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Mitophagy is an intracellular mechanism to maintain mitochondrial health by removing
dysfunctional mitochondria. The E3 ligase Parkin ubiquitinates the membrane proteins
on targeted mitochondria to initiate mitophagy, whereas USP30 antagonizes Parkin-
dependent mitophagy by removing ubiquitin from Parkin substrates. The AKT/mTOR
signaling is a master regulator of cell proliferation, differentiation, apoptosis, and
autophagy. Although mounting evidence suggests that perturbations in the AKT/
mTOR signaling pathway may contribute to mitophagy regulation, the specific
mechanisms between Parkin/USP30 and AKT/mTOR signaling have not been
elucidated. In this study, we employ a set of genetic reagents to investigate the role
of Parkin and USP30 in regulating the AKT/mTOR signaling during mitophagy. We
demonstrated that, in the setting of mitochondrial stress, the AKT/mTOR signaling is
regulated, at least in part, by the activity of Parkin and USP30. Parkin inhibits AKT/
mTOR signaling following an in vitro mitochondrial stress, thereby promoting
apoptosis. However, USP30 overexpression antagonizes the activity of Parkin to
sustain AKT/mTOR activity and inhibit apoptosis. These findings provide new
insights into Parkin and USP30’s role in apoptosis and suggest that inhibiting
USP30 might provide a specific strategy to synergize with AKT/mTOR inhibitors in
cancer treatment.
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INTRODUCTION

Mitophagy, also known as mitochondria-specific autophagy, is an evolutionarily conserved cellular
mechanism to recycle specific mitochondria, by being encapsulated by the structurally double-
membrane autophagosome (Youle and Narendra, 2011; Dikic and Elazar, 2018; Saha et al., 2018;
Khandia et al., 2019). Mitophagy plays an essential role in maintaining mitochondrial health and
metabolic reactions during cellular stress, such as hypoxia or starvation (Palikaras et al., 2018;
Killackey et al., 2020).

Mitophagy is highly regulated (Chu, 2011). The PTEN (Phosphatase and tensin homolog)-
induced kinase 1 (PINK1) and the cytosolic E3 ubiquitin ligase Parkin are important mitophagy
promoters (Narendra et al., 2010; Ding and Yin, 2012; Ge et al., 2020). When mitochondria are
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damaged, PINK1 accumulates on the outer mitochondrial
membrane (OMM) and recruits Parkin from the cytosol to
ubiquitinate mitochondrial membrane proteins, including the
translocase of the outer membrane subunit 20 (TOM20)
(Narendra et al., 2010; Yoshii et al., 2011; Lazarou et al.,
2015; Bingol and Sheng, 2016; Palikaras et al., 2018;
Killackey et al., 2020). Ubiquitin chains on the
mitochondrial membrane tag the mitochondria and induce
the organelle’s engulfment by the autophagosome (Narendra
et al., 2010; Ding and Yin, 2012; Lazarou et al., 2015; Bingol
and Sheng, 2016; Palikaras et al., 2018). Ubiquitin carboxyl-
terminal hydrolase 30 (USP30) works as an essential
checkpoint for mitophagy initiation (Liang et al., 2015;
Kluge et al., 2018; Luo et al., 2021). USP30 is an OMM
deubiquitinase that cleaves the Parkin-mediated ubiquitin
chains to inhibit mitophagy (Liang et al., 2015; Bingol and
Sheng, 2016). Expressing Parkin or inhibiting USP30 can
promote mitophagy, improve mitochondrial functions, and
rescue the symptoms of certain mitochondrial-related diseases
(Bingol et al., 2014; Krishnmurthy and Shradgan, 2014).
However, it remains possible that cells may become more
vulnerable to specific mitochondrial stresses, and cell death
may occur if the mitophagy response is too exuberant (Carroll
et al., 2014; Liang et al., 2015; Wanderoy et al., 2020).

Another significant mitophagy regulator is the AKT
(Protein kinase B)/mTOR (The mechanistic target of
rapamycin) signaling (Kim and Guan, 2015; Soutar et al.,
2018; de la Cruz López et al., 2019). The AKT/mTOR
signaling is an intracellular pathway that plays a vital role
in regulating cell survival (Manning and Toker, 2017; Xu et al.,
2020). Previous studies indicate that the AKT/mTOR signaling
inhibits mitophagy and promotes cell survival under
mitochondrial stress (Akundi et al., 2012; Yang et al., 2017;
Soutar et al., 2018; de la Cruz López et al., 2019; Wanderoy
et al., 2020). However, it remains unclear how Parkin/USP30
and the AKT/mTOR signaling interact. Of note, during
mitochondrial stress, Parkin expression or USP30 inhibition
may induce cell apoptosis (Carroll et al., 2014; Liang et al.,
2015). Interestingly, the AKT/mTOR pathway is dysregulated
and hyperactive in 50–80% of human leukemia cases (Park
et al., 2010; Nepstad et al., 2020). AKT hyperactivation
correlates with aggressive cancer progression and resistance
to a plethora of chemotherapeutics (Arafeh and Samuels,
2019). While targeting The AKT/mTOR pathway could
serve as promising strategies for cancer treatment, the
efficacy of monotherapy with AKT inhibitors is limited
(Fransecky et al., 2015; Estruch et al., 2021). Further
investigation of USP30’s function in regulating AKT/mTOR
signaling may offer new therapeutic approaches in cancer
treatment.

In our study, Hela cells engineered to express Parkin (Hela
Parkin cells) were exposed to a cocktail of mitochondrial
inhibitors (antimycin plus oligomycin; AO). Consistent with
previous observations, the addition of AO triggered rapid
PINK1/Parkin mediated-mitophagy in vitro (Narendra et al.,
2010; Vives-Bauza et al., 2010; Lazarou et al., 2015; Ordureau
et al., 2018). In addition, we observed Parkin-dependent AKT

downregulation and increased cell apoptosis after AO treatment.
In this context, the increased expression of USP30 prevented
AKT inactivation in response to AO treatment. Moreover,
inhibiting USP30 decreased AKT levels in Hela Parkin USP30
cells and Jurkat T leukemia cells during mitochondrial stress and
chemotherapies, theraby inducing cell apoptosis. Furthermore,
We performed a chemical screening, suggesting that USP30
inhibitors may synergize with AKT/mTOR inhibitors in
treating leukemia. Taken together, we demonstrated that
Parkin and USP30 might regulate the AKT/mTOR signaling
and cell survival during mitophagy, suggesting USP30 may
serve as a potential drug target for leukemia treatment.

RESULT

Parkin and USP30 Regulate Mitophagy
Independent Cell Apoptosis in Response to
Mitochondrial Stress
We treated Hela Parkin cells and Hela Parkin USP30 cells with a
cocktail of the mitochondrial complex III inhibitor Antimycin A
and the ATP synthase inhibitor Oligomycin (AO) for up to 9 h
(Baudot et al., 2015; Zachari et al., 2019). NDP52 and OPTN are
adaptor proteins that link ubiquitinated mitochondria to the
autophagosome. These two proteins are degraded along with
the mitochondria during mitophagy (Lazarou et al., 2015; Zachari
et al., 2019). As expected, Parkin induced rapid mitophagy during
AO treatment, shown as the degradation of TOM20, NDP52, and
OPTN in Figure 1, a. PARP is a universal protein cleaved only
during apoptosis (Gobeil et al., 2001; D’Amours et al., 2001). In
the presence of Parkin, AO treatment resulted in an increase of
cleaved PARP, suggesting an increase in cell apoptosis
(Figure 1A). Consistent with the western blot results, our cell
viability tests (by resazurin assay) indicated substantial cell death
after 24 h of AO treatment (Figure 1B). The decrease in AKT and
cell apoptosis required Parkin to be activated because knocking
out PINK1, Parkin’activator, abolished mitophagy and cell
apoptosis (Figures 1B,C). In Hela Parkin USP30 cells, we
observed increased USP30 protein levels compared to Hela
and Hela Parkin cells (Figure 1A and Supplementary
Figure 1A). In addition, USP30 overexpression prevented
mitophagy and reduced cell apoptosis following AO treatment
(Figures 1A,D). By treating cells with 10 ug/ml ST-539, a specific
USP30 inhibitor (Luo et al., 2021), Parkin mediated mitophagy,
and cell apoptosis resumed (Figures 1D,E). We next asked
whether the Parkin/USP30-mediated cell apoptosis during
mitochondrial stress is mitophagy dependent. Autophagy-
Related-Gene 5 (ATG5) is essential for autophagosome
formation. Knocking out ATG5 undermines autophagy and
mitophagy (Mai et al., 2012; Ye et al., 2018; Zheng et al.,
2019). Cell viability data showed that knocking out ATG5 did
not limit cell death during mitochondrial stress (Figure 1F),
suggesting the Parkin/USP30-regulated cell apoptosis during
mitochondrial stress is mitophagy independent. To summarize,
Parkin promotes apoptosis, while USP30 antagonizes mitophagy-
independent cell apoptosis during mitochondrial stress.
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Parkin and USP30 Regulate AKT/mTOR
Signaling and Cell Survival in Response to
Mitochondrial Stress
AKT/mTOR signal functions as a master signal for biogenesis
and cell survival (Xu et al., 2020; Manning and Toker, 2017).
Previous studies have indicated that the AKT/mTOR signal
responds to multiple cellular stressors to promote cell survival
(de la Cruz López et al., 2019; Xu et al., 2020; Yang et al., 2017).
To investigate how the AKT/mTOR signaling responds to
mitochondrial stress, we analyzed the protein levels of AKT,
mTOR, P70S6K, and 4EBP1 in three cell lines: wild-type Hela
cells, Hela Parkin cells, and Hela Parkin USP30 cells, following
AO treatment. Western blot results indicated that the AKT/
mTOR signaling increased throughout AO treatment,
suggesting that AKT is activated and upregulated in
response to mitochondrial stress (Figure 2, a), consistent
with previous studies that indicate that mitochondrial stress

activates the AKT survival pathway (Yang et al., 2017; Guha
et al., 2010). In Hela Parkin cells, Akt and mTOR protein levels
decreased significantly after 6 h of AO treatment (Figure 2A
and Supplementary Figures 2A,B). The downstream signals
of the AKT/mTOR pathway, 4EBP1 and P70S6K, were also
downregulated (Supplementary Material 2C–E). These result
suggest that Parkin may suppress AKT/mTOR signaling
during mitophagy. USP30 overexpression significantly
increased AKT’s protein level and upregulated AKT/mTOR
signals during mitophagy (Figure 2A and Supplementary
Figures 2A–E). Moreover, the addition of ST-539, a USP30
inhibitor, resulted in decreased AKT protein levels during
mitophagy (Figure 2B). To test if mitophagy activity
contributes to the regulation of AKT protein levels and cell
apoptosis, we utilized Chloroquine, a lysosomal inhibitor, to
inhibit mitophagy (Redmann et al., 2017; Mauthe et al., 2018).
We demonstraed that the AKT protein levels and cleaved

FIGURE 1 | PINK1/Parkin-dependent mitophagy induces apoptosis during mitochondrial stress (A). Western blot analysis of mitophagy proteins and the pro-
apoptosis signal in Hela (no Parkin) cells and Hela Parkin cells after the AO (Antimycin A+ oligomycin) treatment. Cells were treated with AO at 5 ug/ml for 0, 3, 6, and 9 h.
Beta Actin served as the loading control. These are representative figures from three independent experiments (B). Cell viability assay of Hela (no Parkin) cells and Hela
Parkin cells after AO treatment. Cells were treated with AO at 5 ug/ml for 24 h and then incubated with resazurin for 2 h. Fluorescence was read using 544 nm
excitation and 590 nm emission wavelength. It is a representative figure from three independent experiments (C). Western blot analysis of mitophagy proteins and the
pro-apoptosis signal in Hela Parkin cells and Hela Parkin with PINK1 KO cells after the AO treatment. Cells were treated with AO at 5 ug/ml for 0, 3, 6, and 9 h. Beta Actin
served as the loading control (D). Cell viability assay of Hela Parkin cells and Hela Parkin with USP30 overexpression cells after AO treatment with or without ST-539.
Cells were treated with AO at 5 ug/ml w/o 10 ug/ml ST-539 for 24 h and then incubated with resazurin for 2 h. Fluorescence was read using544 nm excitation and
590 nm emission wavelength (E). Western blot analysis of mitophagy proteins and the pro-apoptosis signal in Hela Parkin cells and Hela Parkin with USP30
overexpression cells after the AO treatment w/o ST-539. Cells were treated with AO at 5 ug/ml w/o 10 ug/ml ST-539 for 0, 3, and 6 h. Beta Actin served as the loading
control (F). Cell viability assay of Hela ATG5 knockout cells, Hela ATG5 knockout Parkin cells, and Hela ATG5 knockout Parkin USP30 cells after AO treatment. Cells
were treated with AO at 5 ug/ml for 24 h and then incubated with resazurin for 2 h. Fluorescence was read using544 nm excitation and 590 nm emission wavelength.
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PARP following AO treatment were not affected after the
addiotion of Chloroquine (Figure 2C). Similar results were
observed in Hela Parkin and Hela Parkin USP30 cells that lack
ATG5. (Figure 2D). These results suggest that AKT/mTOR
signaling is activated in response to mitochondrial stress, and
can be regulated by Parkin and USP30.

USP30 May Serve as a Therapeutic Target
for Leukemia Treatment
We next asked whether USP30 could be a viable target to synergize
with AKT/mTOR inhibitors for leukemia treatment. We analyzed
USP30’s effect on AKT/mTOR inhibitors by measuring the viability
of Hela Parkin USP30 cells after treatment with MK2206 (10uM),

FIGURE 2 | USP30 upregulates AKT/mTOR signal (A). Western blot analysis of AKT/mTOR pathway proteins in Hela Parkin cells and Hela Parkin with USP30
overexpression cells after the AO treatment. Cells were treated with AO at 5 ug/ml for 0, 3, 6, and 9 h. Beta Actin served as the loading control. 2 (B). Western blot
analysis of AKT signal in Hela Parkin cells and Hela Parkin with USP30 overexpression cells after the AO treatment w/o ST-539. Cells were treated with AO at 5 ug/ml w/o
ST-539 for 0, 3, and 6 h. Beta Actin served as the loading control. 2 (C). Western blot analysis of AKT and cleaved PARP in Hela Parkin and Hela Parkin USP30 cells
after the AO treatment w/o chloroquine. Cells were treated with AO at 5 ug/ml for 0, 3, and 6 h with DMSO or 10 uM chloroquine to inhibit autophagy/mitophagy. Beta
Actin served as the loading control. 2 (D). Western blot analysis of AKT and cleaved PARP in Hela ATG5 knockout Parkin and Hela ATG5 knockout Parkin USP30 cells
after the AO treatment. Cells were treated with AO at 5 ug/ml for 0, 3, and 6 h. Beta Actin served as the loading control.

FIGURE 3 | USP30 in cancer treatment. 3 (A). Cell viability assay of Hela Parkin USP30 cells after AKT/mTOR inhibitors treatment w/o ST. Cells were treated with
10 uM MK2206 or 10uM Rapamycin or 1uM Torin1 for 48 h with DMSO or 10 ug/ml ST-539 and then incubated with resazurin for 2 h. Fluorescence was read using
544 nm excitation and 590 nm emission wavelength. 3 (B). Cell viability assay on Jurkat T cells after 72 h MK2206 treatment with ST. Cells were treated with MK2206
and ST in the concentration gradient manner for 72 h. After the treatment, cells were incubated with resazurin for 2 h. Fluorescence was read using544 nm
excitation and 590 nm emission wavelength. Each dot is the mean value of three biologically independent experiments. Trend lines are non-linear regression fitting
curves. 3 (C). Western blot analysis of AKT, mitophagy, and pro-apoptosis signal in Jurkat T cells treated with DMSO, MK2206, or ST. Cells were treated with DMSO,
MK2206, ST, or MK220 + ST for 24 h. Beta Actin served as the loading control.
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Rapamycin (10uM), or Tronil1 (10 nM) in the presence and absence
of ST-539. The cell viability analysis showed that inhibiting USP30
promoted drug-induced apoptosis significantly (Figure 3A). The
apoptosis in treated cells suggests that USP30 inhibitors combined
with AKT/mTOR inhibitors might prove a benefit in treating
leukemia. The next set of experiments focused on Jurkat cells.
Jurkat cells are immortalized human T lymphocytes used to
study acute T cell leukemia (Abraham and Weiss, 2004). We
evaluated Jurkat cells viability after MK2206 and ST-539
treatment. Jurkat cell growth data revealed that the addition of
ST-539 significantly improved MK2206s efficacy in inhibiting cell
growth. (Figure 3B). Western blot results indicated that ST-539
synergized with MK2006 to inhibit AKT activity and increase pro-
apoptotic signaling (cleaved PARP) in Jurkat cells (Figure 3C).

We employed Jurkat cells to investigate the synergistic effects
between ST-539 and AKT inhibitors. We conducted a small-scale
pilot chemical screen for Jurkat cell viability focusing on the AKT/
mTOR compound library composed of 322 compounds, in the
presence and absence of ST-539. Interestingly, 89% of the
compounds work in synergy with ST-539 to significantly
suppress cell proliferation (Figures 4A,B). These results suggest a
synergistic effect between ST-539 and AKT inhibitors. Combined
treatment of these inhibitors provides a unique approach to treat

T cell leukemia. We ranked and reevaluated the most synergetic
combinations from the previous experiment to find the most
efficacious combinations (Figures 4C,D). The compound, 5-lodo-
indirubin-3-monoxime (Indirubin), worked best with ST-539,
suppressing cell growth by 48% (Figure 4D). The dose-response
curve of indirubin, Glaucocalyxin A, and MK2206 w/o ST-539
showed that ST-539 promoted efficacy (Figures 5A–C). In short,
combining USP30 inhibitors with AKT/mTOR compounds in
treating leukemia warrants further investigation.

DISCUSSION

Whether mitophagy promotes or works as an agonist to cancer
development is unclear. Mitophagy is vital in rewiring metabolic
pathways to support cancer cells’ high energy demands (Chourasia
et al., 2015; Vara-Perez et al., 2019). Previous studies induced cell
apoptosis by knocking down USP30 potentiated BH3, ETC
inhibitors (e.g., antimycin A, oligomycin), uncouplers (e.g.,
FCCP), subsequently boosting Parkin-dependent mitophagy. The
increase in Parkin-dependent mitophagy indicates that USP30 could
be a drug target in cancer treatment (Carroll et al., 2014; Liang et al.,
2015). We have demonstrated that inhibiting USP30 boosts

FIGURE 4 | Small targeted chemical screen using the PI3K/Akt/mTOR compound library. 4 (A). The heat map analysis of synergy between ST-539 and AKT/mTOR
inhibitors on Jurkat cells growth inhibition. Jurkat T cells were treated with the compounds (4 uM) from PI3K/Akt/mTOR compound library (322 in total) w/o 10ug/ml ST-
539 for 48 h, and the cell growth was analyzed by resazurin assay. The left one is the inhibition rate without ST-539, and the right one is the inhibition rate with ST-539.
Data are the mean value from three biologically independent experiments. 4 (B). The percentage of the compounds from PI3K/Akt/mTOR compound library
synergize with ST-539 on Jurkat cells growth inhibition. 4 (C). Ranks of synergistic effects between AKT/mTOR compounds and ST-539. Synergy is calculated by
subtracting the growth inhibition caused by the compound alone from the growth inhibition caused by the compound and ST-539 together. 4 (D). The synergy between
specific compounds with ST-539. Data are the mean values from three biologically independent experiments.
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mitophagy and downregulates AKT signaling, promoting apoptosis
during mitochondrial stress. Further drug screening using Jurkat
cells demonstrates that the combination of USP30 inhibitors and
AKT inhibitors is efficacious in treating T cell leukemia. However,
whether Parkin and USP30 regulate AKT protein levels via
modulating ubiquitination during mitochondrial stress remains to
be investigated.

Overall, this research revealed the connections between Parkin,
USP30, and AKT signals, proving that USP30 inhibitors may be
effectivein leukemia treatment. Future studies could focus on
investigating whether USP30 promotes AKT signaling and drug
resistance in clinical status and whether this combined therapy
works on patient-derived cancer cells and murine models.

METHODS

Cell Culture and Reagents
All HeLa cell lines (wild-type, HeLa Parkin, HeLa Parkin PINK1 KO,
HeLa Parkin USP30, HeLa ParkinMyr-AKT, HeLa ParkinMyr-AKT
K179M, HeLa Parkin AKT-T308A/S473A, HeLa Parkin AKT-
T308D/473D) were grown in Dulbecco’s minimum essential
medium (DMEM) with 10% fetal bovine serum (FBS)
supplemented and 1% penicillin-streptomycin. HeLa Parkin and
HeLa Parkin PINK1 KO cells were previously described (Lazarou
et al., 2015). Hela Parkin USP30 was generated using lentiviral vectors
of pLVX-Puro-Myc-USP30, obtained from Addgene (Sowa et al.,
2009). Jurkat T cells were grown in Roswell Park Memorial Institute
Medium (RPMI-1640) with 10% fetal bovine serum (FBS)
supplemented and 1% penicillin-streptomycin. For AO treatment,
cells were incubated in a growth medium with 5 µM oligomycin and
5 µM antimycin A (details in figures). ST51000539 (ST-539)
purchased from TimTec. Other chemicals were from Sigma-
Aldrich (St. Louis).

Western Blotting
Cells were lysed in RIPA buffer (50mM Tris-HCl, at pH 8.0;
150mM NaCl; 1% (vol/vol) Nonidet P-40; 0.5% sodium
deoxycholate, 0.1% SDS and protease inhibitor cocktail (Roche))
on ice. Primary antibodies used as described: USP30 (Sino Biological
Inc., 14,548-RP01, 1:500); p-AKT (Cell Signaling Technology, 4060S,

1:1000); Parkin (Cell Signaling Technology, 4211S, 1:1000); AKT
(Cell Signaling Technology, 4685S, 1:1000); Cleaved PARP (Cell
Signaling Technology, 5625S, 1:1000); OPTN (Proteintech, 10837-I-
AP, 1:1000); p-mTOR (Cell Signaling Technology, 5536S, 1:1000);
mTOR (Cell Signaling Technology, 2983S, 1:1000); TOM20 (Cell
Signaling Technology, 42406S, 1:1000); NDP52 (Cell Signaling
Technology, 60732S, 1:1000); p-P70S6K (Cell Signaling
Technology, 9234P, 1:1000); P70S6K (Cell Signaling Technology,
9202S, 1:1000); LC3A/B (Cell Signaling Technology, 4108S, 1:1000);
Beta-Actin (Cell Signaling Technology, 3700S, 1:1000). Secondary
antibodies anti-rabbit (LI-COR, 926–32,211, 1:15 000) and anti-
mouse (LI-COR, 926–68,072, 1:15 000) IgG were used to incubate
membranes at room temperature for 1 h. Images were captured
using the Odyssey system (LI-Cor).

Drug Screening
Jurkat T cells were grown in 96-wells-plates with compounds from
the PI3K/Akt/mTOR compound library bought from
MedChemEXpress. Cells were treated with compounds at
concentrations described in the figure for 48 h. The growth
inhibition on cells was analyzed using a resazurin cell viability assay.

Cell Viability Assay
Resazurin was bought from R&D Systems (AR002). Resazurin
was added at a volume equal to 10% of the cell culture volume,
and cells were incubated for 1 to 2 h at 37°. Fluorescence of the cell
culture medium was read using 544 nm excitation and 590 nm
emission wavelength.
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