of electrical currents and heat flow in the semiconductor’s
material, and its interaction allows the usage of thermoelectric effects for cooling phenomena [2].
It is well-known that there exists an optimum electrical current (Iopt) for a thermoelectric module
(TEM) to generate a maximum temperature difference under a steady current operation [3]. TECs can
reach temperatures below that obtained with a steady-state current by applying an electrical current
pulse which enables a transitory state in a Peltier thermocouple. This is known as supercooling [4].
When a pulse current is applied to a device operating at a steady-state current, the cold side temperature
drops immediately to lower values compared to the steady-state current operation, because of the
Peltier effect. Conversely, supercooling is followed by an increase of the cold side temperature to
a peak overshoot value due to accumulation of Joule heat in the thermoelement, as well as Fourier
heat conduction through the thermoelement from the hot side to the cold side [5]. This phenomenon
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occurs because Peltier cooling, at the cold end of the thermoelectric material, is an instantaneous
and interfacial effect that only takes place at the cold junction of each couple; while Joule heating,
which occurs uniformly across the bar, requires more time to reach the interface due to the finite
thermal diffusion rate, which leads to a temporary temperature drop on the interface. During the
current pulse, the cooling at the cold end occurs before the Joule heat reaches this end, and a temporary
temperature drop can be observed [6]. The coefficient of performance (COP) of thermoelectric devices
is dependent on the semiconductor property materials used, and the number and geometry of the
thermoelements. Several new theoretical and practical methods for the improvement of cooling devices
have been studied and, at last, significant advances are being made [7]. Snyder et al. numerically
and experimentally studied the pulse thermoelectric cooling and showed that this technique can
provide low cold side temperature which is comparable to the cold side temperature of a two-stage
thermoelectric cooler [8]. Yang et al. derived the expressions for the time to reach the minimum
temperature and the holding time with the pulse operation of a thermoelectric cooler [9], and
Meng et al. [10] compared the dynamic temperature variations at the cold and hot ends using a
three-dimensional transient TEC model. Manikandan et al. studied a modified pulse operation
method using the hot side heat transfer coefficient—also pulsed—and showed an improvement
in the efficiency, being 23.3% higher than a normal pulse operation [11]. The three-dimensional
theoretical model has also been studied, where Chen et al. developed a simulation model to predict
transient thermal behavior of the thermoelectric coolers [12]. Shen et al. [13] and others [14–16] have
theoretically and experimentally studied and demonstrated the pulse operation of the thermoelectric
coolers. Several studies about the development of thermoelectric devices have been made, and one of
them includes a study by Lineykin [17] where a SPICE (Simulation Program with Integrated Circuits
Emphasis) compatible equivalent circuit of a thermoelectric module was developed, which can be
used to design feedback networks for temperature control applications. Possible applications of these
devices have been investigated by Zhang et al. [18] where the performance of a TEC was studied for
electronic packages such as processors using optimized currents and cooling configurations. Works at
microscale by Koh et al. [19] analyzed thermoelectric (TE) microcoolers for hotspot cooling aiming for
the development of TE devices. The transient supercooling effect can find many applications where
extra cooling required for a short time, such as infrared detectors during the winking mode, and
condensation hygrometers require a significant decrease in temperature to reach the dew point, as well
as supercooling the nozzles or tubes in a conventional refrigerator.

Transient cooling was investigated by modeling the heat and electricity conductors, and we
considered thermoelectric effects during pulse operation in order to predict the most important
parameters where extra cooling was needed for a short time. The Peltier effect and Joule heating play
an important role in the transient supercooling effect, and must be investigated to find new applications
or improve some of them, such as infrared detectors or tubes in a conventional refrigerator [20]. This is
an advantage of using transient state models for better characterization of supercooling, compared
to the steady-state model where lower temperatures cannot be reached. Therefore, in this work, we
propose a parameter to establish optimal conditions for a better super-cooling method. In this work,
we will discuss the influences of operating condition parameters on temperature profiles. However, it
should be noted that a characteristic cooling length appears when a variable cooling load is considered
together with the current pulse. We propose a general principle to make a judgment on whether a
temperature profile will occur during or after a current pulse.

2. Thermodynamic Modelling for Pulse Operation of Thermoelectric Cooler

A thermoelectric cooler is generally composed of several semiconductor element pairs—p-type
and n-type—connected electrically in series and thermally in parallel. In our work, we develop
a numerical model based on the finite element method to study the transient characteristic of the
temperature profile of a P-type semiconductor element. As it is well-known, the thermal features and
temperature distributions in TE elements are almost the same and periodic—hence, only one element
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is considered in the modeling. Numerical solutions for the one-dimensional temperature profiles in
the P-type semiconductor element and transient variations in the cold side temperature are carried
out. The numerical analysis of the cooling pulse is solved for the one-dimensional model shown in
Figure 1.

Figure 1. 1D model of a p-type pellet of a Peltier element.

The thermoelectric material properties and the dimensions of the thermoelectric element are given
in Table 1 [3].

Table 1. Properties of the thermoelectric materials.

Property Material Bi2Te3 Unit

α 210× 10−6 V K−1

κ 1.363 W m−1 K−1

ε 1.05 Ωm
ρ 10, 922.08 Kg m3

Ta 240 K
A 12.25× 10−6 m2

L 4.25× 10−3 m
Cp 200 J kg−1 K−1

3. Transient State Equations

The governing equations for one-dimensional unsteady state heat transfer by applying an energy
balance analysis for the P-type element leads to [12]:

∂2T
∂x2 −

Iτ

Aκ

∂T
∂x

+
I2ε

A2κ
=

ρCp

κ

∂T
∂t

(1)

where T is the temperature, κ is the thermal conductivity, t is the time, τ is the Thomson effect, ε is the
electrical resistivity, ρ is the density, A is the cross-sectional area of the semiconductor element, I is the
electrical current, and Cp is the specific heat. The boundary conditions on the surfaces of the P-type
element is as follows [16]:

κ
∂T
∂x
|x=0=

Qc

A
= qc κ

∂T
∂x
|x=L= Th (2)

The hot end of a TEC is generally attached to a heat sink, and hence in this work, a boundary
condition was applied to the hot end with a temperature of Th =300 K. The cold end of the TEC was
attached to a surface with a uniform heat flux. Thus, a constant heat flux boundary condition was
applied to the cold end, which is convenient for the present model to study the effect of pulse current
and pulse cooling load.
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3.1. Normalized Pulses Magnitude

In this work, the supercooling effect is described as a function of the independent variables—the
pulse–current ratio and pulse cooling load ratio, which are defined as:

Pr =
Ipulse

Isteady
(3)

Qr =
Qpulse

Qsteady
(4)

3.2. Equation Solution by Finite Element Method

We used the Petrov-Galerkin method [21] to develop a numerical solution to the problem.
The governing equations were discretized based on the finite-difference method. First, an
approximation for the temperature profile was proposed T ' Th = Th(x, t) and replaced in the
main equation to obtain a residual error r, given by:

r =
∂2Th

∂x2 −
Iτ

Aκ

∂Th

∂x
+

I2ε

A2κ
−

ρCp

κ

∂Th

∂t
(5)

In the Petrov-Galerkin method, local subdomains were defined for each node, which was entirely
within the global domain. Each of the subdomains is equal to zero—that is:∫

Ω
rψidΩ = 0 (6)

where ψi, the so-called expansion function corresponding to the i-th node, is a function that only
depends on spatial coordinates, and Ω is the local subdomain which was analyzed. Substituting the
Equation (5) into Equation (6), we have:

∫
Ω

∂2Th

∂x2 ψidΩ−
∫

Ω

Iτ

Aκ

∂Th

∂x
ψidΩ−

ρCp

κ

∫
Ω

∂Th

∂t
ψidΩ +

∫
Ω

I2ε

A2κ
ψidΩ = 0 (7)

Next, the first term of the previous expression is integrated:

∫
Ω

∂2Th

∂x2 ψidΩ =
∫

Ω

∂

∂x

(
∂Th

∂x
ψi

)
dΩ−

∫
Ω

∂Th

∂x
∂ψi
∂x

ψidΩ (8)

applying Gauss’s theorem [22], we have:

∫
V

∂

∂xi
λdV =

∫
S

λnidS where λ =
∂Th

∂x
ψi (9)

we get:

∫
Ω

∂2Th

∂x2 ψidΩ =
∫

Γ

∂Th

∂x
n1ψidΓ−

∫
Ω

∂Th

∂x
∂ψi
∂x

ψidΩ (10)

where Γ is the border of the local domain Ω and n1 is the component in the x direction of the unit
normal vector n. Replacing the Equation (10) in Equation (7), we get the expression for the nodes,
which are completely within the domain of the problem:

∫
Ω

(
∂Th

∂x
∂ψi
∂x
− Iτ

Aκ

∂Th

∂x
ψi −

ρCp

κ

∂Th

∂t
ψi +

I2ε

A2κ
ψidΩ

)
dΩ−

∫
Γ

(
∂Th

∂x
n1ψi

)
dΓ = 0 (11)
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The function Th(x, t) is expressed as a linear combination of the expansion functions, which are
(a) φ(x) functions only of the spatial coordinates and (b) T(t) the values of the temperatures to be
found, which will depend only on time—that is:

Th(x, t) =
n

∑
j=1

Tj(t)φj(x) (12)

where n is the number of nodes neighboring a given node i, from j = 1...n, with n = 3 for the
one-dimensional case. From Equation (12), we get the temporal derivatives as:

∂Th

∂t
=

n

∑
j=1

∂Tj

∂t
φj (13)

and the spatial derivatives,

∂Th

∂x
=

n

∑
j=1

Tj
∂φj

∂x
(14)

Here, in this work φi = ωi = ω(x) [22], where ω is the weight function and, by means of it, we
can select the form of the subdomains of integration of the weak form and it is used for the construction
of the expansion functions as it is used as a weight function. Replacing the Equations (12)–(14) into
Equation (11), we get:

∫
Ω

(
∑n

j=1
ρCp

κ

∂Tj
∂t φi +

I2ε
A2κ
−∑n

j=1
Iτ
Aκ Tj

∂φj
∂x

)
ωidΩ +

∫
Ω ∑n

j=1

(
Tj

∂φj
∂x

∂ωi
∂x

)
dΩ−

∫
Γ ∑n

j=1

(
Tj

∂φj
∂x n1ωi

)
dΓ = 0 (15)

We can rewrite the expression (15) in the form of a system of linear equations:

CṪ + KT = f (16)

where the matrix C contains the coefficients of the temporal derivatives:

Ci,j =
∫

Ω

ρCp

κ
φiωidΓ (17)

the vector f contains the source term:

fi =
∫

Ω

I2ε

A2κ
ωidΓ (18)

the matrix K contains the coefficients of the spatial derivatives:

Ki,j =
∫

Ω

(
Iτ

Aκ

∂φj

∂x
ωi +

∂φj

∂x
∂ωi
∂x

)
dΩ−

∫
Γ

(
∂φj

∂x
n1ωi

)
dΓ (19)

and the vectors T and Ṫ are the unknown temperatures through time:

Ṫj =
∂Tj(t)

∂x
and Tj = Tj(t) (20)

A novel MATLAB code, based on the finite element method, was developed for the analysis
and to obtain the temperature profiles of the P-type semiconductor. The developed algorithm
was able to divide the system into local subdomains, which were analyzed individually to obtain
the spatial information necessary to construct the matrices according to the boundary conditions
provided for one-dimensional analysis. A MATLAB program was developed for a transient system
capable of achieving steady-state conditions when an electric current is applied for a certain time.
During the pulse-current operation, the program plots the temperature distribution curves along the
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thermoelement in time periods in order to analyze the supercooling. The MATLAB program provides
control over the finite element method, thus making it easy to customize the program according to
requirements such as leg geometry.

3.3. Cooling Power (Qc)

According to the theory of non-equilibrium thermodynamics, the thermal flux can be calculated as:

jq(x) = −κ
∂T
∂x

+ j0elαT(x) (21)

where Qc = jq(0)A and the heat flow released (Qh = jq(L)A) can be calculated for the cold side (x = 0)
and the hot side (x = L), using the electrical current I = j0el A.

4. Results and Discussion

Temperature profiles during the pulse-current operation were studied, and the following cases
were considered: (a) constant pulse, and (b) variable pulse of the cooling load. Our simulation model
performed a study of the effects of the pulse current and pulse cooling load parameters. The relevant
constant parameters in the computation are listed in Table 1. The numerical program for transient
state can predict the steady-state operation of a TEC that works with constant electric current. Firstly,
the current was imposed for a sufficient time to let the P-type element reach the corresponding steady
state, as it is also reported in other works [11]. To obtain all the values needed to plot the curves, a
temperature was first imposed along the thermoelement (240 K) with an electric current of Isteady = 4
A. Then, the temperature distribution profiles were plotted as a function of the time, with time steps of
∆t = 0.1 s. For longer periods of time, temperature variation between curves showed an approximately
parallel tendency, and after 1.8 s the system reached its steady state, as shown in Figure 2. The cooling
load for steady-state operation was Qc = 0.14 W for a ∆T = 60 K.

Figure 2. Temperature Profile, T(x), at a steady state along the thermoelement, where the direction of
the arrow indicates the temperature profile through the time steps until reaching the steady state.

4.1. Temperature Profile: Constant Pulse of Cooling Load

After the thermoelectric P-type semiconductor cooler reached its steady state, a pulse current
(Ipulse = 8 A) larger than the steady state current (Isteady = 4 A) was applied to the system for
a period of time. It is well-known from the literature [7] that the ratio P = Ipulse/Isteady must be
P > 2. In addition to the pulse current, a constant cooling load pulse, Qc,pulse = 0.34 W, was also
applied. When the current pulse and the cooling load pulse were applied, the temperature of the
cold side dropped to a temperature of lower value than the temperature at the steady-state condition.
Temperature profiles, along with the semiconductor, are shown in Figure 3 at different specific times.
Each parabolic line curve represents the temperature profiles for every time-step of data, with ∆t = 0.1
s. It is noted that there exists a limit time to apply the pulse current to reach the minimum cooling
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temperature, which, in this case, is Tcmin = 124 K after some time of ∆t = 4.2 s. The model was allowed
to run to a quasi-steady state, and these results are in concordance with previous works where the
only main difference is that in this work a pulse-cooling load was also considered. Therefore, Figure 3
shows the effect of various times between current pulses and its effect on the average cooled object’s
temperature [8].

Figure 3. Temperature Profile, T(x): Effect of the pulse current and constant pulse-cooling load along
the thermoelement, where the direction of the arrow indicates the temperature profile through the
time-steps until reaching a steady state.

During the pulse, the temperature increases along the semiconductor element, reaching maximum
temperature values at the start of the pulse current and decreasing with the time until it gets a minimum
cooling temperature. We must note that the midpoint of the thermoelement reaches the maximum
temperature due to increased volumetric Joule heating.

From the temperature profile reached in the element for the steady state, where Tc = 240 K shown
in Figure 2, samples of different lengths were analyzed during the pulse operation. From Figure 4,
the minimum cooling temperature shows a dependence in function of the sample length, and this
is what we call the characteristic cooling length, Lcooling. The cooling temperature decreases in the
element during pulse operation, and it is shown that for the values of lowest length, Lcooling increases.
This characteristic length is the part of the semiconductor length which is cooled during pulse-current
operation, and it can vary with the geometric parameters, cross-sectional area, and length. For the
values of lowest length, Lcooling increases, as shown in Figure 4. for a sample of L = 3.50× 10−3 m we
got a máximum value of Lcooling,max = 1.51, compared to a sample of L = 4.75× 10−3 m where we got
a minimum value of Lcooling,min = 0.93.

Figure 4. Temperature Profile, T(x), after the pulse current and constant pulse-cooling load along
the thermoelement.
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As it is well-known, according to the Seebeck effect, at the beginning it causes heat output from
the cold end so that the temperature from the cold end is decreased. In addition, increasing the element
length has two main effects on cooling temperature: (1) it increases the thermal resistance against heat
conduction, and (2) increases electrical resistance as well as the Joule heating effects, meaning that the
cooling temperature decreases.

This paper shows that the heat transport in a transient system depends strongly on the size of
the samples, where shorter samples cause a greater decrease in the temperature of the cooling (due
to the diffusion of heat by transporters) compared to the longer samples. Transient heat transport
analysis for pulse operation in semiconductors provides additional information about the optimum
geometric parameters which can facilitate the design of thermoelements. In this manner, knowing the
characteristic cooling length of a thermoelement could be the principle needed to make a judgment on
whether optimum geometric parameters exist to achieve a lowest cooling temperature.

Figure 5 shows the transient behaviour of the temperature Tc during a pulse current and pulse
cooling load operation. The maximum temperature drop, ∆Tmax = 80 K, was archived without
considering the impacts of the metal strips and ceramic plates. This value of ∆Tmax was because the
Thomson effect was proportional to the current, while Joule heating is proportional to the square
of current. As a result, once the value of the current is elevated, the increase in the temperatures’
differences of the P-type element are higher. Thus, when a TEM experiences a current pulse, the
cooling at the cold junction occurs before the Joule heat reaches the cold end, and finally achieves a Tc

drop greater than that obtained by a steady operation mode.

Figure 5. Cold side temperature of the thermoelement with pulse operation.

4.2. Temperature Profile: Variable Pulse of Cooling Load

Under different cooling loads, the thermal behavior of the thermoelectric cooler could be different.
The effects of variable cooling loads during pulse operation on thermal behavior is shown in Figure 6.
Lower temperature values are obtained, TC,min = 87.74 K, compared to a constant pulse cooling load
reducing, as well as increasing the characteristic cooling length.
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Figure 6. Temperature Profile, T(x): Effect of the pulse current and variable pulse cooling load along
the thermoelement, where the direction of the arrow indicates the temperature profile through the time
steps until reaching the steady state.

Figure 7 shows the transient temperature TC during pulse operation, and notably, there exists
obvious supercooling in the various cases with variable Qc values. The cold side temperature of the
thermoelectric cooler decreases with the decrease in pulse cooling load, because at higher currents
the thermoelectric cooler can provide more cooling loads for a fixed cold side temperature. However,
in this case, the operating current increases (pulse current) and the cooling load is low, which leads to
the decrease in the cold side temperature.

Figure 7. Cold side temperature of the thermoelement with variable pulse operation.

It is well-known that transient supercooling is strongly dependent on the material and structure
parameters, such as the leg length and the cross-sectional area of semiconductor. Numerical modeling
and simulations are very important tools which are currently used to investigate the supercooling
effect in TECs, but in previous studies, the Thomson heat has very often been ignored and only the
Joule heating was assumed to be the internal thermal source. As established above, a multiphysics
model using a 2D approach is indeed needed to accurately simulate the device performance and to
show transient temperature distribution along the thermoelement.

5. Conclusions

This paper presented an investigation of a TEC semiconductor element considering a transient
cooling operation, and the corresponding novel MATLAB code model was developed. Equations for
the numerical method based on the finite element analysis were developed and applied in MATLAB
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programming. The simulation model is used to a parametric study which investigate the effects of
the parameters such as semiconductor geometry, pulse electrical current, and cooling load on the
minimum cooling temperature achievable. A ratio P = Ipulse/Isteady = 2, with Isteady = 2 A, and a
cooling load ratio of Q = QC,pulse/QC,steady = 2.3, with Qc,steady = 0.15 W, were used in all simulations
considering thermoelectric constant properties of the material semiconductor.

From Equation (1) we can see that Joule and Thomson terms can be considered as a source
and sink terms, respectively. Therefore, in general, Joule heating leads to an increase in the hot side
temperature, whereas the Thomson effect tends to decrease the cold side temperature. The electric
flow is higher for pulsed-like transport as a consequence of concentrating the charge carriers. The
temperature difference between the hot and cold ends increases with the applied current, and we also
found that the temperature difference between the two ends increased with L. As L is changed from
4.75 to 3.5 ×10−3 m, the value of Tc reduced from approximately 142 to 90 K. The temperature of the
cold ends increased with cooling load Qc; thus, high values of Q are desirable. Since the average cold
side temperature Tc increases with the increase in Qc, the optimum pulse operation can be selected
based on the acceptable average cold side temperature. Cooling temperature decreases even more
when a variable pulse cooling load is considered, in addition to an electrical current pulse that is
normally used to reach minimum cold side temperature values compared to steady-state operation.

According to the results, we propose a general principle that the lowest cooling temperature
values occur for minimum values of the semiconductor length and for a variable pulse cooling load
compared to that under the steady-current operation. This last statement can be explained thanks to a
characteristic cooling length, which is a characteristic in the material that can be observed only during
pulse current operation and depends on geometric parameters, such as semiconductor length. This
work is an important basis for future works on the development 2D models and investigations on
the effect of geometries in the temperature overshoot of the cold side temperature. This work also
provides a methodology to establish a new parameter, characteristic cooling length, and conditions
which affect the cooling to provide an important perspective into the characteristics of the temperature
overshoot, and contributes to the optimum design of a realistic TEM under current pulse operations.
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Abbreviation

A Area (m2)
COP Coefficient of performance
CPM Constant material property
I Electrical current (A)
jel Electrical current density (A m−2)
jq Heat flux (W m−2)
L Length (m)
Qc Cooling power (W)
Qh Heat flow released (W)
T Temperature (K)
Tc Cold side temperature (K)
Th Hot side temperature (K)
TEC Thermoelectric cooler
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Greek letters
α Seebeck coefficient (V K−1)
∆ Difference
κ Thermal conductivity (W m−1K−1)
ε Electrical resistivity [(Ωm)−1]
τ Thomson coefficient [V K−1]
Subscripts
i local subdomain
min Minimum values
max Maximum values
pulse appropriate for pulse operation
steady appropriate for steady operation
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