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Background: In the era of immunotherapy, predictive or prognostic biomarkers for head
and neck squamous cell carcinoma (HNSCC) are urgently needed. Metabolic
reprogramming in the tumor microenvironment (TME) is a non-negligible reason for the
low therapeutic response to immune checkpoint inhibitor (ICI) therapy. We aimed to
construct a metabolism-related gene prognostic index (MRGPI) for HNSCC bridging
metabolic characteristics and antitumor immune cycling and identified the
immunophenotype, genetic alternations, potential targeted inhibitors, and the benefit of
immunotherapy in MRGPI-defined subgroups of HNSCC.

Methods: Based on The Cancer Genome Atlas (TCGA) HNSCC dataset (n = 502),
metabolism-related hub genes were identified by the weighted gene co-expression
network analysis (WGCNA). Seven genes were identified to construct the MRGPI by
using the Cox regression method and validated with an HNSCC dataset (n = 270) from the
Gene Expression Omnibus (GEO) database. Afterward, the prognostic value, metabolic
activities, genetic alternations, gene set enrichment analysis (GSEA), immunophenotype,
Connectivity map (cMAP), and benefit of immunotherapy in MRGPI-defined subgroups
were analyzed.

Results: The MRGPI was constructed based on HPRT1, AGPAT4, AMY2B, ACADL,
CKM, PLA2G2D, and ADA. Patients in the low-MRGPI group had better overall survival
than those in the high-MRGPI group, consistent with the results in the GEO cohort (cutoff
value = 1.01). Patients with a low MRGPI score display lower metabolic activities and an
active antitumor immunity status and more benefit from immunotherapy. In contrast, a
higher MRGPI score was correlated with higher metabolic activities, more TP53 mutation
rate, lower antitumor immunity ability, an immunosuppressive TME, and less benefit from
immunotherapy.
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Conclusion: The MRGPI is a promising indicator to distinguish the prognosis, the
metabolic, molecular, and immune phenotype, and the benefit from immunotherapy in
HNSCC.
Keywords: metabolism, antitumor immune cycling, immunotherapy, prognosis, individualized precision therapy
INTRODUCTION

The large-scale application of immune checkpoint inhibitor (ICI)
therapy, such as anti-programmed death 1 (PD-1), anti-
programmed death-ligand 1 (PD-L1), and anti-cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4), has greatly
improved the survival rate of cancer patients (1–7). In head
and neck squamous cell carcinoma (HNSCC), especially in
recurrent or metastatic HNSCC, ICI therapy has been
approved as an effective treatment and achieved significant
survival benefits (8–11). However, the polarized therapeutic
response to ICI therapy between different patients is the major
limitation of immunotherapy. There are several reasons why
patients cannot benefit from immunotherapy, among which
metabolic reprogramming in the tumor microenvironment
(TME) is a non-negligible reason.

It has been recognized that the metabolic reprogramming of
tumor cells characterized by the Warburg effect is an important
hallmark of tumors and is considered a driver of cancer progression
(12–14). Metabolic reprogramming provides an inherent advantage
for tumors to compete for nutrition, survive, and proliferate in the
unique hypoxic and acidotic TME (12, 15). For example, in the
competition of TME components for nutrients, especially glucose,
the Warburg effect enhances glycolysis or aerobic glycolysis of
tumor cells under hypoxic conditions (12). However, other
immune cells are at a disadvantage in the competition for
nutrients in the hypoxic microenvironment because they mainly
rely on oxidative phosphorylation (OXPHOS) for energy (16).
Therefore, tumor cells outcompete T cells for glucose
consumption and can metabolically restrict T cells, directly
dampening their effector function and allowing tumor progression
(12, 17). Interestingly, recent studies revealed that metabolic
reprogramming also occurs in numerous immune cells within the
TME and profoundly influences the trajectories of immune cell
differentiation and fate, which impaired the functions of the
immune cells (16, 18–22). For example, a recent study
demonstrated that the TME can stimulate CD36 expression in
intratumoral regulatory T (Treg) cells (a major immunosuppressive
cell that blocks antitumor immunity and affects cancer
immunotherapy) and then increase lipid metabolism in
intratumoral Treg cells, which might support the adaptation to a
lactate-rich TME by lipid metabolic programming of Treg cells (23).
Numerous studies have reported that tumor cells produce a large
amount of lactic acid through aerobic glycolysis and release the
redundant lactic acid into the TME via monocarboxylate
transporter 4 (MCT4) (24). It has been reported that lactic acid
and acidification suppress tumor necrosis factor (TNF) secretion of
human monocytes through glycolysis inhibition (25). Furthermore,
tumor cell-derived lactate induces vascular endothelial growth
org 2
factor (VEGF) expression and M2-like polarization of
macrophages by stabilizing hypoxia-inducible factor 1a (HIF1a)
(26). A recent study demonstrated that lactic acid can also induce
M2-like gene activation in macrophages through a novel epigenetic
modification, histone lactylation (27). Another study found that the
TME induces tumor cells to produce retinoic acid (RA), which
polarizes intratumoral monocyte differentiation toward tumor-
associated macrophages (TAMs) and away from dendritic cells
(DCs) via suppression of DC-promoting transcription factor Irf4
(28). To adapt to the low-glucose lactic acid-enriched TME, some
immune cells also undergo metabolic reprogramming. The
upregulated CD36 fine-tuned mitochondrial fitness via
peroxisome proliferator-activated receptor-b signaling,
programming Treg cells to adapt to a lactic acid-enriched TME
(23, 29). Additionally, the Treg cell transcription factor Foxp3
reprograms T-cell metabolism to tolerate the low-glucose lactate-
rich environments by suppressing Myc and glycolysis, enhancing
OXPHOS, and increasing nicotinamide adenine dinucleotide
oxidation (30). Moreover, increasing evidence suggested that the
low response rate to immunotherapy of patients is presumably due
to the exuberant energy from multiple metabolic sources in tumors
and nutrient deprivation and metabolite accumulation in the TME,
which limits the recovery of antitumor immunity (31). Therefore,
identifying the unique metabolism-related molecular characteristics
and TME landscape that easily benefit from ICI therapy has become
a crucial proposition. There are currently plenty of prognostic
markers for HNSCC, including single gene biomarkers or gene
signatures composed of multiple genes. For example, Chen et al.
(32) constructed a prognostic index composed of three immune
genes, SFRP4, CPXM1, and COL5A1, which can well distinguish the
prognosis and molecular and immune characteristics of HNSCC
patients. A novel signature, consisting of seven ferroptosis-related
genes, developed by He et al. (33) can also serve as a prognostic
marker for predicting prognosis in HNSCC. Our previous study
also found that the signature composed of CNFN and DEPDC1
could serve as an independent biomarker to predict the risk of
lymphovascular invasion and as a prognostic marker for HNSCC
(34). However, the prognostic potential of the molecular
characteristics of tumor metabolism for conventional therapy and
immunotherapy in HNSCC remains to be fully explored.

In this study, we aim to find a metabolic index that could be
used to identify HNSCC patients who can benefit from
conventional treatment. More importantly, this index could
reflect the immunogenic or immune activities of each key step
in the antitumor immunity processes of different HNSCC patients
so that could predict the prognosis of comprehensive therapy and
immunotherapy. Thus, we used the weighted gene co-expression
network analysis (WGCNA) to identify metabolism-related hub
genes associated with the prognosis of HNSCC patients and used
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the Cox regression analysis to develop a metabolism-related gene
prognostic index (MRGPI). The MRGPI consists of hypoxanthine
guanine phosphoribosyl transferase 1 (HPRT1); 1-acylglycerol-3-
phosphate O-acyltransferase 4 (AGPAT4); amylase alpha 2B
(AMY2B); acyl-CoA dehydrogenase long-chain (ACADL);
creatine kinase, muscle (CKM); phospholipase A2 Group IID
(PLA2G2D); and adenosine deaminase (ADA) genes. Then, we
profiled the metabolic and molecular characteristics, the status of
seven-step antitumor immunity processes, and the TME
landscape of the different MRGPI subgroups. Moreover, we
examined the predictive ability of the MRGPI in the
immunotherapy cohorts and compared it with other classic
signatures that can predict the efficacy of immunotherapy, such
as tumor inflammation signature (TIS) and tumor immune
dysfunction and exclusion (TIDE). The results indicated that the
MRGPI is a promising prognostic biomarker for patients
undergoing conventional therapies and ICI immunotherapy.
MATERIALS AND METHODS

Patients and Datasets
The latest RNA sequencing (RNA-seq) data, clinicopathologic
information, and survival data of 546 HNSCC samples, including
502 tumor samples and 44 normal samples, were obtained from
The Cancer Genome Atlas (TCGA) database through the
Genomic Data Commons Data Portal (GDC; https://portal.gdc.
cancer.gov/). RNA-seq data of 270 HNSCC tumor samples
(GSE65858), corresponding survival information, and the
Sequencing platform annotation information (GPL570) were
downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/). The list of
metabolism-related genes was collected and integrated from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolism-
related pathways (https://www.kegg.jp/kegg/kegg1.html).

Identification of Metabolism-Related
Differentially Expressed Genes
To obtain the metabolism-related differentially expressed genes
(DEGs), we first obtained the DEGs (adj. p < 0.05, |log2FC| >1.0)
between the 502 tumor samples and 44 normal samples of
HNSCC from TCGA-HNSCC project using the limma package
of R software. Then, by intersecting with the metabolism-related
gene lists, the differentially expressed metabolism-related genes
were extracted from the abovementioned DEGs. Volcano plots of
DEGs and differentially expressed metabolism-related genes were
plotted using the ggplot2 package of R. The clusterProfiler package
of R was used to perform Gene Ontology (GO) and KEGG
analysis of the obtained metabolism-related DEGs to explore the
biological functions and processes involved in these genes.

Identification of Metabolism-Related
Hub Genes
The WGCNA was used to recognize the metabolism-related hub
genes (35). The first step was to calculate the correlation coefficient
(Pearson coefficient) between any two genes and construct the
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similarity matrix. To measure whether two genes have similar
expression patterns, correlation coefficient weighted values were
used during WGCNA. Next, the best “soft threshold” was
determined graphically as b = 4 to ensure a scale-free network
distribution. The similarity matrix and b value were adopted to
construct an adjacency matrix and then transformed into a
topological matrix with the topological overlap measure (TOM)
describing the degree of association between genes. Here, 1-TOM
was used as the distance to cluster the genes, and then the dynamic
pruning tree was constructed to generate the coexpression gene
modules. Finally, the similar gene modules were determined by
merging modules whose distance is less than 0.25. The correlation
between each module and HNSCC was calculated by the
eigengene function in the “WGCNA” R package. The most
significantly related module was selected for the follow-up study.
In this module, the edges between two genes with weight >0.2 were
selected to plot the network. The genes in the network with a
degree ranking in the top 50 were the nominated hub genes. The
best cutoff value of the impact of each hub gene on overall survival
(OS) was obtained through the Survminer package of R. Only
genes significantly related to survival (p < 0.05, log-rank test) were
considered as the metabolism-related hub genes.

Development and Validation of the
Metabolism-Related Gene
Prognostic Index
Among the obtained metabolism-related hub genes, the genes
significantly affecting OS were identified by univariate Cox
regression analysis and then utilized to construct the MRGPI
by multivariate Cox regression analysis. The MRGPI of each
sample was calculated as follows: MRGPI = ,where represents
the regression coefficient between the gene (i) and HNSCC
prognosis, and represents the expression level of the gene (i).

The HNSCC patients from TCGA-HNSCC project (training
cohort) were divided into the high-MRGPI group and low-
MRGPI group according to the median MRGPI. The ability of
the MRGPI to discriminate the prognosis of patients was
respectively evaluated by the Kaplan–Meier survival curve and
the log-rank test of TCGA and GEO cohorts (validation cohort).

In addition, to verify the independent prognostic role of the
MRGPI, the MRGPI and other clinicopathological factors were
included in univariate and multivariate Cox regression analyses.

Identification of Metabolic Characteristics
of the Different Metabolism-Related Gene
Prognostic Index Subgroups
The gene set variation analysis (GSVA) package of R was used to
calculate the common metabolic activity scores of each patient
(36), including beta-alanine metabolism; fatty acid metabolism;
glutathione metabolism; glycerolipid metabolism; nitrogen
metabolism; purine metabolism; pyruvate metabolism; starch
and sucrose metabolism; glutamate and glutamine metabolism;
glycogen metabolism; glucose metabolism; and alanine,
aspartate, and glutamate metabolism. Then, the difference in
metabolic activities was compared between the high- and low-
MRGPI groups.
June 2022 | Volume 13 | Article 857934
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Specifically, we firstly obtained the gene lists reflecting these
metabolic activities (Supplementary Table S1) from the KEGG
(https://www.kegg.jp/) and Reactome (https://reactome.org/)
pathway databases, which are open-source, open-access, manually
curated, and peer-reviewed pathway databases and gained wide
acceptance (37, 38). Then, we used the method of Hänzelmann et al.
(36) to assess the GSVA enrichment scores of metabolic activities in
each patient: 1) Input RNA-seq counts and a list of metabolic gene
sets; 2) Gene expression level statistic: Kernel estimation of the
cumulative density function (kcdf); 3) Rank ordered for each sample
by the expression-level statistic; 4) Calculated the Kolmogorov–
Smirnov-like rank statistic for every gene set; 5) Different score
distributions; 6) Output a matrix containing pathway enrichment
scores for each gene set and sample. The detailed method is
available as a Bioconductor package for R under the name GSVA
at http://www.bioconductor.org.

Identification of Molecular Characteristics
of the Different Metabolism-Related Gene
Prognostic Index Subgroups
To discover the molecular characteristics of the different MRGPI
subgroups, we firstly used the limma package of R to find out the
DEGs between the high- and low-MRGPI groups. Then, the gene
set enrichment analysis (GSEA) was used to enrich the signal
pathways involved in different MRGPI subgroups based on the
KEGG gene sets (c2. cp. kegg. v7.4) by using the clusterProfiler
package of R [p < 0.05, false discovery rate (FDR) <0.25].

The data of genetic alterations (simple nucleotide variation)
of HNSCC was obtained from TCGA GDC data portal, and R’s
Maftools package was used to analyze the number and categories
of gene mutations in the two MRGPI subgroups. The tumor
mutation burden (TMB) of each sample was also calculated by
the Maftools package of R.

Comprehensive Analysis of Immune
Characteristics and Immune Checkpoint
Inhibitor Therapy in the Different
Metabolism-Related Gene Prognostic
Index Subgroups
There are several anticancer immune steps in the antitumor
immune cycle, including Release of cancer antigens, Cancer
antigen presentation, Priming and activation, Trafficking of
immune cells to tumors, Infiltration of immune cells into
tumors, Recognition of cancer cells by T cells, and Killing of
cancer cells. These 7 antitumor immune processes constitute the
antitumor immune cycle. The tracking tumor immunophenotype
(TIP) website collected and curated gene lists that represent these
seven antitumor immune steps, which are presented in
Supplementary Table S2 (, 39). Single-sample gene set
enrichment analysis (ssGSEA) is a method that calculates the
absolute enrichment degree of a given gene set based on these gene
expression values of the sample sequencing data and then
indirectly reflects the activity or enrichment degree of the given
gene set (40). Therefore, we used the ssGSEA algorithm to score
the seven antitumor immune processes during the antitumor
immune cycle of 499 HNSCC tumor samples and to evaluate
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the tumor immunophenotype in high-MRGPI and low-MRGPI
subgroups. Scores for each antitumor immune step for each
HNSCC patient in this study were attached in Supplementary
Table S3. To further evaluate the difference in the level of immune
cell infiltration between different MRGPI score subgroups, we
used the CIBERSORT algorithm to quantitatively analyze the
relative abundance of 22 immune cells in 499 HNSCC tumor
samples (41). The specific information on the proportion of each
immune cell infiltration in each patient was presented in
Supplementary Table S4.

To compare the immune state within the TME of the two
MRGPI subgroups. The ESTIMATE score, immune score, and
stromal score were calculated using the ESTIMATE algorithm.
The ESTIMATE algorithm is a tool that uses gene expression data
to predict tumor purity and the degree of infiltrating stromal/
immune cells in tumor tissue. The ESTIMATE algorithm is based
on ssGSEA and generates three scores: 1) stromal score (capturing
the presence of stroma in tumor tissue), 2) immune score
(representing the infiltration of immune cells in tumor tissue),
and 3) ESTIMATE score (inferred tumor purity).

Then, the TIDE score, dysfunctional cytotoxic T cells,
exclusion cytotoxic T cells, interferon gamma (IFNG) score
and M2-TAMs, cancer-associated fibroblasts (CAFs), and
myeloid-derived suppressor cell (MDSC) infiltrations were
assessed by the TIDE platform to compare the antitumor and
tumor immune escape abilities of the two MRGPI subgroups.
TIDE is a computational framework that can use its built-in
signatures and algorithm to calculate the degree of infiltration of
dysfunctional T cells, M2-TAMs, CAFs, and MDSCs, as well as
the IFNG score (reflecting cytotoxic killing of T cells). Then, the
degree of infiltrating M2-TAMs, CAFs, and MDSCs in the TME
was used to estimate the strength of the TME to exclude T cells,
which was called the T-cell exclusion score. Finally, the TIDE
score was obtained based on the T-cell dysfunction score and T-
cell exclusion score to estimate the ability of the tumors to escape
from immunity. Detailed principles and algorithms can be found
in the articles published by Jiang et al. (42) and Fu et al. (43).

Finally, we referred to the gene sets published by He et al.
reflecting many specific antitumor immunological functions
(attached in Supplementary Table S5), 44) and used the
ssGSEA algorithm to evaluate the immune and molecular
characteristics between the different MRGPI subgroups.

In order to explore the prognostic value of the MRGPI for
patients after immunotherapy, we respectively performed
survival analysis in the IMvigor210 cohort and a Kidney renal
clear cell carcinoma (KIRC) ICI cohort (45, 46). IMvigor210
cohort is a phase II clinical trial of atezolizumab (anti-PD-L1)
therapy in patients with locally advanced or metastatic urothelial
carcinoma. The primary follow-up information of this clinical
trial is OS. The prognostic information and RNA-sequencing
data of the IMvigor210 cohort were built into and can be
publicly obtained by the IMvigor210CoreBiologies R package.
The KIRC ICI cohort composes three prospective clinical
trials of receiving nivolumab (anti-PD-1) therapy in clear
cell renal cell carcinoma (ccRCC), including CheckMate 025,
CheckMate 009, and CheckMate 010. The primary follow-up
June 2022 | Volume 13 | Article 857934
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data of the study are progression-free survival (PFS) and OS in
patients with ccRCC who received anti-PD-1 immunotherapy.
The clinicopathological data, immunotherapy information,
treatment response, prognostic information, and tumor sample
RNA-sequencing data of this cohort were selflessly shared by
Prof. Toni K. Choueir et al. (Department of Medical Oncology,
Dana-Farber Cancer Institute, Harvard Medical School) at
https://doi.org/10.1038/s41591-020-0839-y. The MRGPI scores
of patients in the IMvigor210 cohort and KIRC ICI cohort were
calculated according to the following formula: (MRGPI) =, where
represents the regression coefficient between the gene (i) and
patient prognosis and represents the expression level of the
gene (i).

In addition, time-dependent receiver operating characteristic
curve (ROC) curve analyses were used to obtain the area under
curve (AUC) of various prognostic models, which can reflect the
model’s ability of prediction. The AUC of the MRGPI was
compared with the AUC of two immune-related scores, TIDE
and TIS. TIDE is a score obtained by comprehensively assessing
the ability of the TME to exclude T cells and the infiltration levels
of dysfunctional T cells within the TME. It is often used to
evaluate the immune evasion ability of tumors and the potential
efficacy of immunotherapy and can be calculated online (http://
tide.dfci.harvard.edu/) (43). The TIS is a set of 18 genes that are
highly correlated with clinical response to ICIs, including IFN-
gamma signaling pathway, T cells, and Natural killer (NK) cell-
related genes. The TIS score is calculated as the average log2
scale-normalized expression of 18 characteristic genes (42).

Drug Sensitivity Analysis and Potential
Inhibitors Targeting Metabolism-Related
Gene Prognostic Index Subgroups
We explored the relationship between gene expression and drug
sensitivity using the Gene Set Cancer Analysis (GSCA) online
tool (http://bioinfo.life.hust.edu.cn/GSCA/#/drug). The GSCA
tools collected the IC50 of 367 small molecules in 987 cell lines
from Genomics of Drug Sensitivity in Cancer (GDSC) and the
IC50 of 481 small molecules in 860 cell lines from Cancer
Therapeutics Response Portal (CTRP) (47–49). Gene
expression sequencing data of these cell lines were
simultaneously collected from the Cancer Cell Line
Encyclopedia (CCLE) database. Afterward, the mRNA
expression data and drug IC50 data were merged. Pearson
correlation analysis was performed to get the correlation
between gene mRNA expression and drug IC50. The p-values
with adjusted FDR were obtained. A negative correlation means
that gene expression is suppressed indicating sensitivity to that
drug and vice versa.

The Connectivity map (cMAP) database (https://portals.
broadinstitute.org/cmap/) is a public online tool that was used
to identify candidate inhibitors for the MRGPI subgroups based
on gene expression profiles. Differential expression genes
between the high- and low-MRGPI groups were used to query
in cMAP to get a list of potential inhibitors (50). All compounds’
mechanism of action (MoA) and drug targets were downloaded
from clue (https://clue.io).
Frontiers in Immunology | www.frontiersin.org 5
RESULTS

Differentially Expressed Metabolism-
Related Genes in Head and Neck
Squamous Cell Carcinoma
Differential expression analysis was performed between HNSCC
tumor samples (n = 502) and normal samples (n = 44), and
finally, a total of 5,897 DEGs were obtained, including 4,473
upregulated genes and 1,424 downregulated genes
(Supplementary Figure S1A). A total of 188 metabolism-
related DEGs were then acquired by intersecting the lists of
metabolism-related genes integrated from the KEGG database
with the DEGs. Finally, 93 metabolism-related genes were found
upregulated in tumor samples, while 95 genes were
downregulated (Supplementary Figure S1B). The functional
enrichment analysis showed that 188 metabolism-related DEGs
were significantly associated with 690 GO terms and 54 KEGG
pathways (details in Supplementary Table S6), and the top 8 GO
terms and KEGG pathways are shown in Supplementary
Figures S1C, D.

Metabolism-Related Hub Genes
To obtain the metabolism-related hub genes, WGCNA was
carried out on the candidate genes (n = 188). The power value
when the correlation coefficient between the connectivity K and
the logarithm log(P(k)) reaches 0.85 is set as the b value. The
optimal soft-thresholding power was 4 based on the scale-free
network (Supplementary Figure S2A). Two modules were
identified according to the average linkage hierarchical
clustering and the optimal soft-thresholding power
(Supplementary Figures S2B, C). According to the Pearson
correlation coefficient between a module and sample feature for
each module, the turquoise module is closely correlated with
HNSCC tumors. Thus, the genes in the turquoise module were
selected for further analysis. There were 23 genes and 99 edges of
the turquoise module of the networks with a threshold
weight >0.2 (Supplementary Figure S2D). The top 9
significantly enriched hallmark pathways for the genes in the
turquoise module were shown in Supplementary Figure S2E
(details in Supplementary Table S7). Among these 23 genes of
the turquoise module, the expression of 17 metabolism-related
hub genes was closely correlated with HNSCC patient OS as
determined by Kaplan–Meier survival analysis, as shown in
Supplementary Figure S3 (p < 0.05, log-rank test).

Survival Outcomes in the Different
Metabolism-Related Gene Prognostic
Index Groups
To further identify the metabolism genes that play as
independent prognostic factors, multivariate Cox regression
was carried out among the 17 metabolism-related hub genes.
Finally, seven genes were recognized as independent factors,
including HPRT1, AGPAT4, AMY2B, ACADL, CKM,
PLA2G2D, and ADA. Therefore, the MRGPI of patients’
tumor samples was calculated by the formula: MRGPI = the
expression level of HPRT1 * (0.57) + the expression level of
June 2022 | Volume 13 | Article 857934
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AGPAT4 * (0.24) + the expression level of AMY2B * (-0.50) +
the expression level of ACADL * (0.59) + the expression level of
CKM * (0.07) + the expression level of PLA2G2D * (-0.21) + the
expression level of ADA * (0.21).

The 499 HNSCC patients from TCGA were separated into the
high-MRGPI group and low-MRGPI group according to the
median MRGPI of all patients. Details of clinicopathological
characteristics of the two MRGPI groups were exhibited in
Supplementary Table S8, and the distribution of these
characteristics has no difference between the two groups.
Univariate Cox analysis indicated that Stage and MRGPI are
significantly associated with the prognosis of HNSCC patients
(Figure 1A). Further multivariate Cox regression analysis
confirms that Stage and MRGPI are independent prognostic
factors after being adjusted by other clinicopathologic factors
(Figure 1B). Importantly, the OS of patients with low MRGPI
was significantly higher than that of patients with high MRGPI
(p < 0.001, log-rank test; Figure 1C). Similarly, the disease-
specific survival (DSS) of patients with low MRGPI was also
significantly better than that of patients with high MRGPI
(p < 0.001, log-rank test; Supplementary Figure S4A).
Moreover, according to the previous treatment of HNSCC
patients in TCGA database, we divided the patients into
radiation therapy subgroups, non-radiation therapy subgroups,
molecular targeted therapy subgroups, and non-molecular
targeted therapy subgroups. Excitingly, the MRGPI had an
excellent ability to distinguish patient outcomes in all 4
subgroups, i.e., patients in the low-MRGPI group had better
OS than those in the high-MRGPI group (p < 0.05, log-rank test;
Supplementary Figures S4C–S4F).

In addition, we used an HNSCC dataset (GSE65858; n = 270)
from the GEO database to externally validate the predictive effect
of the MRGPI score on the prognosis. Coinciding with the results
from TCGA cohort, low-MRGPI patients have better OS than
that of high-MRGPI patients (p = 0.013, log-rank test;
Figure 1D). Additionally, the patients with a low MRGPI have
a longer disease-free interval (DFI) than that of high-MRGPI
patients (p < 0.001, log-rank test; Supplementary Figure S4B).
The model discriminatory accuracy was self-verified in TCGA
training cohort using the AUC, resulting in values of 0.66 (95%
CI: 0.59–0.72), 0.66 (95% CI: 0.60–0.71), 0.69 (95% CI: 0.63–
0.75), 0.67 (95% CI: 0.59–0.75), and 0.75 (95% CI: 0.63–0.87) at
1, 2, 3, 5, and 10 years, respectively (Figure 1E), and verified by
the GEO validation cohort, resulting in values of 0.62 (95% CI:
0.53–0.72), 0.61 (95% CI: 0.52–0.69), 0.65 (95% CI: 0.56–0.74),
and 0.76 (95% CI: 0.62–0.90) at 1, 2, 3, and 5 years, respectively
(Figure 1F), which both reflected satisfactory accuracy.

Metabolic Characteristics of the Different
Metabolism-Related Gene Prognostic
Index Subgroups
To gain further biological insight into the metabolic character of
the MRGPI subgroups, we estimated the scores of common
metabolic pathways. The metabolic scores indicated that the
patients of the high-MRGPI group have higher levels of Purine
metabolism; Glutamate and glutamine metabolism; Glycogen
Frontiers in Immunology | www.frontiersin.org 6
metabolism; Glucose metabolism; and Alanine, aspartate, and
glutamate metabolism, while the patients in the low-MRGPI
group have higher Fatty acid metabolism level (Figure 2A).

Molecular Characteristics of the Different
Metabolism-Related Gene Prognostic
Index Subgroups
GSEA was performed to determine the specific gene sets
enriched in each MRGPI subgroup. Against the background of
gene sets included in the hallmark dataset, the gene set enriched
in the high-MRGPI subgroup contains pathways related to
tumor epithelial-mesenchymal transition (EMT) conversion,
glycolysis, and hypoxia (Figure 2B), while the gene set of the
low-MRGPI sample is enriched in interleukin-2 (IL-2)
channels (Figure 2C; p < 0.05, FDR <0.25). When using the
KEGG database as a background, the gene sets enriched in the
high-MRGPI subgroup contains pathways related to
PRIMARY_IMMUNODEFICIENCY, FOCAL ADHESION,
and immune response (Supplementary Figure S5A), while the
gene set of the low-MRGPI sample is rich in cancer and tumor
metastasis-related pathways (Supplementary Figure S5B). The
detailed results of GSEA are listed in Supplementary Table S9.

To further discover the different immunological natures
brought about by metabolic characteristics, we explored the
gene mutation landscapes of the different MRGPI subgroups.
First, our results intuitively show that there are more samples
with genetic mutations in the high-MRGPI subgroup than those
in the low-MRGPI group (94.47% vs. 89.39%). Missense
mutation accounted for the largest proportion (87.4%) of all
mutation types, followed by Nonsense mutation (7.1%) and
Frameshift deletions (2.9%) in the high-MRGPI subgroup. In
the low-MRGPI group, the order of the proportions of the
different mutation types is the same. Missense mutation is the
most common mutation type (87.2%), followed by Nonsense
mutation (7.0%) and Frameshift deletions (3.4%) in the high-
MRGPI subgroup. Next, we explored the top 20 genes with the
most frequent mutation rates in the two MRGPI subgroups
(Figure 2D). Two MRGPI subgroups have obviously distinct
mutant gene atlases. For example, although the gene with the
highest mutation frequency in the two groups is TP53, the
mutation rate of TP53 is as high as 74% in the high-MRGPI
subgroup, which is much higher than the 51% mutation rate in
the low-MRGPI group. Moreover, an important tumor
suppressor gene, CDKN2A, which controls the cell cycle has
an incidence rate of 20% in the high-MRGPI group and only 16%
in the low-MRGPI group. Additionally, an important mutation
that can cause the activation of the notch pathway, NOTCH1-
mutation, has an incidence rate of 16% in the high-MRGPI
group and only 14% in the low-MRGPI group.

Relationship Between the Metabolism-
Related Gene Prognostic Index Grouping
and Seven-Step Anticancer Immune
Response Processes
The anticancer immune response can be conceptualized as a
series of stepwise events, including the release of cancer antigens
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(step 1), cancer antigen presentation (step 2), initiation and
activation (step 3), transportation of immune cells to the tumor
(step 4), immune cells infiltrate the tumor (step 5), T cells
recognize cancer cells (step 6) and kill cancer cells (step 7).
The activity of these steps reflects the ability of the body’s
immune cells to mobilize, transport, and kill, which together
Frontiers in Immunology | www.frontiersin.org 7
determine the success of the antitumor immune response. To
analyze the impact of tumor metabolic activity on the seven-step
anticancer immune response process of the 26 immune cells, we
obtained signatures representing the seven-step anticancer
immune process from the TIP database (attached in
Supplementary Table S2) and used the ssGSEA algorithm to
A
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C

FIGURE 1 | The prognostic role of the MRGPI. (A) Univariate Cox analysis of 17 metabolism-related hub genes. (B) Univariate Cox analysis of clinicopathologic
factors and the MRGPI score and multivariate Cox analysis of the factors significant in the univariate Cox analysis (p < 0.05). (C) Kaplan–Meier analysis of the MRGPI
subgroups in TCGA cohort. (D) Kaplan–Meier analysis of the MRGPI subgroups in the GEO cohort. (E) ROC analysis of the MRGPI on OS at 1-, 2-, 3-, 5-, and 10-
year follow-up in TCGA cohort. (F) ROC analysis of the MRGPI on OS at 1-, 2-, 3-, and 5-year follow-up in the GEO cohort. MRGPI, metabolism-related gene
prognostic index; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; ROC, Receiver operating characteristic curve.
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evaluate the ability of each antitumor step in patients. Then, we
used the Wilcoxon test to compare the status of the seven
antitumor immune processes in the different MRGPI
subgroups (Figure 3). We found that the ability to release
cancer antigens was stronger in the high-MRGPI group
(Figure 3A). The ability of immune cell priming and
Frontiers in Immunology | www.frontiersin.org 8
activation of the low-MRGPI patients is significantly superior
to that of the high-MRGPI patients (Figure 3C). The total ability
of trafficking immune cells to tumors is stronger in the low-
MRGPI group than in the high-MRGPI group. In detail, the
trafficking abilities of T cell, CD4 T cell, CD8 T cell, Th1 cell, DC,
NK cell, and Th2 cell to tumors are stronger in the low-MRGPI
A

B

D

C

FIGURE 2 | Metabolic activities and molecular characteristics of the different MRGPI subgroups. (A) The scores of common metabolic pathways of the different
MRGPI subgroups. (B) Hallmark gene sets enriched in the high-MRGPI subgroup (p < 0.05, FDR <0.25). (C) Hallmark gene sets enriched in the low-MRGPI
subgroup (p < 0.05, FDR <0.25). (D) Top 20 mutated genes in the different MRGPI subgroups. Mutated genes (rows) are ordered by mutation rate; samples
(columns) are arranged to emphasize mutual exclusivity among mutations. The rightmost label shows mutation percentage, and the top shows the overall mutation
number of the patients. The colored squares indicate the mutation type. *P < 0.05,**P < 0.01,****P < 0.0001. MRGPI, metabolism-related gene prognostic index;
FDR, false discovery rate.
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patients than those in the high-MRGPI patients, while the
trafficking abilities of Neutrophil and Treg cell to the tumor
are weaker in the low-MRGPI patients (Figure 3D). In the next
step, the degree of immune cell infiltration into tumors is
naturally higher in the low-MRGPI group (Figure 3F).
However, the capabilities of cancer antigen presentation,
recognition of cancer cells by T cells, and killing of cancer cells
between the two MRGPI groups showed no difference
(Figures 3B–G, H).

Immune Cell Infiltration and the Tumor
Microenvironment Characteristics in the
Different Metabolism-Related Gene
Prognostic Index Subgroups
To further assess the immune characteristics of the TME in the
different MRGPI subgroups, we firstly used the CIBERSORT
algorithm to evaluate the proportions of 22 immune cell
infiltration of each HNSCC case in the different MRGPI
subgroups (Figure 4A). We found that naive B cells, plasma
cells, CD8 T cells, memory activated CD4 T cells, follicular helper
T cells, Treg cells, gamma delta T cells, resting Mast cells, and
Neutrophils were significantly more abundant in the low-MRGPI
subgroup, while memory resting CD4 T cells, resting NK cells, M0
macrophages, and activated Mast cells showed a significantly high
infiltration level in the high-MRGPI subgroup (Figure 4A).

Moreover, the ESTIMATE algorithm was used to evaluate the
tumor microenvironmental components of each HNSCC
sample. Finally, we calculated the ESTIMATE score (that infers
tumor purity), immune score, and stromal score to compare the
Frontiers in Immunology | www.frontiersin.org 9
differences in the immune microenvironment between the low-
MRGPI subgroup and the high-MRGPI subgroup. ESTIMATE
score is the sum of the immune score and stromal score, which
reflects the proportion of immune cells and stromal cells within
the TME, and is also an indicator of tumor purity. A higher
ESTIMATE score represents a higher proportion of immune
cells and stromal cells within the TME and thus a lower
proportion of tumor cells (lower tumor purity). That is, the
ESTIMATE score is inversely proportional to tumor purity. We
found that the low-MRGPI subgroup has a significantly higher
ESTIMATE score (lower tumor purity) and immune score,
which is consistent with the immune infiltration results above
(p < 0.001) (Figures 4B, C). There was no difference in stromal
scores between the two subgroups (Figure 4D).

In addition, we further used certain gene signatures that can
reflect specific antitumor immunological functions to evaluate the
immune and molecular characteristics between the different
MRGPI subgroups. The results showed that there is better antigen
presentation ability [activated dendritic cells (aDCs), antigen
presenting cells (APC)], more chemokine receptors (CCR),
stronger anti-inflammatory and cytotoxic effects, and more IFN
responses in the low-MRGPI group (Supplementary Figure S6A).

The Benefit of Immune Checkpoint
Inhibitor Therapy in the Different
Metabolism-Related Gene Prognostic
Index Subgroups
As the MRGPI can successfully distinguish the OS rate of
HNSCC patients in different subgroups and is related to
A B D
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FIGURE 3 | Correlation between scores of the seven-step cancer-immunity cycle and the MRGPI subgroups. (A) The quantity of release of cancer antigens (step 1
of the seven-step cancer-immunity cycle) between the MRGPI subgroups. (B) The quantity of cancer antigen presentation (step 2) between the MRGPI subgroups.
(C) The ability of priming and activating immune cells (step 3) between the MRGPI subgroups. (D) The ability of trafficking kinds of immune cells to tumors (step 4)
between the MRGPI subgroups. (E) The ability of trafficking CD8 T cells to tumors (step 4) between the MRGPI subgroups. (F) The degree of infiltration of immune
cells into tumors (step 5). (G) The ability of recognizing cancer cells by T cells (step 6). (H) The ability of killing cancer cells (step 7) between the MRGPI subgroups.
MRGPI, metabolism-related gene prognostic index.
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multiple steps in the antitumor immune response processes, we
naturally guessed whether the MRGPI can predict the potential
clinical efficacy of ICI therapy.

First, a correlation analysis was performed between the
MRGPI and immune checkpoint proteins, including PD-1
(PDCD1), PD-L1 (CD274), CTLA-4, lymphocyte activation
gene-3 (LAG-3), T-cell immunoglobulin, and immunoreceptor
tyrosine-based inhibition motif domain (TIGIT) in the 502
HNSCC patients. There were significant negative correlations
between the MRGPI and these immune checkpoint proteins
(p < 0.01), except for PD-L1, which was not associated with the
MRGPI (p > 0.05) (Supplementary Figures S6B–F). Specifically,
a low MRGPI correlates with a high expression of checkpoint
proteins, while a high MRGPI correlates with a low expression of
checkpoint proteins. Many studies have demonstrated that a
higher expression of immune checkpoint proteins such as PD-1
and CTLA-4 is associated with higher response rates or better
efficacy of immunotherapy (51, 52). Therefore, these results
suggest that patients with a low MRGPI may be more likely to
benefit from immunotherapy.

We then used the TIDE algorithm to assess the potential clinical
efficacy of immunotherapy in the different MRGPI subgroups. We
found that the low-MRGPI patients with higher immune cell
infiltration had higher T-cell dysfunction scores, while the high-
MRGPI patients with less immune cell infiltration level had higher
Frontiers in Immunology | www.frontiersin.org 10
T-cell exclusion scores (Figures 5A, B). Moreover, two signatures
for assessing the ability to release IFN-g, IFNG, and Merck18 both
suggest that the patients of the low-MRGPI subgroup have a
stronger IFN-g release ability, which indirectly reflects that they
have a stronger tumor-killing effect (Figures 5C, D). In addition,
three kinds of suppressor cells that contribute to tumor immune
escape, M2-TAMs), CAFs, and MDSCs, respectively, suggest that
the high-MRGPI tumors have a stronger immunosuppressive
microenvironment and a more formidable immune evasion
tendency (Figures 5E–G). Finally, the above results are
comprehensively analyzed to get the TIDE prediction score of
each HNSCC patient. A higher TIDE prediction score reflected a
higher potential for immune evasion, which suggested that the
patients were less likely to benefit from ICI therapy. In our results,
the TIDE scores of the low-MRGPI subgroup were surprisingly
slightly higher than those of the high-MRGPI subgroup, implying
that the low-MRGPI patients may not benefit from ICI therapy
compared with the high-MRGPI patients (Figure 5H).

As the result of the ICI therapy benefit predicted by TIDE is
inconsistent with the result of the antitumor immune response in
the MRGPI subgroups, we further estimated the prognostic value
of the MRGPI in two cancer cohorts that had received anti-PD-
L1 therapy. In the IMvigor210 cohort of bladder cancer, patients
with a low MRGPI have better immunotherapy efficacy and
better OS prognosis (Figure 5I). In the renal clear cell carcinoma
A

B DC

FIGURE 4 | The TME landscape of the different MRGPI subgroups. (A) The proportions of immune cells within the TME in the different MRGPI subgroups. The
scattered dots represent the immune score of the two subgroups. The thick lines represent the median value. The bottom and top of the boxes are the 25th and
75th percentiles (interquartile range), respectively. Significant statistical differences between the two subgroups were assessed using the Wilcoxon test (ns, not
significant; *p < 0.05; **p < 0.01; ***p < 0.001). (B) The ESTIMATE Score (tumor purity) of the two MRGPI subgroups. (C) The Immune Score of the two MRGPI
subgroups. (D) The Stromal Score of the two MRGPI subgroups. TME, tumor microenvironment; MRGPI, metabolism-related gene prognostic index.
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(KIRC) cohort treated with nivolumab anti-PD-1 monoclonal
antibody, we found that patients with a low MRGPI have
significantly better ICI therapy efficacy and higher OS rates
than patients with a high MRGPI (Figure 5J). To validate the
performance of the MRGPI on patient prognosis, we compared
the performance of the MRGPI with TIDE and TIS in TCGA
Frontiers in Immunology | www.frontiersin.org 11
HNSCC cohort and IMvigor210 cohort. The AUC of the MRGPI
was better than the AUC of TIS and TIDE at 3 years’ follow-up in
TCGA cohort that included patients with comprehensive
therapy (Figure 5K). However, in the cohort receiving ICI
therapy, the AUC of the MRGPI was between TIS and TIDE
at 1-year follow-up (Figure 5L). Hence, we considered that the
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FIGURE 5 | The prognostic significance of the MRGPI in patients with immune checkpoint inhibitor therapy. (A–H) T-cell dysfunction score, T-cell exclusion score,
IFNG, Merck18, M2-TAMs, CAFs, MDSCs, and TIDE score in the different MRGPI subgroups. The scores between the two MRGPI subgroups were compared
through the Wilcoxon test. (I) Kaplan–Meier analysis of the MRGPI subgroups in the IMvigor210 cohort. (J) Kaplan–Meier analysis of the MRGPI subgroups in the
KIRC ICI cohort. (K) ROC analysis of the MRGPI, TIDE, and TIS on overall survival at 3-year follow-up in TCGA cohort. (L) ROC analysis of the MRGPI, TIDE, and
TIS on overall survival at 1-year follow-up in IMvigor210.
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MRGPI is an ideal predictive index whose predictive power for
OS is better than TIDE in the ICI therapy cohort.

Drug Sensitivity Analysis and Potential
Inhibitors Targeting Metabolism-Related
Gene Prognostic Index Subgroups
IC50, the 50% inhibitory concentration, represents the
concentration of a drug that is required for 50% inhibition of
tumor cells. It is commonly used as a measure of drug sensitivity.
That is, the lower the IC50 value of a drug on tumor cells, the
more sensitive the tumor cells are to this drug. For drug
sensitivity analysis using the GDSC database, the IC50 values
for the treatment of 987 tumor cells by 367 drugs, respectively,
and transcriptome sequencing data for these tumor cell lines
[based on RNA microarrays and normalized using a robust
multi-array analysis (RMA) algorithm] were first obtained
from the GDSC database. Then, the expression values of the
candidate genes in each cell line were combined with the IC50
values of each drug for each cell line using the cell line name as a
reference. Finally, correlation analysis was performed on gene
expression values and drug IC50 values using Pearson
correlation, and then, the correlation between candidate genes
and each drug was calculated. For drug sensitivity analysis using
the CTRP database, the IC50 values for the treatment of 860
tumor cells by 481 drugs were obtained from the CTRP database,
and transcriptome sequencing data for these tumor cell lines
[based on RNA microarrays and normalized, quantified by the
RNA-Seq by Expectation Maximization (RSEM) algorithm] were
obtained from the CCLE database. Then, the candidate gene
expression levels and drug IC50 values were combined, and their
correlations were calculated according to the above method.
Because the drugs and tumor cells tested in the GDSC
database and the CTRP database are different, the results
obtained are also different. For ACADL, only one drug in both
databases has a meaningful correlation of IC50 with its
expression and is therefore not exhibited in Figures 6A, B.
The AMY2B gene is not embodied in the GDSC database, so
the correlation between AMY2B and drug sensitivity is not
shown in Figure 6A. The drugs that sensitized the rest of the
MRGPI genes were ranked by the integrated level of correlation
coefficient and FDR (adjust. p-value). The top 30 ranked drugs
were shown in Figures 6A, B. In the figure, the purple dots
represent a negative correlation between the gene and the IC50 of
the candidate drug. This means that the gene is positively
correlated with the sensitivity of the candidate drug. We found
that the ADA expression was positively correlated with
sensitivity to classical chemotherapeutic agents, such
vinblastine, camptothecin, gemcitabine, and methotrexate, as
well as novel small-molecule inhibitors, such as AT-7519
[Cyclin-dependent kinases (CDK) inhibitor], AZD7762
[Checkpoint Kinase (CHK) inhibitor], and AZD8055
[mammalian target of rapamycin (mTOR) inhibitor].
PLA2G2D was negatively associated with the resistance to
vincristine, methotrexate, GSK461364 (PLK1 inhibitor),
parbendazole (microtubule inhibitor), and so on. HPRT1 was
significantly positively correlated with sensitivity to CD-437
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[Retinoic Acid Receptor gamma (RARg) agonist], COL-3
[Matrix metalloproteinase (MMP) inhibitor], and manumycin
A (antibiotic). CKM was significantly positively correlated with
sensitivity to ciclopirox (antifungal agent), CR-1-31B (eIF4A
inhibitor), and narciclasine. AGPAT4 was significantly
positively correlated with resistance to KIN001-102 and
ciclopirox and negatively correlated with resistance to
camptothecin, chlorambucil, and triazolothiadiazine.

Potential compounds targeting the MRGPI subgroups were
identified with the DEGs between the high- and low-risk groups
by querying the cMAP database. The potential compounds
specific to the MRGPI and the corresponding mechanism of
action are shown in Figure 6C. The negative mean value
indicated that changes in expression profiles of these drug-
treated cell lines in the cMAP database were reversed from
those in the high-risk group and the positive value was just the
opposite. Therefore, alimemazine, doxylamine, nimesulide, NU-
1025, and ondansetron may serve as potential inhibitors
targeting the MRGPI in the high-risk group.
DISCUSSION

Although immunotherapy is of great benefit to the survival of
patients with relapsed and refractory HNSCC, the low response
rate to treatment limits the clinical application of ICIs. Moreover,
increasing evidence has shown that metabolic reprogramming in
the TME can affect the efficacy of immunotherapy by weakening
the antitumor immunity of immune cells. Therefore, it is
particularly important to construct a metabolism-related
prognostic biomarker to identify the patient groups that are
likely to benefit from conventional therapies and ICI therapy and
profi l e the i r tumor molecu lar charac ter i s t ic s and
TME landscapes.

In our research, we used the WGCNA algorithm to screen 17
metabolism-related hub genes that are most related to
tumorigenesis and affect the patient’s survival. Among these
hub genes, only genes that were independent prognostic
factors for OS were used to develop the MRGPI, including
HPRT1, AGPAT4, AMY2B, ACADL, CKM, PLA2G2D, and
ADA. In two independent cohorts of TCGA and GEO
database, both survival analysis and AUC proved that the
MRGPI is an effective prognostic indicator of HNSCC, with
better survival in the high-MRGPI patients and worse survival in
the low-MRGPI patients.

The MRGPI is composed of seven genes: HPRT1, AGPAT4,
AMY2B, ACADL, CKM, PLA2G2D, and ADA. HPRT1 is an
important enzyme involved in purine metabolism, which is often
used as a housekeeping gene. However, increasing evidence has
unraveled the mystery of HPRT1 as a potential biomarker in a
variety of tumors. It has been reported that HPRT1 is significantly
elevated in multiple cancer types (53, 54) and is associated with a
poor prognosis due to the increased demand for nucleotide
synthesis during tumor cell proliferation (55, 56). In both
HNSCC and its subclass oral squamous cell carcinoma, multiple
studies have demonstrated that HPRT1 was overexpressed and
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significantly correlated with the poor prognosis of patients (57,
58). HPRT1 was also found to be associated with drug resistance,
such as cisplatin, in cancer cells and has been proposed as a
therapeutic target of chemotherapeutic drugs (58, 59). Moreover,
it has been reported that HPRT expression was negatively
correlated with the infiltration of several immune cell subsets,
including CD8+ T cells, CD4+ T cells, B cells, macrophages,
neutrophils, and DCs (60). Additionally, the upregulation of
Frontiers in Immunology | www.frontiersin.org 13
HPRT in malignant tissue leads to an immunosuppressive
microenvironment by directly promoting purine synthesis and
then reducing immune cell activation (60). AGPAT4, also known
as lysophosphatidic acid acyltransferase d, is an emerging protein
found to be involved in lipid metabolism reprogramming. It has
been reported that a high expression of AGPAT4 in tumor cells
can reduce the release of lysophosphatidic acid (LPA) (61, 62).
Then, the reduced LPA reprograms the lipid metabolism of
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FIGURE 6 | Drug sensitivity analysis and potential inhibitors targeting the MRGPI subgroups. (A) Correlation between GDSC drug sensitivity and the MRGPI gene
expression. (B) Correlation between CTRP drug sensitivity and the MRGPI gene expression. (C) cMAP analysis in the different MRGPI subgroups. MRGPI,
metabolism-related gene prognostic index; GDSC, Genomics of Drug Sensitivity in Cancer; CTRP, Cancer Therapeutics Response Portal; cMAP, Connectivity map.
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macrophages and promotes the polarization of macrophages to
M2 macrophages, thereby inhibiting T-cell activation and
facilitating tumor growth (63). Acyl-CoA dehydrogenase long-
chain (ACADL), also be called LCAD, is a key enzyme that
regulates the metabolic pathway of mitochondrial fatty acid
oxidation by catalyzing the b-oxidation of long-chain fatty acids
(64, 65). It has been reported that the expression of ACADL
protein was positively associated with malignant progression in
prostate cancer (66). However, Hill et al. (67) revealed that
ACADL methylation is increased in breast cancer tissues and is
associated with poor survival of breast cancer patients, which
suggested that ACADLmay play a tumor-suppressor role in breast
cancer. Moreover, in hepatocellular carcinoma (HCC), the
expression of ACADL was found significantly decreased in
tumor tissues compared to normal liver tissues in both mRNA
and protein levels, and restored ACADL expression suppressed
HCC cell growth (68). Furthermore, it has been reported that the
loss of ACADL enhanced tumor growth by inhibiting the
expression of the suppressor gene phosphatase and tensin
homolog deleted on chromosome ten PTEN) in vivo; therefore,
the loss of ACADL is correlated with poor clinical prognosis of
HCC patients (69). The mechanism behind ACADL inhibiting
PTEN is perhaps due to the loss of ACADL leading to
accumulation of unsaturated fatty acids. Then, unsaturated fatty
acids inhibit PTEN via miR-21 upregulation in hepatocytes (70).
Creatine kinase (CK), also known as creatine phosphokinase or
phosphocreatine kinase, is an extremely important enzyme
catalyzing the conversion of adenosine diphosphate (ADP) to
adenosine triphosphate (ATP), which plays a central role in energy
homeostasis in the tissues displaying high and variable rates of
energy turnover such as cardiac, brain, muscle, skeletal, and retina
(69, 71). It has been known for about 40 years that aberrant CK
levels are associated with various cancers (72). A review
summarized that CK can regulate cell cycle progression by
affecting the intracellular energy status and by influencing
signaling pathways that are essential to activate cell division and
cytoskeleton reorganization. Therefore, the involvement of CK in
cell cycle regulation and cellular energy metabolism makes it a
potential diagnostic biomarker and therapeutic target in cancer
(72). Another study revealed that CK had a close relationship with
bone and lymph node metastases and could be used as
independent factors to predict a poor prognosis in lung cancer
patients (72, 73). Recently, a study indicated that CKB plays an
unexpected role in modulating T cell receptor (TCR)-mediated
signaling and critically regulates the activation, proliferation, and
cytokine secretion of T cells (74). However, there is still a lack of
research on the role of CKM in cancer biology. PLA2G2D (sPLA2-
IID) is a member of the phospholipase A2 family that hydrolyzes
the sn-2 fatty acid ester bond of glycerophospholipids to produce
lysophospholipids and free fatty acid (75). Miki et al. (76) found
that compared with normal mice, Pla2g2d deficiency (Pla2g2d
−/−) mice had a significantly reduced incidence of 7,12-
Dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-
acetate (DMBA/TPA)-induced skin carcinogenesis. However, the
expression of PLA2G2D has also been found to be positively
correlated with better prognosis in human HNSCC and breast
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cancer, which is also consistent with the result of our survival
analysis (77, 78). Interestingly, PLA2G2D was found serving as a
vital regulator of respiratory dendritic cell (rDC) activation and
enhanced priming of virus-specific T cells after infections with
respiratory viruses (79). ADA is a key enzyme in purine
metabolism, which maintains the balance of adenosine inside
and outside the cell by catalyzing the irreversible deamination of
adenosine and converting adenosine into inosine (80). Several
previous studies have shown that altered ADA activity is related to
the progression of a variety of tumors, especially in breast cancer
(81–84). A recent study revealed the changes in ADA2 activity that
may contribute to the differentiation of macrophages into an
unfavorable protumor M2 phenotype in triple-negative breast
cancer (84).Together, these findings indicated that the genes that
make up the MRGPI are involved in several metabolic activities,
and most of the genes are related to tumor progression and
prognosis. Therefore, this can explain to a certain extent why
the MRGPI can be used as an independent prognostic factor for
HNSCC and can predict the survival of patients. More
interestingly, the abovementioned studies have shown that many
genes of the MRGPI are involved in the metabolic reprogramming
of immune cells, which in turn regulates the differentiation and
activation of immune cells. Therefore, these results suggest that the
MRGPI may be a potential indicator that can simultaneously
reflect the metabolic activity and immune status in the TME.

To gain further biological insight into the metabolic character
of the MRGPI subgroups, we then estimated the scores of
common metabolic pathways. The metabolic scores of the
different MRGPI subgroups indicated that the patients of the
high-MRGPI group have higher levels of Purine metabolism;
Glutamate and glutamine metabolism; Glycogen metabolism;
Glucose metabolism; and Alanine, aspartate, and glutamate
metabolism, while the patients in the low-MRGPI group have
higher Fatty acid metabolism level. Purines are the most
elementary metabolic substrates of all organisms, providing
essential components for DNA and RNA syntheses. In
addition, purines also provide the necessary energy and
cofactors for maintaining cell survival and proliferation.
Therefore, purines and their derivatives are widely involved in
tumor progression, as well as immune responses and host–tumor
interactions (85, 86). A recent study suggested that blocking the
purine synthesis pathway significantly inhibited the
tumorigenesis and stem-like properties of lung cancer cells
(87). Previous studies have shown that cancer cells exhibit
increased consumption and dependence on glutamine. The
enhanced glutamine in cancer cells activates mTOR signal
transduction, inhibits endoplasmic reticulum stress, and
promotes protein synthesis, thereby promoting tumor growth
and proliferation (88–90). Moreover, our previous research
revealed that glutamine metabolism regulators were associated
with poorer cancer prognoses and an immunosuppressive TME
(91). In the TME under hypoxic conditions, Glucose metabolism
is the most common metabolic reprogramming of tumors that
plays a major role in cancer survival, proliferation, metastasis,
and treatment resistance (92–96). Fatty acids are also an
important class of metabolites, which are required for the
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synthesis of tumor cell membranes and signaling molecules in
cellular proliferation (97). In our current study, the high-MRGPI
patients, with a worse prognosis, have higher levels of Purine
metabolism, Glutamate and glutamine metabolism, Glycogen
metabolism, and Glucose metabolism, which are more conducive
to tumor progression. This answers from another perspective
why the MRGPI is related to the prognosis of HNSCC patients.

To further comprehend the immunological properties of the
MRGPI subgroups, we explored the gene mutation profile of the
different MRGPI subgroups. There are huge mutation differences
between the patients of the high-MRGPI group and the low-
MRGPI group. The most obvious difference is that the high-
MRGPI patients have more TP53 mutation frequencies (74%)
than the low-MRGPI patients (51%). TP53 is a well-known
tumor suppressor gene, which exerts a tumor suppressor effect
by controlling cell proliferation and promoting cell apoptosis
(98–101). It has been reported TP53 mutations are positively
correlated to shorter survival time and therapeutic resistance to
radiotherapy and chemotherapy in HNSCC patients (102).
Therefore, the worse prognosis of patients in the high-MRGPI
group may be related to the higher frequency of TP53 mutations.

As most of the genes that make up the MRGPI participate in
the processes of immune cell differentiation, activation, and
antitumor immunity, it inspired us to further explore the
relationship between the MRGPI and the antitumor immunity
process, immune cell infiltration, and the condition of the tumor
immune microenvironment. In the seven-step anticancer
immune response processes, our evaluated results indicated
that the high-MRGPI group has a stronger ability to release
cancer antigens, which may be caused by more gene mutations in
the high-MRGPI group. Interestingly, the high-MRGPI group
has a higher ability to release antigens, as one would expect that
this could be a positive feature for antitumor response and
response to therapy. However, the ability of immune cell
priming and activation, the ability of trafficking immune cells
to tumors, and the degree of immune cell infiltration within
tumors of the low-MRGPI subgroup were significantly superior
to those of the high-MRGPI subgroup. In particular, the immune
cells that play major roles in killing tumors, such as CD8 T cells,
CD4 T cells, and NK cells, have stronger activation and driving in
patients with a low MRGPI. In summary, these findings indicate
that patients with a low MRGPI have a stronger activation and
trafficking of immune cells and a higher abundance of immune
cell infiltration, which leads to a stronger antitumor response and
consequently a better prognosis for patients. The immune cell
differences between the different MRGPI groups were then
predicted in more detail. The results revealed that immune
cells with antitumor effects such as plasma cells, CD8 T cells,
memory-activated CD4 T cells, follicular helper T cells, and
gamma delta T cells are significantly more abundant in the low-
MRGPI subgroup. What is more interesting is that the cells that
are considered to have no antitumor effect such as memory
resting CD4 T cells, resting NK cells, and M0 macrophages were
higher infiltrated in the high-MRGPI subgroup. Moreover, the
TME Estimate scores indicated that the patients in the low-
MRGPI group have higher immune scores than those in the
Frontiers in Immunology | www.frontiersin.org 15
high-MRGPI patients, while the stromal scores have no
difference between the two groups. These results once again
proved that the patients in the low-MRGPI group have more
abundant antitumor immune cells within tumors and therefore
have a better prognosis. Altogether, the evidence above suggested
that the high-MRGPI group has a “desert-like” immune
environment, with fewer anticancer immune cells and more
cancer-promoting immune cell infiltration, and has weaker
anticancer immune activity in multiple steps of the antitumor
immune processes. These explain why the MRGPI is related to
the prognosis of HNSCC patients from the perspective of
antitumor immunology.

Considering the excellent prognostic effect of the MRGPI on
traditional treatment and the close relationship between the
MRGPI and antitumor immune response, we used the TIDE
algorithm to predict the prognostic effect of the MRGPI on ICI
therapy. The TIDE algorithm reflects the benefits of ICI treatment
by estimating the potential of tumor immune escape. TIDE
algorithm evaluated the tumor immune evasion ability from two
perspectives: T-cell dysfunction score and T-cell exclusion score.
T-cell dysfunction is a method to assess tumor immune escape by
estimating the level of dysfunctional T cells infiltrating within the
TME. T-cell exclusion is an assessment of the ability of the TME to
prevent T-cell infiltration by the infiltration level of
immunosuppressive cells including CAFs, MDSCs, and M2-
TAMs in the TME. There was no direct connection between
them, but tumor samples with a high T-cell infiltration generally
had higher T-cell dysfunction and lower T-cell exclusion. In our
study, the high-MRGPI patients had less cytotoxic T lymphocyte
(CTL) infiltration and higher T-cell exclusion score (but not T-cell
dysfunction score), M2-TAMs, CAFs, and MDSCs than those of
the low-MRGPI patients, so their lower ICI response might be due
to immune evasion via T-cell exclusion and more protumor
immune cell infiltration (42, 103–105). On the contrary, the
low-MRGPI group had a higher T-cell dysfunction score, which
is associated with the more abundant CTL infiltration in their
TME. Notably, there were subtle differences in the infiltration
levels of M2 macrophages/M2-TAMs between the two MRGPI
subgroups shown in Figures 4B, 5E. This is because the
infiltration level of M2 cells in Figure 4B was assessed according
to the algorithm of the CIBERSORT software. CIBERSORT uses
the deconvolution method to first extract the characteristics of
various immune cells from single-cell RNA-seq and then reversely
calculate the proportion of various immune cell components
in tumor Bulk-seq, while the degree of infiltration of M2-TAMs
in Figure 5E was estimated according to the TIDE algorithm. In
addition, the two algorithms have different definitions of M2
macrophages/TAMs. Therefore, there will be subtle differences
in the levels of assessed M2 macrophage infiltration. Interestingly,
despite the differences between the aforementioned CIBERSORT
and TIDE algorithms, their results were potentially relevant. As
shown in Figure 4B, the low-MRGPI group has a higher CD8 T-
cell infiltration assessed using the CIBERSORT algorithm, and
thus it has a higher T-cell dysfunction score (Figure 5A) and a
lower T-cell exclusion score according to the TIDE algorithm
(Figure 5B). To our surprise, the low-MRGPI group had a higher
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TIDE score than the high-MRGPI group, which suggested that the
tumors of these patients are more possible to immune escape
(106). This result clearly contradicts the better survival of patients
with a low MRGPI. Since the TIDE score calculated by the TIDE
algorithm is based on the T-cell dysfunction score in tumor
samples with high infiltrating CTLs and the T-cell exclusion
score in samples with low infiltrating CTLs. In our study, most
of the HNSCC samples have high infiltration of CTLs; thus, the
TIDE score was mainly determined by the T-cell dysfunction
score. Compared with patients in the high-MRGPI group, the low-
MRGPI group had more T cells infiltrating the dysfunction, thus
resulting in a higher TIDE score. Therefore, we speculate that the
TIDE algorithm tends to use the infiltration degree of CTLs
(mainly dysfunctional CTLs in our study) to calculate the degree
of benefit of patients from immunotherapy, without
comprehensively considering the role of other immune cells in
antitumor, which leads to the inconsistent prediction of TIDE with
survival analysis.

Therefore, to further confirm the prognostic value of the
MRGPI, we performed survival analysis in two cancer cohorts
that had received ICI therapy. The results of both clinical trials
demonstrated that patients in the low-MRGPI group are more
likely to benefit from immunotherapy and have a better OS rate
than those in the high-MRGPI group. These results from the real
world, rather than the prediction in silico, are consistent with our
evidence for the role of the MRGPI in predicting immunotherapy
Frontiers in Immunology | www.frontiersin.org 16
efficacy. Several biomarkers have been proven to have good
performance in predicting the efficacy of immunotherapy, such
as TIDE and TIS. The TIDE score has been shown to be more
accurate than PD-L1 levels and TMB in predicting the therapeutic
outcome of malignant melanoma patients treated with anti-PD-1
or anti-CTLA-4 antibodies (42). TIS is a signature composed of 18
T cell-related genes, of which good predicted efficacy has been
validated in two HNSCC cohorts treated with pembrolizumab and
exhibited a positive correlation with treatment response and better
survival (107). Therefore, we compared the ability of the MRGPI
with TIDE and TIS to predict prognosis in the cohort receiving
comprehensive therapy and immunotherapy. The AUC of the
MRGPI was better than the AUC of TIS and TIDE at 3 years’
follow-up in TCGA cohort that included patients with
comprehensive therapy. In the cohort receiving ICI therapy, the
AUC of the MRGPI was between TIS and TIDE at 1-year follow-
up. Hence, we considered that the MRGPI is an ideal predictive
index whose predictive power for OS is comparable to TIDE and
TIS in the ICI therapy cohort.

Finally, for the individualized precision therapy to patients with
a high death risk or the high-MRGPI patients, we explored the
potential compounds targeting the MRGPI genes and the potential
existing small-molecule drugs targeting the MRGPI subgroups. For
example, when faced with an HNSCC patient who failed multi-line
therapies and the gene sequencing results showed that the key
enzyme of purine metabolism-ADA is highly expressed, clinicians
can try to use novel small-molecule inhibitors, such as AT-7519
(CDK inhibitor), AZD7762 (CHK inhibitor), and AZD8055
(mTOR inhibitor) for treatment. If it is more coincidental that
the mTOR pathway in the patient’s cancer tissue is activated, then
mTOR inhibitor AZD8055 can be more accurately selected for
treatment. On the other hand, when the patient’s high-MRGPI
score is calculated based on the gene sequencing results, drugs that
target the MRGPI upregulated genes can be selected, such as
alimemazine (histamine receptor agonist), doxylamine (histamine
receptor antagonist), nimesulide (cyclooxygenase inhibitor), NU-
1025 [DNA-dependent protein kinase inhibitor/Poly ADP-Ribose
Polymerase (PARP) inhibitor], and ondansetron (serotonin
receptor antagonist) for adjuvant therapy.

There are still many limitations in our study. Topping the list,
there is a lack of a self-built HNSCC patient cohort to validate the
predictive performance of the MRGPI. It is not optimal to use the
GEO cohort to validate predictive models built by TCGA cohort,
as their sequencing data are generated from different platforms
and sequencing technologies. Second, our study requires more
original laboratory findings or clinical observation to verify the
role of the genes that constitute the MRGPI. Finally, although the
MRGPI has acceptable predictive power (AUC) for long-term
survival in HNSCC patients, its predictive power for short-term
survival is not satisfactory.

In summary, the MRGPI is a promising metabolism-related
prognostic biomarker. The MRGPI grouping may help in
distinguishing metabolic and immune characteristics and
predicting patient outcomes. The MRGPI also may serve as a
potential prognostic biomarker for ICI immunotherapy, but
further research is needed to confirm its efficacy (Figure 7).
FIGURE 7 | Graphical abstract for comprehensive characterization of the
MRGPI subgroups in HNSCC.
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Supplementary Figure 1 | Differentially expressed metabolism-related genes in
HNSCC. (A) Volcano map exhibiting all differentially expressed genes (DEGs)
between 502 HNSCC samples and 44 para-cancer samples (p < 0.05, |log2FC| >
0.585). (B) Volcano map displaying metabolism-related DEGs between 502
HNSCCC samples and 44 para-cancer samples. (C) Gene Ontology (GO)
enrichment analysis of the metabolism-related DEGs (p < 0.05). (D) Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the metabolism-
related DEGs (p < 0.05).

Supplementary Figure 2 | Identification of metabolism-related hub genes by the
WGCNA. (A) The soft-thresholding power was 0.85 determined by the red
horizontal line in the Weighted gene coexpression network analysis (WGCNA)
analysis and the optimal soft threshold for WGCNA was 4. (B) WGCNA of
metabolism-related differentially expressed genes with a soft threshold b = 4.
(C) Gene modules related to HNSCC obtained by WGCNA. (D) The network of the
genes in the turquoise module (weight of edge > 0.2). (E) Hallmark enriched in the
genes of the turquoise module (p < 0.05).

Supplementary Figure 3 | Kaplan-Meier curves of 17 metabolism-related hub
genes. Kaplan-Meier survival analysis of 17 metabolism-related genes in TCGA
cohort.

Supplementary Figure 4 | The prognostic role of MRGPI. (A) Kaplan-Meier
analysis of MRGPI subgroups on disease-free survival (DFS) in TCGA cohort. (B).
Kaplan-Meier analysis of MRGPI subgroups on disease-free survival (DFS) in the
GEO cohort. (C) Kaplan-Meier analysis of MRGPI subgroups for radiotherapy
patients. (D) Kaplan-Meier analysis of MRGPI subgroups for non-radiotherapy
patients. (E) Kaplan-Meier analysis of MRGPI subgroups for molecular targeted
therapy patients. (F) Kaplan-Meier analysis of MRGPI subgroups for non-molecular
targeted therapy patients.

Supplementary Figure 5 | Gene sets enriched in different MRGPI subgroups
(A) KEGG gene sets enriched in MRGPI-high subgroup (P < 0.05, FDR < 0.25).
(B) KEGG gene sets enriched in MRGPI-low subgroup (P < 0.05, FDR < 0.25).

Supplementary Figure 6 | The molecular and immune features of MRGPI. (A).
The molecular and immune-related function of the different MRGPI subgroups. The
gene sets of molecular and immune-related function were analyzed by the single
sample gene set enrichment analysis (ssGSEA) and then compared between
different MRGPI subgroups. The scattered dots represent the ssGSEA scores of the
two subgroups. The thick lines represent the median value. The bottom and top of
the boxes are the 25th and 75th percentiles (interquartile range), respectively.
Significant statistical differences between the two subgroups were assessed using
theWilcoxon test. The relationship between MRGPI and immune checkpoint genes,
such as (B) PD-L1, (C) PD-1, (D) CTLA-4, (E) LAG3, and (F) TIGIT.
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