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Desmoglein-2 is important for islet function and β-cell survival
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Type 1 diabetes is a complex disease characterized by the lack of endogenous insulin secreted from the pancreatic β-cells.
Although β-cell targeted autoimmune processes and β-cell dysfunction are known to occur in type 1 diabetes, a complete
understanding of the cell-to-cell interactions that support pancreatic function is still lacking. To characterize the pancreatic
endocrine compartment, we studied pancreata from healthy adult donors and investigated a single cell surface adhesion molecule,
desmoglein-2 (DSG2). Genetically-modified mice lacking Dsg2 were examined for islet cell mass, insulin production, responses to
glucose, susceptibility to a streptozotocin-induced mouse model of hyperglycaemia, and ability to cure diabetes in a syngeneic
transplantation model. Herein, we have identified DSG2 as a previously unrecognized adhesion molecule that supports β-cells.
Furthermore, we reveal that DSG2 is within the top 10 percent of all genes expressed by human pancreatic islets and is expressed
by the insulin-producing β-cells but not the somatostatin-producing δ-cells. In a Dsg2 loss-of-function mice (Dsg2lo/lo), we observed
a significant reduction in the number of pancreatic islets and islet size, and consequently, there was less total insulin content per
islet cluster. Dsg2lo/lo mice also exhibited a reduction in blood vessel barrier integrity, an increased incidence of streptozotocin-
induced diabetes, and islets isolated from Dsg2lo/lo mice were more susceptible to cytokine-induced β-cell apoptosis. Following
transplantation into diabetic mice, islets isolated from Dsg2lo/lo mice were less effective than their wildtype counterparts at curing
diabetes. In vitro assays using the Beta-TC-6 murine β-cell line suggest that DSG2 supports the actin cytoskeleton as well as the
release of cytokines and chemokines. Taken together, our study suggests that DSG2 is an under-appreciated regulator of β-cell
function in pancreatic islets and that a better understanding of this adhesion molecule may provide new opportunities to combat
type 1 diabetes.
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INTRODUCTION
Pancreatic islets are endocrine tissue powerhouses containing an
assortment of specialized cells such as the insulin-producing
β-cells, the glucagon-producing α-cells, and the somatostatin-
producing δ-cells to maintain homeostasis. Dysfunction of
pancreatic islets manifests in disease, with the autoimmune
destruction of β-cells resulting in the complete insulin deficiency
observed in type 1 diabetes (T1D), and broader islet dysfunction
resulting in insulin resistance in type 2 diabetes (T2D) [1].
Although significant advances have identified that the execution
of glucose-stimulated insulin release by the β-cells is exquisitely
regulated [2–4], new knowledge is still required to combat this
family of debilitating and deadly diseases.
The 3D arrangement of cells within a pancreatic islet is of

immense importance to β-cell function [2, 3] with supportive cell
types, such as other endocrine cells and vascular endothelial cells,

directing islet development and coordinating responses to
glucose [5–8]. The adherens junction proteins, particularly the
cadherin family of Ca2+-dependent adhesion molecules, are well
documented to provide the structural integrity to cells and the
intracellular signalling pathways pivotal in islet formation,
structure, and function (reviewed in refs. [3, 9–11]). Most relevant
to the pancreas, E-cadherin facilitates the initial clustering of
β-cells during embryonic development via its link to catenins (α
and β) and the actin cytoskeleton, as well as signalling systems to
modulate cell viability and insulin production [9, 12–15]. A similar
role for N-cadherin has been reported for β-cell survival [14] and
insulin secretion [16]. These observations raise the possibility that
additional members of the cadherin family may regulate islet
function. Interestingly, the desmoglein family of cadherin proteins
(DSG1-4) mediates key cell–cell interactions and intracellular
signalling in epithelial cells and cardiac myocytes (reviewed in

Received: 16 February 2022 Revised: 2 October 2022 Accepted: 6 October 2022

1Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia. 2Flinders Renal Laboratory, Renal Unit, Division of Medicine and Critical Care,
Southern Adelaide Local Health Network, Flinders Medical Centre, Bedford Park, SA, Australia. 3Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia. 4Central
Northern Adelaide Renal and Transplantation Service (CNARTS), Royal Adelaide Hospital, Adelaide, SA, Australia. 5Genomics, Diabetes and Endocrinology, Department of Clinical
Sciences, Lund University, Malmö, Sweden. 6Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. 7St Vincent’s Institute of Medical
Research & the University of Melbourne, Melbourne, VIC, Australia. 8Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA.
9College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia. ✉email: claudine.bonder@unisa.edu.au
Edited by Dr Nirmal Robinson

www.nature.com/cddis

Official journal of CDDpress

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-022-05326-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-022-05326-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-022-05326-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-022-05326-2&domain=pdf
http://orcid.org/0000-0002-4400-6741
http://orcid.org/0000-0002-4400-6741
http://orcid.org/0000-0002-4400-6741
http://orcid.org/0000-0002-4400-6741
http://orcid.org/0000-0002-4400-6741
http://orcid.org/0000-0003-2160-1625
http://orcid.org/0000-0003-2160-1625
http://orcid.org/0000-0003-2160-1625
http://orcid.org/0000-0003-2160-1625
http://orcid.org/0000-0003-2160-1625
http://orcid.org/0000-0001-6604-6640
http://orcid.org/0000-0001-6604-6640
http://orcid.org/0000-0001-6604-6640
http://orcid.org/0000-0001-6604-6640
http://orcid.org/0000-0001-6604-6640
http://orcid.org/0000-0003-1184-6653
http://orcid.org/0000-0003-1184-6653
http://orcid.org/0000-0003-1184-6653
http://orcid.org/0000-0003-1184-6653
http://orcid.org/0000-0003-1184-6653
http://orcid.org/0000-0001-9875-967X
http://orcid.org/0000-0001-9875-967X
http://orcid.org/0000-0001-9875-967X
http://orcid.org/0000-0001-9875-967X
http://orcid.org/0000-0001-9875-967X
https://doi.org/10.1038/s41419-022-05326-2
mailto:claudine.bonder@unisa.edu.au
www.nature.com/cddis


ref. [17]), yet their role in pancreatic function remains completely
unknown.
Desmoglein-2 (DSG2), like its other three family members, is a

single pass transmembrane cell surface protein that undergoes
homotypic and/or heterotypic interactions to form Ca2+-depen-
dent adhesive interfaces between adjacent cells [18]. These
interactions were first described as adhesive desmosomal com-
plexes and utilized by epithelial cells to tolerate mechanical stress
[19]. However, DSG2 is emerging as a unique family member
expressed by non-desmosome forming cells, such as embryonic
stem cells [20] and vascular endothelial cells (ECs) [21, 22] where it
assists with cell survival, proliferation, and neoangiogenesis [22].
When ectopically expressed in the epidermis of transgenic mice,
DSG2 enhances signalling pathways and proliferation [23], and its
colocalization with the epidermal growth factor receptor aug-
ments cellular migration and invasion [24]. Most recently, it has
been shown that DSG2 can engage with non-desmosomal
cadherins (e.g. E- and N-cadherin) to support cell-cell adhesion
[25], harness Rap1 and downstream TGFβ signaling to influence
both cell spreading and focal adhesion protein phosphorylation
[26] and modulate the production and release of extracellular
vesicles from keratinocytes [27, 28]. Important post-translational
modification of DSG2, via palmitoylation, regulates the transport
of proteins to the plasma membrane [29]. Taken together, these
protein transport functions of DSG2 are akin to those performed
by pancreatic β-cells and thus raises the possibility that DSG2 may
also play a role in metabolic homeostasis.
Herein, we demonstrate that DSG2 is upregulated on pancreatic

islet cells, particularly the β-cells (human and murine). Our in vivo
work comparing WT and Dsg2lo/lo mice suggest that DSG2 is
important for islet number, islet size, β-cell survival and glucose-
stimulated insulin production. We show that islets harvested from
the Dsg2lo/lo mice are inferior to their WT counterparts for insulin
production, and that they are more susceptible to apoptotic cell
death in response to TNFα, IL-1β, and IFNγ. The Beta-TC-6 cells
provide further insight into a role for DSG2 in homeostasis of the
actin cytoskeleton. Congruent with this, the Dsg2lo/lo mice
exhibited increased susceptibility to hyperglycaemia and their
islets are less effective than their WT counterparts at curing
diabetic mice following transplantation.

METHODS
Patients
Normal pancreas tissue, formalin-fixed and paraffin-embedded, was provided
by the Thomas Jefferson University Hospital Pathology Lab or were
purchased (Abcam, Cambridge, UK). For islet isolation, healthy human
pancreata were obtained with informed consent from next of kin, from heart-
beating, brain-dead body donors, with research approval from the HREC
committee at St Vincent’s Hospital, Melbourne. Human islets were purified by
intraductal perfusion and digestion of the pancreas with collagenase
followed by purification using Ficoll density gradients [30]. Purified islets
were cultured in Connaught Medical Research Laboratories (CMRL) 1066
medium (Gibco; Thermo Fisher Scientific, Waltham, MA, USA) supplemented
with 4% human serum albumin (Australian Red Cross, Melbourne, VIC,
Australia), 100 U/ml penicillin, 100mg/ml streptomycin (Gibco) and 2 mM
L-glutamine (Gibco), in a 37 °C, 5% CO2 humidified incubator.

In silico gene expression analysis
Microarray dataset. Human pancreatic islets (n= 8) were separated by a
closed loop method involving collagenase, protease, and density gradient
centrifugation as previously described [31]. Approximately 5000 IEQ pure
islets were processed for microarray analysis using an Affymetrix HGU133+2
microarray with data normalized using RMA in Partek software (Partek Inc.,
St Louis, MO, USA) resulting in log2 microarray data as described elsewhere
[31]. Probeset annotations were downloaded from Affymetrix.

RNA sequencing dataset. A second cohort of human pancreatic islets
(n= 188) as well as fat (n= 12), liver (n= 12) and muscle (n= 12) were
obtained through the EXODIAB network from the Nordic Transplantation

Program (http://www.nordicislets.org). Isolation of total RNA and gene
expression analysis via RNAseq was conducted as described elsewhere in a
newly developed tool Islet Gene View (IGW) [32], where resulting counts per
million (CPM) values were converted into Fragments Per Kilobase Million
(FPKM) values by dividing the transcripts by their effective lengths and
multiplying with 1000. Sequencing data is available via the European
Genome-phenome Archive under the accession numbers: EGAS00001004042
and EGAS00001004044.

Animals
Animal experiments were approved by the Animal Ethics Committee of SA
Pathology, University of South Australia, or Flinders University. All
experiments conformed to the guidelines established by the ‘Australian
Code of Practice for the Care and Use of Animals for Scientific Purposes’. All
animal experiments were conducted using either DSG2 whole body
knockdown (Dsg2lo/lo generated via a ‘gene trap’ targeted insertion of a
FRT-flanked lacZ-neomycin cassette into intron 1 of the mouse Dsg2 locus
on embryonic stem cells prior to germline transmission and mouse colony
generation [22]) or WT controls, all of which were on a C57Bl/6N
background. For each experiment, a ‘Power/Sample Size Calculator’ such as
G*Power 3.5.1 (Keil University, Germany) was used to determine the
minimum number of animals required to obtain statistical significance and
mice were randomly allocated to protocols or treatment groups.

Islet isolation
Pancreatic islets were isolated as previously described [33]. Briefly, 3 ml
cold M199 medium (Sigma-Aldrich, St. Louis, MO, USA) containing 0.67mg
collagenase (Liberase TL grade; Roche, Basel, Switzerland) per pancreas
was infused into the pancreatic duct in situ, and the surgically excised
pancreas was digested at 37 °C for 14–16min. Islets were purified on a
discontinuous Ficoll gradient (GE Healthcare, Chicago, IL, USA). Following
extensive washing, islets were cultured free-floating (37 °C, 5% CO2) in
RPMI (Sigma-Aldrich) supplemented with L-glutamine, penicillin, strepto-
mycin, and 10% foetal calf serum (RPMI-FCS) for up to 4 days. Islets were
handpicked for GSIS and apoptosis assays.

Transmission electron microscopy (TEM)
Samples were fixed overnight at 4 °C in a solution of 4% paraformalde-
hyde, 1.25% glutaraldehyde in 0.1 M phosphate buffer pH7.2 to which 4%
sucrose had been added. They were then washed in phosphate buffer and
post fixed in 1% osmium tetroxide for 1 h. The samples were then
dehydrated through a series of ethanol washes followed by propylene
oxide and epon/araldite resin before being placed in embedding moulds
with fresh resin and set in an oven at 60 °C for 48 h. 1 micron survey
sections were cut on a Leica UC7 ultramicrotome, mounted on glass slides
and stained with 0.05% toluidine blue made up in borax buffer then
imaged with a light microscope. When a suitable area was found, 90 nm
sections were cut using a diamond knife and collected onto 200 mesh
copper grids. Grids were stained with 4% uranyl acetate and lead citrate
and examined with a Tecnai G2 spirit 120 kV TEM and digital images
recorded with AMT Nanosprint15 MKII and blinded prior to analysis.

Streptozotocin (STZ) induced diabetes, Intraperitoneal
Glucose Tolerance Test (IPGTT), Intravenous Glucose
Tolerance Test (IVGTT), Glucose Stimulated Insulin Secretion
(GSIS)
STZ induced diabetes and IPGTT experiments were performed as
previously described [34] using male mice 8–10 weeks of age. Mice were
administered a single dose of 185mg/kg STZ (Sigma-Aldrich) to induce
diabetes. After STZ injection, blood glucose, body weight and animal
health were monitored daily and mice that exhibited BGLs of ≥16.0 mmol/
L on ≥3 consecutive days were considered diabetic.
IVGTTs were performed using male and female mice at 8–10 weeks of

age, after fasting the mice for 6 h, followed by a body weight adjusted
intravenous injection of D-glucose (Sigma-Aldrich) at a dose of 1 g/kg body
weight per mouse. BGLs were measured at 0, 5, 10, 15, 30, and 60min post
glucose injection.
GSIS: after an overnight incubation, the isolated islets using male and

female mice at 8–12 weeks of age of age were treated with either 2 mM or
20mM glucose-Krebs solutions at 37 °C for 2 h. Secreted insulin
concentrations in the supernatants were quantified by Enzyme Linked
Immunosorbent Assay (ELISA, high sensitivity insulin ELISA; Crystal Chem,
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Downer’s Grove, IL, USA). Insulin released from islets in response to low
glucose (2 mM glucose) for 1 h, and high glucose (20 mM) for 10min and
50min was measured corresponding to basal, 1st and 2nd phase insulin
release, respectively. Stimulation indices were calculated as the mean
insulin production at high glucose divided by the mean insulin production
at low glucose normalized to total protein content.

Blood Glucose Level (BGL) measurements
Blood glucose concentration measurements for all experiments were
determined from tail vein bleeds using a glucometer with blood glucose
test strips (Freestyle Optium Neo, Abbott, NSW, Australia).

Histology and immunofluorescence staining
Human islets were cytospun onto glass slides, fixed with 4% paraformal-
dehyde (Bio-strategy, VIC, Australia), and membranes permeabilized using
0.25% Triton X100 prior to probing with the guinea pig anti-human/mouse
insulin antibody (Abcam) and mouse anti-human DSG2 (clone AF947, R&D
Systems, Missouri, MN, USA).
Histological sections of the mouse pancreata from male and female mice

(8–12 weeks) or human pancreata were stained with either haematoxylin
and eosin to quantify islet numbers and size in mice, or probed with
primary antibodies following heat-mediated antigen retrieval in Tris-EDTA
buffer (pH 9) or sodium citrate buffer (pH 6). Slides were blocked with 5%
normal goat serum in CAS-Block (Thermo Fisher Scientific) or 1% Bovine
Serum Albumin (Sigma-Aldrich) for 30–45min, followed by primary
antibody incubation overnight at 4 °C and a secondary antibody
incubation the subsequent day for 1 h at RT. All antibody dilutions were
in CAS-Block with 5% goat serum. Sections were probed with the following
antibodies: guinea pig anti-human/mouse insulin pAb, mouse anti-mouse
glucagon mAb, and rat anti-mouse somatostatin mAb (all Abcam), anti-
DSG2 mAbs (clone AF947 R&D Systems, and clone 10D2 (gift, James K Wahl
III)), rabbit anti-E-cadherin pAb (Cell Signalling Technologies, Danvers, MA,
USA) and isotype controls (e.g. IgG (Abcam or R&D Systems) or anti-
maltose clone 12B12, gift, James K Wahl III). Secondary antibodies used
were goat anti-guinea pig Alexa Fluor 488 or 568, goat anti-mouse Alexa
Fluor 555 or 594, goat anti-rabbit Alexa Fluor 488 or goat anti-rat Alexa
Fluor 488 (all Life Technologies, Thermo Fisher Scientific). Slides were
mounted in Fluoro-Gel mounting medium (PST) and blinded images were
taken by fluorescent microscopy (Zeiss, Germany or Nikon, Japan).
Immunohistochemistry (IHC) was performed to label CD31 after heat-

mediated antigen retrieval in citric acid buffer (pH 6), and overnight
incubation with primary mAb against CD31 (rabbit anti-mouse, Cell
Signalling Technologies). The polymer system ADVANCE HRP (Dako
Australia Pty Ltd, VIC, Australia) employing DAB as the detection system
was used for detection of primary mAb binding. Counterstaining was
performed using Mayer’s hematoxylin. The islet circumference was
demarked by a dotted line and QuPath used to auto analyse blinded
bioimages captured from up to 35 islets from four mice per group.

mRNA extraction, cDNA synthesis, and quantitative Real-Time
Polymerase Chain Reaction (qRT-PCR)
Total RNA was extracted using RNeasy Micro Plus Kits or RNeasy Mini Kits
(QIAGEN, Hilden, Germany) as per the manufacturer’s instructions.
Conversion of RNA into first strand cDNA (generated from 0.5–1 μg of
RNA) was performed by using Superscript III Reverse Transcriptase (Life
Technologies; Thermo Fisher Scientific).
Quantification of mRNA levels was carried out using qPCR. Dsg2 gene

expression levels were validated using primers designed to span mouse
Dsg2 intron/exon border between exons 14 and 15 (F- 5′AACGAAGCCG-
TAAGGACAAG 3′ R- 5′ GCCGCTTTCTCTGTGAAGTA 3′) using Primer Blast
(NIH, MD, USA), and purchased from GeneWorks (Hindmarsh, SA, AUS). qPCR
amplification was performed using QuantitectTM SYBR Green master mix
(QIAGEN) on a Rotor-Gene thermocycler (QIAGEN) with reaction parameters:
15min at 95 °C, then cycling of 10 s at 95 °C, 20 s at 55 °C and 30 s at 72 °C;
for 45 cycles followed by a melt phase. Data was obtained and analyzed
using Rotor-Gene Analysis Software version 6 (QIAGEN). All samples were
run in triplicate. Relative gene expression levels were calculated using the
comparative quantitation method normalized to the housekeeping gene
hypoxanthine-guanine phosphoribosyltransferase (Hprt1) expression (F-5′
CCCAGCGTCGTGATTAGCG3′ R-5′GCACACAGAGGGCCACAATG3′).

Intravital microscopy
To measure in vivo barrier integrity, intravital microscopy of the mouse ear
vasculature was performed [35]. Mice (6–8 weeks old) were sedated using
an intra-peritoneal injection of a 10mg/ml ketamine/xylazine mixture at a
dosage of 1 μl per gram. The mouse ear was then placed over a raised
platform and mounted under a glass coverslip in preparation for imaging.
Prior to imaging, the mouse was allowed to rest for 30min to reduce any
potential inflammation that may have resulted from the manual handling.
To visualise the vasculature, 100 μl of 10 mg/ml FITC-dextran (70 kDa) was
injected intravenously via an intra-orbital injection. The mouse ear was
then positioned under a 20× objective within a heated chamber of an LSM
710 two-photon microscope (Zeiss). The FITC-Dextran was excited using a
tuneable Mai Tai Ti:Sapphire multiphoton laser (Spectra-Physics, Santa
Clara, USA) and external non-descanned detectors were used to capture
the fluorescence signal. A stack of 3 images over a range of 10 μm was
then acquired every 5 min for 15min. Image analysis was undertaken using
a macro written for use within ImageJ [36]. As all images were in colour,
the green channel was split out and then a median filter with a radius of
2.0 pixels was employed to reduce noise. A fluorescence threshold was
then manually applied by the user to the time zero image, with
subsequent images in the series then using the threshold values from
the time zero image. Image analysis then determined the percentage area
covered by the threshold region for 5–6 mice in each group with data
blinded until analysis was complete.

Cytokine induced apoptosis assay
Isolated islets from male and female mice (8–12 weeks of age) were
subject to a 72 h incubation with a cytokine mixture of: 120 ng/ml IFNγ,
200 ng/ml TNFα, 0.5 ng/ml IL-1β (R&D Systems) prior to digestion with
0.5 ml Accutase (used neat; Sigma-Aldrich), to generate a single cell
population and staining with Annexin V-APC (apoptotic marker; BD
Biosciences) and Propidium Iodide (PI; cell death marker; Life Technolo-
gies) and analyzed on the BD Acurri C6v flow cytometer (BD Biosciences)
with data analysis using FCS Express 4 Flow Cytometry: Research Edition
(De Novo Software, CA, USA).

Flow cytometric analysis of DSG2 cell surface protein
expression in human islets
Isolated human islets were digested with Accutase (Sigma-Aldrich) to
generate a single cell population, which were then stained with a viability
dye 7-AAD (Life Technologies), an isotype control (purified mouse IgG1, BD
Biosciences, New Jersey, USA), mouse anti-human DSG2 (clone 6D8, Life
Technologies) for 30min at 4 °C. Cells were washed twice then stained with
a secondary antibody; goat anti-mouse-DyLight 650 (Abcam) as well as a
β-cell marker Newport Green (Invitrogen; Thermo Fisher Scientific) for
30min at 4 °C. Cells were washed and then resuspended in FACS fix (1%
formaldehyde, 20 g/L glucose, 5 mM sodium azide in PBS) and analyzed on
the BD Accuri C6 flow cytometer (BD Biosciences). Data was further
analyzed using FCS Express 4 Flow Cytometry: Research Edition (De Novo
Software).

A marginal mass islet transplantation under the kidney
capsule
Male mice (8–12 weeks of age) were rendered diabetic by a single dose
intraperitoneal injection of 185mg/kg STZ (Sigma-Aldrich) in citrate buffer
(0.1 M tri-Sodium Citrate Buffer pH 4.5, made fresh on the day of injection),
all injections were performed within 10min of solubilization of STZ.
Diabetes was confirmed by two consecutive blood glucose readings
>16.6 mM. Diabetic mice were transplanted with a marginal mass (200
islets) of cultured islets (isolated from mice 7–16 weeks of age) under the
kidney capsule as previously described [34]. Blood glucose levels were
monitored 5–7 days per week for a period of 35 days. Cure of diabetes was
defined as the first day of two consecutive non‐fasted blood glucose
readings of <11.1 mM with no subsequent reversion to hyperglycaemia.
Mice that were defined as cured then underwent intraperitoneal glucose
tolerance test. Mice were fasted for 4 h and given 2mg/kg glucose by
intraperitoneal injection (Sigma-Aldrich). Tail vein blood samples were
taken prior to injection and at 15, 30, 60, and 120min post‐injection. Blood
samples (blinded) were analysed for glucose using a glucometer (Accu-
Check Performa, Roche Diabetes Care, Mannheim, Germany).
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Murine Beta-TC-6 cells and culture
Beta-TC-6 cells were purchased from the American Type Culture Collection
(ATCC, VA, USA), confirmed mycoplasma negative (MycoAlert, Lonza, Basel,
Switzerland) and maintained in DMEM media (Gibco, Thermo Fisher
Scientific) supplemented with 15% FCS (HyClone, Logan, UT, USA) and 5%
GlutaMax (Gibco) in 5% CO2 at 37 °C.

Small interfering RNA transient knockdown of Dsg2
Transient silencing of mouse DSG2 expression on the surface of Beta-TC-6
cells was achieved by treating cells with 10 nM of DSG2-targeting 27mer
small interfering RNA (siRNA) duplexes (Origene, Rockville, MD, USA)
delivered using the Lipofectamine RNAiMAX transfection reagent (Invitro-
gen, Carlsbad, CA, USA). As a control, cells were also treated with 10 nM of
the universal non-silencing siRNA duplex (Origene). Knockdown efficiency
was routinely assessed via qPCR at 48 h post transfection.

Phalloidin immunofluorescence
Beta-TC-6 cells with and without Dsg2 knockdown were seeded into 24
well plates (Falcon, Corning) containing coverslips that had been pre-
coated with 1 mg/ml fibronectin (Roche, Basel, Switzerland) and 72 h later
the culture media was aspirated, coverslips washed with PBS and fixed
with 4% paraformaldehyde (VWR International, Radnor, PA, USA) for 10min
at RT. Cells were washed and permeabilised with 0.1% Triton X-100 for
10min at RT, then stained with rhodamine phalloidin (1:1000, Life
Technologies) and DAPI (1:2000, Sigma-Aldrich) and incubated for 1 h at
RT in the dark. Coverslips were washed and mounted onto glass slides
using Fluoro-Gel mounting medium (ProSci Tech, Thuringowa Central,
QLD, Australia) and left to cure for 24 h at RT in the dark. Immuno-
fluorescence images were taken on the LSM 800 Confocal Microscope
(Zeiss) and processed using the Zen 2011 (Zeiss) and ImageJ Fiji software.
A minimum of 30 cells for four independent experiments were measured
(total 120 cells). Fluorescence intensity of cell borders was determined by
measuring average pixel intensity using the line scan function (lines of the
same length and width) of ImageJ. Data was extracted from ImageJ and
the area under the curve was calculated using GraphPad PRISM 8.0
(GraphPad Software, San Diego, CA).

Protein arrays
Beta-TC-6 cells with and without Dsg2 knockdown were seeded into 6 well
plates (Falcon). After 48 h, the media was aspirated, and cells were either
treated without or with TNFα (100 ng/ml, Life Technologies) for a further
24 h. Conditioned media was then collected and centrifuged at 1500 rpm
for 5 min, the supernatant was separated and stored at −80 °C until use.
Cells were lysed directly in the well with lysis buffer (provided and pre-
prepared with protease inhibitors). Lysates were collected and clarified by
centrifugation (13,000 rpm, 8min, 4 °C). Protein concentration was
determined using a Pierce™ BCA protein assay kit (Thermo Fisher Scientific)
according to the manufacturer’s instructions, and the protein concentra-
tion was measured at 540 nm using the FLUOstar Omega Microplate
Spectrophotometer (BMG Labtech, Mornington, VIC, Australia). The
cytokine and phospho-receptor tyrosine kinase (RTK) profile of Beta-TC-6
cells (± siDSG2 and ± TNFα treatment) was assessed using the Proteome
Profiler Mouse Array Kits (R&D Systems) according to manufacturer’s
instructions. The membrane was visualised using the LAS-4000 (FujiFilm,
Tokyo, Japan). Pixel density quantification of the dots on the membrane
was performed using ImageJ Fiji software.

Cell cycle analysis
Beta-TC-6 cells, without and with Dsg2 knockdown, were seeded into 12
well plates (Falcon) and 48 h after knockdown the cells were synchronised
using 0.5% FCS (HyClone) for 8 h. Normal (preferred) media was restored
after synchronisation and cells were left to incubate overnight prior to
being fixed overnight at −20 °C in 70% ethanol, washed twice in ice-cold
PBS then 0.25% Triton X-100 (in PBS). Cells were resuspended in staining
solution (Propidium Iodide (25 μg/ml), RNase A (40 μg/ml) and PBS) and
incubated for >2 h at RT in the dark prior to analysis on the Cytoflex flow
cytometer (Beckman Coulter Life Sciences, NSW, Australia). Cell cycle
distribution was analysed using FCS express 6 (De Novo Software).

Statistical Analysis
Unless otherwise stated, all results are presented as mean ± SEM from at
least three independent experiments. When data sets were not normally

distributed, nonparametric statistical tests were used. Statistical analyses
comparing two groups with each other were performed with a two-tailed
T-test using 95% confidence intervals. Statistical analyses comparing three
groups or multiple parameters were conducted by two-way analysis of
variance (ANOVA) with the Bonferroni post hoc test using 95% confidence
intervals. All statistical analyses and preparation of graphs were performed
with GraphPad PRISM 8.0 (GraphPad Software) and at all opportunities
samples were blinded prior to analysis. * indicates results with p < 0.05,
**p < 0.01, ***p < 0.001.

RESULTS
Desmoglein-2 is expressed in pancreatic islets
The role for DSG2 in the pancreatic islet is currently unexplored.
Here, we tested for DSG2 protein using immunofluorescence
microscopy of formalin-fixed paraffin-embedded (FFPE) sections
from healthy human donors. As shown in Fig. 1A, when insulin is
used to positively identify pancreatic β-cells, DSG2 staining is
clearly identifiable on the pancreatic endocrine cells, and to a
lower level in the exocrine tissue. To further validate DSG2 as a cell
surface-expressed protein, we assessed DSG2 expression on
digested healthy human islets from body donors by flow
cytometry. Using Newport Green, a zinc probe used to identify
pancreatic β-cells [37], we confirmed that DSG2 is expressed on
the cell surface of β-cells (Fig. 1B). Similarly, immunocytochemistry
of human islets demonstrated DSG2 positive staining of the
insulin-containing β-cells (Fig. 1C).
As DSG2 is one of four desmogleins (DSG1-4), we undertook a

retrospective in silico gene expression analysis of eight healthy
human islet preparations [31] and observed DSG2 to be the only
desmoglein family member highly expressed by these cells (Fig.
1D). Given that the canonical function of desmogleins is to interact
with either desmogleins or desmocollins to form adhesion
complexes called desmosomes [19], we also investigated the
gene expression of the three desmocollins (DSC1-3) and observed
only borderline detectable expression of DSC2 (Fig. 1D). In the
absence of other desmogleins and desmocollins, it is tempting to
speculate that DSG2 engages in homotypic interactions. However,
expression of E-cadherin by islet cells, and its close proximity to
DSG2 (Supplementary Fig. S1) suggests that these two cadherin
proteins could interact and supports documentation of this
occurring on other cell types [25, 38, 39].
Interestingly, a comparative analysis of DSG2 expression in a

second independent dataset of human islets [32] suggests that it
is ranked in the top 10% of all islet genes and sits between the
highly expressed insulin (INS) and a well-known β-cell gene, the
potassium voltage-gated channel subfamily J member 11 gene
(KCNJ11) [40], which is ranked at 40% of all islet genes expressed
(Fig. 1E). Together, these data suggest that DSG2 is a solely
represented desmoglein family member in human pancreatic
β-cells.
To investigate whether DSG2 is restricted to the insulin-

producing β-cells or more broadly expressed within the pancreatic
islet cluster, sections of human pancreas were stained for DSG2
(red) together with insulin (for β-cells, green) and somatostatin
(for δ-cells, magenta) leaving the remainder (e.g. glucagon-
producing α-cells) identifiable as those negative for both insulin
and somatostatin within the islet cluster. Figure 2A demonstrates
DSG2 co-staining with insulin but not somatostatin. Interestingly,
Fig. 2A also demonstrates DSG2 expression by islet cells that were
negative for both insulin and somatostatin, and likely to be the
glucagon-producing α-cells. Similar results were observed in
pancreas sections of C57Bl/6 mice with DSG2 detectable on both
β-cells and likely α-cells, but not δ-cells within islet clusters (Fig.
2B).
To examine a potential role for DSG2 in pancreatic islet function,

we compared wildtype (WT) mice to a whole body Dsg2 loss-of-
function strain of mice (Dsg2lo/lo) previously reported by us to
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exhibit significant reduction in Dsg2 expression in the heart and
blood vasculature, but with normal viability and fertility [22]. First,
we measured Dsg2 gene expression in islets harvested from the
pancreata of the two murine variants by quantitative real-time
PCR with Fig. 2C showing a significant reduction in Dsg2

expression in the islets from Dsg2lo/lo mice when compared to
WT controls. Consistent with this, immunofluorescence staining of
murine pancreata suggest that DSG2 protein expression is
reduced in the Dsg2lo/lo mice and possibly also displaced from
the cellular junctions (Fig. 2D). Notably, Fig. 2D also demonstrates

Fig. 1 DSG2 protein and gene expression by human islets. A Immunofluorescence confocal microscopy of human pancreas from a healthy
body donor stained for insulin (green), DSG2 (red), and nuclei (blue). Scale bar= 20 μm. Insert top right is representative of isotype control
stains. B Surface expression of DSG2 by flow cytometric analysis on freshly isolated human islet cells from healthy donors labelled with
Newport Green (NPG) dye identifying β-cells, isotype control (dotted line), and DSG2 (solid line); with all single cells gated from a live
population (7-AAD). C Immunofluorescence microscopy of partly digested human islets from a healthy donor stained for β-cells by labelling
for insulin (green), DSG2 (red), and nuclei (blue). Scale bar= 10 μm. Insert top right is representative of isotype control stains. D Microarray
gene expression of insulin (INS, green), desmogleins (DSG1-4, red), and desmocollins (DSC1-3, purple) in isolated islet preparations from 9
healthy human body donors. Data represented as the average log2 expression ± SEM with a threshold cut off of 5. E Complete RNA
sequencing data from 188 human islets expressed as log2 FPKM (Fragments Per Kilobase Million, value of 1 noted in blue line) with ranked
expression of DSG2 (red line) compared to insulin (INS, grey line) and potassium channel (KCNJ1, grey line).
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Fig. 2 DSG2 expression by select cell types in the islets of humans and mice. Immunofluorescence confocal microscopy of A human and
B mouse islets stained for insulin (green), DSG2 (red), somatostatin (magenta), and nuclei (DAPI, blue). Insets with arrow labelled ‘1’ indicating
insulin-positive cells, arrow labelled ‘2’ indicating somatostatin positive cells, and cells with neither insulin nor somatostatin staining indicated with
arrow labelled ‘3’. Scale bar= 50 μm. Insert top right is representative of isotype control stains. C Mouse pancreata were isolated from wildtype
(WT, black circles) and Dsg2lo/lo (blue squares) mice and Dsg2 gene expression determined via qRT-PCR. Data are expressed as mean ± SEM relative
to housekeeper gene (Hprt1), n= 4 mice per group, *p < 0.05 vs WT. D Immunofluorescence confocal microscopy of pancreas sections from WT
and Dsg2lo/lo mice stained for insulin (green), DSG2 (red), and nuclei (blue). Red arrow indicating blood vessels. Scale bar= 50 μm.
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DSG2 positive blood vessels in the pancreas of the WT mouse
(demarked by red arrow).

Dsg2lo/lo mice have smaller pancreatic islets
To investigate the potential impact of reduced DSG2 in islets, we
stained FFPE mouse pancreatic tissue sections with hematoxylin

and eosin to identify islet clusters (Fig. 3A). The number of islets
were counted from three geographically distinct sections span-
ning across the pancreas (i.e. head to tail), and suggest that
compared WT mice, Dsg2lo/lo mice have significantly fewer islets
throughout their pancreas (Fig. 3B). We also observed that the
Dsg2lo/lo islets were significantly smaller in size compared to the
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WT controls (Fig. 3C). To compare the islet architecture between
the WT and Dsg2lo/lo mice we stained the sections for insulin
(β-cells, red), glucagon (α-cells, blue) and somatostatin (δ-cells,
green) (Fig. 3D). While a significant reduction in detectable insulin
was observed in the islets of Dsg2lo/lo mice versus WT controls (Fig.
3E, attributable to smaller islet size), no discernible difference was
observed in the expression levels of glucagon or somatostatin (Fig.
3F, G).
Given the important and intimate relationship between β-cells

and vascular ECs in the islet [4, 41] as well as a documented role
for DSG2 in angiogenesis [21, 22], we examined the vasculature
within the islets of WT and Dsg2lo/lo mice. Figure 3H demonstrates
CD31 stained vasculature in the mouse pancreata from both the
WT and Dsg2lo/lo mice with the percentage of CD31+ECs relative
to the total number of cells within each islet cluster similar
between the two groups (Fig. 3I).
Having detected DSG2 expression by various cells within the

pancreas, including cells within the islet, the blood vasculature,
and the surrounding exocrine tissue (Fig. 4A) we next used
enhanced microscopy to investigate cell architecture in greater
detail. Transmission electron microscopy (TEM) suggests that
vascular function may be compromised in the Dsg2lo/lo mice as
islet-associated ECs exhibited fewer fenestrations per distance of
vascular bed in (Fig. 4B). To investigate this further, intravital
microscopy was used to compare the barrier integrity of blood
vessels within the ears of live (anesthetised) Dsg2lo/lo and WT mice
using a 70 kDa FITC-Dextran tracer which is reportedly too large to
pass through the EC barrier under basal conditions [35]. Figure 4C
demonstrates that over the course of 15min, significant leakage of
the 70 kDa FITC Dextran into the interstitial space occurs in the
ears of the Dsg2lo/lo mice, but not the control WT mice. Notably,
while the vascular beds of the ear and the pancreas are distinct,
these results support the TEM images of EC barrier integrity being
reliant, at least in some capacity, on DSG2. Also observed, but not
reliably quantifiable in this format, is a suggestion of compromised
vesicular membranes that contain and transport the insulin
granules in the Dsg2lo/lo mice (Fig. 4D).

DSG2 loss impacts insulin release and apoptosis at the level of
the islet
To begin to assess a potential role for DSG2 in glucose
metabolism, we examined the baseline blood glucose levels
(BGL) in fasted WT and Dsg2lo/lo mice and observed no difference
(Fig. 5A). Next, we tested glucose clearance in vivo using an
intravenous glucose tolerance test (IVGTT) with WT and Dsg2lo/lo

mice showing similar BGL responses (Fig. 5B).
Using islets isolated from WT and Dsg2lo/lo mice, we next

assessed glucose stimulated insulin secretion (GSIS) in response to
low (2mM) and high (20 mM) glucose. As expected, healthy islets
from WT mice exhibit elevated insulin production in response to
high glucose versus low glucose (stimulation index of 5.49) (Fig.
5C). In contrast, islets from Dsg2lo/lo mice exhibited the highest
basal insulin secretion when exposed to low glucose
(0.860 ± 0.394 ng/ml compared to 0.067 ± 0.015 ng/ml in WT islets)

and this was not elevated in response to the higher dose of
20mM glucose (Dsg2lo/lo 0.264 ± 0.055 ng/ml in high glucose
compared to 0.860 ± 0.394 ng/ml in low glucose).
To investigate whether DSG2 supports islet survival, we

challenged isolated islets with the cocktail of pro-inflammatory
cytokines implicated in the development of type 1 diabetes;
namely TNFα, IL-1β, and IFNγ [42, 43]. Figure 5D shows that
following 72 h exposure to TNFα, IL1β, and IFNγ, islets isolated
from Dsg2lo/lo mice exhibited increased apoptotic cell death as
determined by Annexin V+/Propidium Iodide+ cells. These results
suggest that DSG2 plays a protective role in islet cell survival.

Dsg2lo/lo mice are more susceptible to streptozotocin-induced
diabetes
To further examine a protective role for DSG2 in β-cell function,
we challenged the mice with streptozotocin (STZ), an alkylating
agent that targets the insulin-producing β-cells in the pancreas,
thus mimicking β-cell loss and hyperglycemia characteristic of
type 1 diabetes [44, 45]. Figure 6A demonstrates that when
administered with 185 mg/kg of STZ, the Dsg2lo/lo mice elevated
their BGLs within 24 h to ~16mmol/L and this continued to rise
significantly compared to their WT controls. When assessed as a
percentage of ‘diabetes-free survival’ we observed that while 83%
of Dsg2lo/lo mice became diabetic, only 33% of wildtype animals
became diabetic by 6 days post-STZ injection (Fig. 6B). No
significant changes in total body mass were observed in either
group over the course of the experiment (data not shown).
Next, we compared the ability of islets isolated from WT or

Dsg2lo/lo mice to cure diabetic mice in a marginal mass
transplantation model. Here, male WT mice were rendered
diabetic by a single dose of 185 mg/kg STZ prior to 200 islets
(harvested from either WT or Dsg2lo/lo mice) being transplanted
under the kidney capsule. Daily BGLs were recorded over 35
consecutive days post-transplant (Supplementary Fig. S2A) with
results suggesting enhanced glycaemic control in the mice
transplanted with WT islets (Fig. 6C; BGL readings at day 35 for
WT islet Tx= 10.5 ± 1.2 mmol/l and for Dsg2lo/lo islet
Tx= 15.6 ± 2.3 mmol/l, notably a trend but not significantly
different). When assessed as the percentage ‘cured’ by day 35,
the WT islets conferred a 55% cure rate (5 out of 9) while the
Dsg2lo/lo islets cured only 40% of the mice (4 out of 10) (Fig. 6D); a
trend for improved glycaemic control by the WT islets that
warrants further investigation. Notably, while the average fasting
BGL of the mice ‘cured’ by Dsg2lo/lo islets was significantly higher
at 12.8 ± 1.2 mmol/l than that of the WT islets with 8.7 ± 0.7 mmol/
l, both groups demonstrated glucose tolerance in response to an
i.p. injection of 2 mg/kg glucose (Supplementary Fig. S2B).
Together, these results suggest that DSG2 may play a protective
role during STZ-induced β-cell death in vivo.

A role for DSG2 in β-cell cytoskeleton architecture and protein
production
To investigate a role for DSG2 in β-cell function, we turned to a
reliable β-cell line, the murine Beta-TC-6 cells. Following 48 h

Fig. 3 Pancreatic islets in Dsg2lo/lo mice compared to wild-type counterparts. A Immunohistochemistry of pancreata harvested from WT
and Dsg2lo/lo mice stained with haematoxylin and eosin to identify islet clusters (black dotted outline) within the exocrine tissue. Scale
bar= 100 µm. B Numbers of islets quantified from three entire sections across the organ for WT (n= 3 mice) and Dsg2lo/lo (n= 4 mice). Data
are expressed as mean ± SEM, **p < 0.01 vs WT. C Islet area determined using ImageJ and presented in arbitrary units for the 60 islets assessed
from 3 WT mice and 47 islets assessed from 4 Dsg2lo/lo mice. Data are expressed as mean ± SEM, *p < 0.05 vs WT. D Representative images of
immunofluorescence staining on pancreas sections from WT and Dsg2lo/lo mice to identify insulin producing β-cells (red), glucagon-producing
α-cells (blue), and somatostatin-producing δ-cells (green). Insert top left is representative of isotype control stains. Scale bar= 50 μm,
fluorescence staining quantified as pixel intensity for insulin (E), glucagon (F), and somatostatin (G). Data are expressed as mean pixel intensity
± SEM, for the 38 islets assessed from 3 WT mice and 33 islets assessed from 4 Dsg2lo/lo mice, *p < 0.05 vs WT. H Representative images of
immunohistochemistry staining on pancreas sections from WT and Dsg2lo/lo mice to identify blood vessels (CD31+). Scale bar= 100 μm. Insert
top left is representative of isotype control stains. I% CD31+ vessels per islet quantified for the 35 islets assessed from 4 WTmice and 19 islets
assessed from 4 Dsg2lo/lo mice, data are expressed as mean ± SEM.
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knockdown of Dsg2 via three separate DSG2-targeting siRNAs (Fig.
7A) we performed a cell cycle analysis and observed that loss of
DSG2 does not influence the phases of cell cycle (G0/G1, S, and
G2) (Fig. 7B).
As actin filaments of the cytoskeleton are important compo-

nents of cellular dynamics and function, we next investigated
whether loss of DSG2 affected actin assembly in Beta-TC-6 cells.

Using the aforementioned siRNA knockdown approach, we
examined F-actin (via Phalloidin staining) and observed that the
actin filament distribution differed with loss of DSG2. For example,
Fig. 7C shows that control cells contain actin filaments along the
periphery of the cells, while the siDSG2 Beta-TC-6 cells contain
actin across the entire cell. Quantitation of Phalloidin fluorescence
intensities (illustrated via the opaque yellow box overlay the

Fig. 4 Ultrastructural analysis of pancreatic islets and vasculature in WT and Dsg2lo/lo mice. A Immunofluorescence confocal microscopy of
a WT mouse pancreatic islet stained for DSG2 with DSG2+ pancreatic islet (demarked in green) and DSG2+ blood vessel (demarked in red).
B Transmission electron microscopy (TEM) of pancreatic islets in WT and Dsg2lo/lo mice showing the vasculature endothelial cells (EC) with the
lumen on one side and the β-cell on the other. Arrows indicate the EC fenestrations and the insert below shows the sieve plates of fenestrae
counted per μm length of vessel lining from n= 6–16 islet-associated vessels from 2 mice per group. ****p < 0.0001 vs WT, scale bar= 1 μm.
C Anaesthetised mice (WT and Dsg2lo/lo) were injected i.v. with 70 kDa FITC-Dextran prior to intravital 2-photon microscopy of the ear.
Snapshots of 0 and 15min time points were quantified via mean normalised fluorescence of Dextran signal ± SEM (n= 5–6 mice), *p < 0.05 vs
WT at 15 min. D arrows identifying the membranes encasing the insulin-containing granules with their typical electron-dense core. Scale
bar= 1 μm.
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enlarged images of Fig. 7C) support this observation with control
cell F-actin contained within the termini of short bundles at the
cell edge, whilst in the siDSG2 cells actin is present across the
entire cell surface, a feature captured by area under the curve (Fig.
7C).
Finally, we investigated whether DSG2 knockdown altered the

release of cytokines and chemokines using a protein profile array.
Supernatants harvested from Beta-TC-6 cells, without or with
siDSG2 for 48 h, revealed only low level production of CXCL10, M-
CSF, IFNγ, IL-4, and TNFα and modest production of CXCL12 (Fig.
7D). Surprisingly, loss of DSG2 decreased CXCL10 but increased
TNFα in the supernatant. In similar experiments, we tested the
cells in response to 100 ng/ml TNFα stimulation for 24 h. As
expected, both groups responded to TNFα treatment with
increase production of CXCL10, M-CSF, CXCL12, CXCL1, TIMP-1,
CCL2, ICAM-1, and CXCL2 (Fig. 7E). Notably, siDSG2 cells released
less CXCL12, CXCL1, TIMP-1, CCL2, and CXCL2 than the controls.
Cell lysates from the aforementioned experiments were also
examined for receptor tyrosine kinase (RTK) protein levels via
proteome array. Notably, VEGFR3 was the only RTK detectable in
the array and it did not change in response to siDSG2
(Supplementary Fig. S3).

DISCUSSION
Herein we present new knowledge of a desmosomal cadherin,
DSG2, being uniquely expressed on the surface of pancreatic islet
cells in humans and mice, including insulin-producing pancreatic
β-cells and glucagon-producing α-cells, but not somatostatin-
producing δ-cells. Surprisingly, we show that DSG2 is ranked
within the top 10% of all genes expressed in the human islet.
When comparing WT and Dsg2lo/lo mice, our results suggest that
DSG2 is important for islet number, islet size and, consequently,
glucose-stimulated insulin production. We show that islets
harvested from the Dsg2lo/lo mice are inferior to their WT
counterparts for insulin production and that they are more
susceptible to apoptotic cell death in response to TNFα, IL-1β and
IFNγ. Consistent with this, the Dsg2lo/lo mice exhibited increased
susceptibility to STZ-induced hyperglycaemia and their islets were
potentially less effective than their WT counterparts at curing
diabetic mice following transplantation.
Connectivity between islet cells (hormone-producing as well as

vascular ECs) is paramount for circulating blood glucose levels to
maintain vital organ function (e.g. cardiovascular and renal [46])
[7] and is achieved via specialized communication networks that
extend to other cells and to the extracellular matrix (reviewed in

Fig. 5 Islet function in Dsg2lo/lo and wildtype mice. A Baseline blood glucose levels (BGL) in WT and Dsg2lo/lo mice. Results are mean ± SEM,
n= 3–4 mice per group. B Glucose tolerance in WT and Dsg2lo/lo mice following i.v. injection of 1 g/kg glucose with BGLs measured at 0
(dotted line), 2.5, 5, 15, and 30min post injection. Data are expressed as mean ± SEM from n= 7–9 individual mice per group. C Islets isolated
from WT or Dsg2lo/lo mice tested for glucose-stimulated insulin release at low glucose (2 mM) and then high glucose (20 mM) for 1 h,
represented as mean ± SEM of insulin release to DNA, n= 4–7 mice per group. D Cytokine induced apoptosis of islets isolated from WT and
Dsg2lo/lo mice. Islets were exposed to TNFα, IL-1β and IFNγ for 72 h prior to staining for with Annexin V and propidium iodide (PI) to assess cell
death, n= 4–6 mice per group and 3 separate experiments, *p < 0.05 vs WT.
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[3, 4, 10, 47]). Intercellular junctions include ‘adherens junctions’
(facilitated via cadherin proteins) that control the adhesion of
endocrine cells during selected developmental stages and
organisation of different cells within the islets [12, 48]. The
extracellular domain of cadherins mediate homotypic adhesion
with neighbouring cells while the intracellular domains are linked
to the actin cytoskeleton via catenins (α and β) and participate in
intracellular signalling systems [10]. Parnaud and colleagues
elegantly showed that E-cadherin and N-cadherin (but not P-
cadherin) are expressed by human β-cells [14] and that they
mediate β-cell survival [14] as well as glucose-stimulated insulin
release [16]. Herein we demonstrate co-localization of DSG2 with
E-cadherin in pancreatic islets which is consistent with similar
observations in intestinal epithelial cells [25, 39]. Whether DSG2
acts alone to formulate cell-to-cell contacts, a role similar to that
undertaken by E-cadherin and N-cadherin, is yet to be deter-
mined. Reduced expression of DSG2 (via siRNA in the murine cell
line Beta-TC-6 cells) disrupted the location of filamentous actin
which supports documentation of DSG2 stabilizing F-actin in
endothelial cells [22]. Modification of the F-actin network is key to
islet cell function as it mediates insulin secretion [49, 50] and
results here suggest that DSG2 is protective with loss of DSG2 in
the Beta-TC-6 cells increasing the release of TNFα, a known
pathogenic and proinflammatory cytokine implicated in diabetes
[43]. Why loss of DSG2 suppresses the release of CXCL10 in the
Beta-TC-6 cells is not entirely clear as type 1 diabetics are reported
to have elevated levels of serum CXCL10 [51], but it may reflect
advanced disease as Shigihara and colleagues reported that serum

CXCL10 levels decrease immediately following disease onset [52].
In response to exogenous TNFα for 24 h, siDSG2 Beta-TC-6 cells
also demonstrated a striking reduction in the release of
chemokines CXCL12, CCL2, and CXCL2. Notably, CXCL12 was the
most abundant protein produced by the Beta-TC-6 cells (without
and with TNFα treatment) and is known to protect and preserve
the function of β-cells in the pancreatic islet with crucial roles in
β-cell development, survival, regeneration, and immune regula-
tion (reviewed in ref. [53]). Chemokines such as CXCL12, CCL2, and
CXCL2 are also vital for vascular development, regulating
angiogenesis, and stabilizing the vascular network [54]; all features
crucial to maintaining islet function [4, 33]. Tissue Inhibitor of
Metalloproteinase-1 (TIMP-1) release by siDSG2 Beta-TC-6 cells
was also reduced when compared to control cells, and with a
documented pro-survival role in pancreatic islets [55], this data
further supports our contention that DSG2 is protective. We also
postulate that the post-translational modification of DSG2 via
palmitoylation of cysteine residues 635 and 637 (which regulates
protein transport to the plasma membrane and the components
of the endocytic pathway [27, 28]), may also be important for
factors, including chemokine-containing secretory vesicles and
insulin-containing granules, to fuse with the plasma membrane for
release. Unfortunately, further investigation into the role of DSG2
in human β-cells is currently limited by the absence of a reliable
human β-cell line to manipulate DSG2 levels.
DSG2 may also be involved in the intimate connection between

β-cells and the vasculature. Pancreatic islets are highly vascular-
ized and receive 10% of the pancreatic blood flow despite

Fig. 6 Comparison of STZ-induced diabetes in WT and Dsg2lo/lo mice and response of diabetic WT mice to islet transplantation. A WT and
Dsg2lo/lo mice administered STZ (185mg/kg) were monitored daily for BGLs. A BGL ≥ 16mmol/L (black dotted line) indicates the diabetic cut
off value with the grey shaded box indicating a normal BGL range. Results are mean ± SEM, n= 8–9 mice per group, *p < 0.05 & **p < 0.01 vs
WT. Area under the curve quantified and presented as mean ± SEM, n= 8–9 mice per group, **p < 0.01 vs WT. B From A, percentage of mice
that became diabetic over time, *p < 0.05 vs WT. C Diabetic C57Bl6/N control (WT, n= 9) mice were transplanted with marginal islet mass of
200 islets harvested from WT (n= 5) or Dsg2lo/lo (n= 4) mice under the kidney capsule. BGLs in individual mice were recorded daily and up to
35 days post-transplantation. **p < 0.01 vs day 0 BGL, ****p < 0.0001 vs day 0 BGL. D From C, percentage cure of diabetic mice transplanted
with marginal mass of islets displayed as Kaplan–Meier curve, where two consecutive readings of ≤11.1 mmol/L was considered a
cured mouse.
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Fig. 7 Cell cycle distribution, F-actin regulation and cytokine production by Beta-TC-6 cells without and with Dsg2 knockdown.
A Representative qRT-PCR showing Dsg2 gene expression for siCtrl (black) and siDSG2 (A-C, blue) groups normalised to housekeeper Hprt1,
n= 7 independent experiments, ***p < 0.001. B Cell cycle distribution (G0/G1, S or G2 phase) of Beta-TC-6 cells without (siCtrl, black) and with
Dsg2 knockdown (siDSG2, blue) using flow cytometry PI staining, n= 3 independent experiments. C Representative immunofluorescence
image of Phalloidin-labelled filamentous actin in Beta-TC-6 cells without (siCtrl, black) and with Dsg2 knockdown (siDSG2-A, blue). Yellow
rectangle highlights the area of interest which was used to calculate the mean grey value (pixels) across the cell from border to border. The
mean grey value for siCtrl (black) and siDSG2-A (blue) was converted to area under the curve (AUC), n= 4 independent experiments,
**p < 0.01. D Cytokine/chemokine array of supernatants harvested from Beta-TC-6 cells without (siCtrl) or with Dsg2 knockdown (siDSG2-A),
n= 1 experiment. Mean grey value of duplicate dots was calculated and summarised as a bar graph below. White box= positive control, black
box= negative control, green box= CXCL10, blue box= TNF-alpha, red box= CXCL12. E Cytokine/chemokine array of supernatants
harvested from Beta-TC-6 cells without (siCtrl) or with Dsg2 knockdown (siDSG2-A) following TNFα treatment (100 ng/ml, 24 h), n= 1
experiment. For detectable proteins, mean grey value of duplicate dots was calculated and graphed. White box= positive control, black
box= negative control, green box= CXCL10, yellow box= CXCL1, blue box= TNFα, orange box= CCL2, purple box= CXCL2, red
box= CXCL12.
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comprising only 1–2% of the tissue mass (reviewed in ref. [4]). The
bidirectional communication between β-cells and ECs supports
not only insulin gene expression and secretion, but also β-cell
survival, EC proliferation, and angiogenesis [4, 33, 56]. Currently,
DSG2 has limited (or not readily detectable) expression on the
broader EC population, with documentation of DSG2 on human
endothelial progenitor cells [22], human vasculature in some
normal and cancerous tissues [22], human bone marrow
vasculature [57], human skin microvascular ECs [58] and high
endothelial venules in mouse lymphoid organs [22]. Our
identification of DSG2 on WT murine pancreatic vasculature is
consistent with our previous report of CD31+ ECs in the pancreas
of Dsg2lo/lo mice exhibiting regions of increased junctional
hypertrophy and an undulating luminal surface [22]. Herein, our
TEM of the pancreata in Dsg2lo/lo mice further support vascular
malformation with compromised fenestrations of the vascular
bed. Endothelial fenestrae are transcellular pores within capillary
walls that congregate and serve as a diaphragm to regulate the
passing of pancreatic hormones between islet cells and the blood
circulatory system [59]. Integrins and the extracellular matrix
(ECM) are paramount for the development and maintenance of
these structures, with fibronectin activating cytoskeletal regulators
and remodelling actin [60, 61]. Local integrin activation in β-cells
also targets insulin secretion to the islet capillaries [62]. With new
intravital data and previous publications by us and others
demonstrating that loss of DSG2 in ECs interrupts association
with integrin-β8, placement of F-actin and VE-cadherin causing
loss of barrier integrity [21, 22], it is our contention that
deregulated islet function in Dsg2lo/lo mice may also be due to a
compromised vascular system within the pancreas.
Our data also suggest a protective role for DSG2 in β-cells with

islets harvested from Dsg2lo/lo mice exhibiting heightened sensitiv-
ity to cytokine-induced apoptosis; an observation consistent with
ectoptic expression of DSG2 in keratinocytes increasing resistance
to anoikis [23]. Similarly, DSG2 knockdown studies in the Beta-TC-6
cells demonstrated an increase in the pro-inflammatory cytokine
TNFα and a reduction in the pro-survival chemokine CXCL12 [53].
While the role of DSG2 in influencing β-cell survival and insulin
production within the pancreas still remains unclear (and currently
limited by the lack of appropriate tools), key β-cell survival signals
(i.e. PI3K/Akt, MAPK/ERK, STATs and NFκB (reviewed in [63]) have
been linked with DSG2 in other cell types [23]. Finally, with the
ProteinPredict program of ExPASy suggesting that DSG2 contains
over 13 protein kinase C (PKC)-target motifs in the cytoplasmic
domain alone [64], and that epidermal growth factor treatment of
A431 epithelial cells induces tyrosine phosphorylation of DSG2 [65],
there is much more to uncover about this solitary desmosomal
protein on β-cells in metabolic homeostasis.
In conclusion, this study provides novel insights into the

function and survival of insulin-producing β-cells and reveals an
underappreciated role for the desmosomal cadherin protein
DSG2. Our observations support a coordinated regulation of
cadherin-mediated adhesion complexes, together with extracel-
lular signalling cues ([62, 66, 67] and reviewed in ref. [2]), for
glycaemic control and provide new ‘actionable’ knowledge on the
development of diabetes.
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