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1. Summary
In animals, heterotrimeric G proteins, comprising a-, b-and g-subunits, perceive

extracellular stimuli through cell surface receptors, and transmit signals to

ion channels, enzymes and other effector proteins to affect numerous cellular

behaviours. In plants, G proteins have structural similarities to the correspond-

ing molecules in animals but transmit signals by atypical mechanisms and

effector proteins to control growth, cell proliferation, defence, stomate move-

ments, channel regulation, sugar sensing and some hormonal responses. In

this review, we summarize the current knowledge on the molecular regulation

of plant G proteins, their effectors and the physiological functions studied

mainly in two model organisms: Arabidopsis thaliana and rice (Oryza sativa).

We also look at recent progress on structural analyses, systems biology and

evolutionary studies.
2. Introduction: history of G protein research in plants
In animals, heterotrimeric G proteins transmit extracellular signals, such as

hormones, neurotransmitters, chemokines, lipid mediators, light, tastes and odor-

ants, into intracellular signalling components [1,2]. In the early 1970s, Martin

Rodbell, a Nobel Prize winner in 1994, suggested three biological machines—

discriminator, transducer and amplifier—needed to produce cAMP after cells

perceive the hormone glucagon [3] (figure 1). This novel concept of its time mate-

rialized from Rodbell’s experience as a Navy radioman [3]. With exquisite

biochemistries, the discriminator and the amplifier became the seven transmem-

brane G-protein-coupled receptor (GPCR) and adenylyl cyclase [1], respectively.

The signal transducer became the heterotrimeric G protein connecting the recep-

tor to the amplifier by another Nobel Prize winner, Alfred G. Gilman [4], and his

colleagues (see also Lefkowitz [5] for a historical review of G protein research).

The GPCRs were discovered and characterized as membrane-localized hormone

receptors, using radio-labelled ligands in the 1960s and 1970s [5]. The crystal

structures revealed the detailed action of how GPCRs receive hormones and acti-

vate the heterotrimeric G protein [6]. For these studies on GPCRs, the 2012 Nobel

Prize in chemistry was awarded to two more G protein scientists: Robert

J. Lefkowitz and Brian K. Kobilka.

In plants, the first a-subunit of G protein was cloned from Arabidopsis
(AtGPA1) in 1990 [7] and later from other species [8–12]. The physiological

roles were determined using loss-of-function mutants and transgenic lines in

stomatal opening/closure [13–15], fungal defence [16–18], oxidative stress

[19,20], seed germination [21,22], sugar perception [21,23], some phytochrome/
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Figure 1. History of plant G protein science. In the 1970s, G proteins were identified as a signal transducer connecting the hormone receptor and the adenylyl
cyclase in mammals. In the early 1990s, plant G protein genes were cloned and shown to have conserved domains and motifs with the animal genes. In the late
1990s, much effort went towards physiological roles of G proteins using genetics. In the 2000s, the Gbg-subunits, the regulators (GPCR-like genes and a 7TM-RGS
gene) and effectors of G protein were cloned and characterized genetically and biochemically. In 2007, the ‘self-activating’ property of the plant G protein was
revealed. In addition, the transcriptome, proteome and interactome analyses revealed comprehensive knowledge of the plant G protein pathways. In the last few
years, the crystal structure and computational simulation solved the mechanism of self-activation. Publications on the physiological functions and signalling
components of G protein pathways are exponentially increasing, providing evidence for their important and divergent functions in plants.
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cryptochrome-mediated responses [24] (but not all [25]), and

seedling and root development [24,26,27]. In rice, the Ga-sub-

unit (RGA1)-deficient line, named dwarf1 (d1) mutant, was

found in a screen for mutants defective in gibberellin (GA)

responsiveness [28,29]. Subsequently, Gb and Gg genes were

cloned in Arabidopsis [30–32], rice [33,34] and others

[11,30,35]. A general physiological function for Gb was pro-

posed from the phenotype of an Arabidopsis mutant having

an altered development of leaves, flowers and fruits [36].

We now know that Gb functions expand to the root [37], ion

channels, stoma [38] and fungal defence [18,39]. Gb- and Gg-

deficient mutants share some developmental phenotypes

(e.g. rounded leaf shape and sugar sensitivity) with Ga

mutants, but also differ in others (e.g. lateral root production

and fungal defence) [36,37]. In animals, phenotypes shared

by both Ga and Gb mutations are indicated to be disruptions

in pathways in which the predominant transducer is the Ga-

subunit. Opposite phenotypes reveal phenotypes in which

the Gbg dimer is the predominant transducer. Thus, plant G

protein research initially tried to extrapolate from the vast

amount of knowledge accumulated in animal systems.

However, findings from two different directions came to

light by the mid-2000s, indicating that plant G proteins use a

regulatory system distinct from animal G proteins [23,40]

(see §3). In 2003, the GTPase-accelerating protein (GAP) of

regulator of G protein signalling (RGS) protein, AtRGS1,

stood out for its hybrid topology [23]. AtRGS1 contains seven

N-terminal transmembrane helices (7TM) like a GPCR and a

C-terminal RGS box typically found in cytoplasmic animal

RGS proteins [23,40]. Such a chimaera between a GPCR and

RGS protein had never been reported before; the animal G

protein field looked over Arabidopsis G signalling with great

curiosity and puzzlement.

The second clue that plant G protein signalling is different

from the animal paradigm came in 2007 when Francis Willard
and co-workers showed that the Arabidopsis Ga-subunit spon-

taneously bound GTP in vitro; a guanine nucleotide exchange

factor (GEF) was not needed for activation [40]. This ‘self-acti-

vating’ property, a term coined in subsequent publications

and described in greater detail below, suggests that plant G pro-

teins do not need, and therefore do not have, GPCRs; a

blasphemous notion in the G protein field. Nonetheless, bio-

chemical, structural, evolutionary and computational analyses

leave no other conclusion: the plant kingdom uses a distinct

regulatory system in G signalling [41–43].
3. Regulatory system of animal and plant
heterotrimeric G proteins

3.1. Basic G protein concept based on its
biochemical activity

Figure 2 compares the regulatory system of heterotrimeric G

proteins in animals versus most plants. In mammals, the

cognate heterotrimeric G protein is activated by a GPCR or

other GEF [1]. At steady state, the a-subunit of G protein

keeps its GDP tightly bound and forms an inactive heterotri-

mer with the Gbg-subunits (figure 2a, bottom left) [1]. An

agonist-stimulated GPCR promotes GDP dissociation from

the a-subunit (figure 2a, top), and the nucleotide-free Ga inter-

acts with GTP, which has a concentration 10 times higher than

that of GDP in animal cells. This is a rate-limiting step in the

animal G protein cycle. The newly GTP-bound Ga changes

its conformation to the active form, consequently dissociating

from Gbg, and interacts with and regulates the activity of its

effectors (figure 2a, bottom right). Known animal effectors

are adenylyl cyclases, phospholipase Cb and RGS-RhoGEFs

[2], and there are many more (see fig. 1 of [44]). The active
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Figure 2. The ‘G’ cycle of animals versus Arabidopsis. (a) G protein regulation in mammalian cells. In the absence of ligand, G protein forms an inactive heterotrimer
with Gbg dimer (bottom left). Ligand-bound GPCR promotes GDP dissociation and GTP binding on G protein (top). GTP-bound Ga dissociates from Gbg dimer,
and both activated Ga and freely released Gbg modulate activity of the effectors (bottom right). Ga hydrolyses GTP to GDP, and re-binds to Gbg to return to its
inactive state. (b) G protein regulation modelled in Arabidopsis. Arabidopsis G protein (AtGPA1) can spontaneously dissociate GDP and activate itself (bottom left).
AtGPA1 does not hydrolyse its GDP rapidly; however, AtRGS1, a 7TM-RGS protein, promotes the GTP hydrolysis of AtGPA1 (top). D-glucose or other stimuli functions
on AtRGS1 directly or indirectly, and decouples AtGPA1 from AtRGS1 (bottom right). Once released from AtRGS1, AtGPA1 does not hydrolyse its GTP efficiently,
maintaining its active state and modulating the effector activities.
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Ga-subunit returns to the inactive state by hydrolysing the

bound GTP. In this reaction, RGS proteins or other GAPs pro-

mote the GTP hydrolysis and terminate G protein signalling.

Ga mutants with enhanced activity of GDP dissociation [45]

or abolished GTPase activity [46] function as constitutively

active G proteins. This suggests that both slow GDP dis-

sociation and rapid GTP hydrolysis are required for keeping

the heterotrimer inactive and for the proper signal transduction

in animal cells. The activity of RGS proteins also increases the

initial amplitude of G signalling by a process called dynamic

scaffolding [47].

Although plant G protein signalling uses similar ele-

ments, the cycle starkly contrasts with the animal model. In

plants, the a-subunit of the G protein spontaneously releases

GDP (figure 2b, arrow from bottom left to top) and forms

a stable GTP-bound state [40,41,48]. The exchange rate of

GDP for GTP in AtGPA1 (kon ¼ 1.4–14.4 min21 [40,41,48])

is comparable with a constitutively active mutant of human

Gas (Gas S366A, kon ¼ 14 min21) [45]. Moreover, the intrinsic

GTPase activity of the plant AtGPA1 (kcat ¼ 0.03–0.12 min21

[40,41,48]) is much lower than mammals (human Gas,

kcat ¼ 3.5 min21 [49]), being close to the GTPase-crippled

mutant Gas Q227L (the kcat is probably approx. 0.06 min21

[46]). While the original rate constants were determined

using rice and Arabidopsis G proteins, we recently showed

that this self-activating property is found throughout the

plant kingdom [48]. In Arabidopsis, a 7TM-RGS protein,

AtRGS1 promotes GTP hydrolysis of the a-subunit [40,50],

resulting in the formation of an inactive heterotrimer

(figure 2b, top). Genetic evidence is consistent with D-glucose

being the ligand that halts AtRGS1 GAP activity and, by

doing so, allowing AtGPA1 to self-activate (figure 2b,

bottom right) [23,40,51,52]. The detailed mechanism for this

atypical activation mechanism [53] is described in greater

detail in §3.2. Back to the bigger picture, in animals, different

ligands stimulate the stimulator (GPCR), whereas it appears

that in plants the ligands inhibit the inhibitor (e.g. AtRGS1
in Arabidopsis). ‘Inhibiting the inhibitor’ seems to be a

common theme for receptor regulation in plants [54].
3.2. Endocytosis of 7TM receptors in mammals and
plants: same actions, different reactions

Many types of cell possess feedback systems to fine-tune

the strength, duration and specificity of signals. In mammals,

GPCRs are internalized to desensitize in response to exces-

sive and/or continuous stimuli (figure 3a) [5]. Such a

mechanism is important to protect cells from harmful doses

of the ligands. Some GPCRs are phosphorylated at the

carboxyl-terminal region by kinases, such as G-protein recep-

tor kinases (GRKs; figure 3). The phosphorylated GPCRs are

recognized by b-arrestin, which functions as an adaptor con-

necting GPCRs to the endocytic machinery. Then, GPCRs

are endocytosed by clathrin-dependent and adaptor protein

2 (AP2)-complex-dependent mechanisms.

Similar to mammalian GPCRs, the plant 7TM-RGS1 is

trafficked rapidly from the plasma membrane to the endo-

some upon D-glucose or other sugar treatments (figure 3b)

[53,55]. Like mammalian GPCRs, AtRGS1 is phosphoryla-

ted at the C-terminus, shown to be essential for AtRGS1

endocytosis. Although plant genomes do not encode

GRK homologues, a WITH NO LYSINE kinase (WNK),

AtWNK8, found among the G protein interactome (discussed

below), phosphorylates AtRGS1 for endocytosis. Because

clathrin-dependent and AP2-complex-dependent systems

are conserved between mammals and plants, these trafficking

components are possibly critical for AtRGS1 endocytosis.

AtGPA1 remains on the plasma membrane, thus AtRGS1

and AtGPA1 become physically uncoupled allowing

AtGPA1 to self-activate (figure 3) [53]. Because loss-of-func-

tion mutations in AtRGS1 do not confer constitutive sugar

signalling, the story is more complex. One explanation is

that sugar signalling through activated AtGPA1 at the
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plasma membrane also requires an origin of signalling

through AtRGS1 at the endosome [53].
3.3. Structure and mechanism of plant ‘self-activating’
G protein

Figures 4 and 5 show crystal structures and domain architec-

tures of the G protein heterotrimer and the related proteins.

The a-subunit of the G protein complex is composed of distinc-

tive helical and Ras domains (see Arabidopsis AtGPA1 structure

in figure 4b). The Ras domain contains motifs to bind guanine

nucleotide, Gbg dimer [62], GPCRs and effectors, whereas the

helical domain shelters the guanine nucleotide binding pocket.

The b-subunit contains an amino-terminal coiled-coil motif
and a carboxyl-terminal WD40 repeat domain [62] (figures 4a
and 5). The amino-terminus of Gb forms the stable coiled-

coil interaction with the g-subunit [62], and the WD40

repeat domain contains the effector and Ga binding surface

(figure 4a). The effector binding surface on Gb is normally

masked by the GDP-bound form of Ga protein; therefore,

Gbg is active only after dissociating from the a-subunit [2].

The g-subunit is a small (normally less than 100 residue)

protein containing a coiled-coil region and a prenylation site

at its carboxyl-terminus [1] (figures 4a and 5), which is required

for its membrane targeting [63,64]. This is described in greater

detail below.

The human Ga structure is remarkedly altered, depending

on the presence or absence of a GPCR [6]. As described earlier,

the helical domain of the Ga-subunit covers the guanine
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nucleotide (figure 4a, left), however, the helical domain is

oriented by agonist-bound GPCR (figure 4a, right), and the

structural change discloses the guanine nucleotide binding

pocket on the Ras domain and promotes GDP dissociation

from the Gaprotein [6]. Arabidopsis G protein rapidly dissociates

its GDP without GEF proteins [35]. As shown in figure 4b,

the crystal structure of AtGPA1 is essentially the same as the

human inhibitory Ga protein, Gai1 (the root-mean-squared

deviation is only 1.8 Å) [36], but the helical domain of

AtGPA1 is the structure that imparts the rapid GDP dissociation

property [36]. Molecular dynamics simulations of the AtGPA1

structure indicate spontaneous fluctuation of the Arabidopsis
helical domain in the absence of a GPCR [38], suggesting the

conserved role of the helical domain to determine nucleotide

dissociation from the a-subunit. Overall, the plant G protein

rapidly exchanges its guanine nucleotide owing to the
spontaneous fluctuation of the helical domain that is normally

promoted by agonist-bound GPCR in animals.
3.4. G-protein-coupled receptor candidates proposed in
the plant kingdom

In the race to find plant GPCRs, there were many stumbles.

Several GPCR-type candidates were initially proposed but

later discredited. GCR1 [11,59,65–67], GCR2 [68], mildew

resistance locus O (MLO) proteins [69,70], GPCR-type G

protein (GTG) 1 and GTG2 [60], and some others [71,72]

were proposed to be GPCRs based on the predicted or

proved membrane topology, and some G-protein-related

phenotypes were genetically shown in Arabidopsis providing

some support. GCR1 shares homology with the cAMP
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receptor (cAR1) of Dictyostelium discoideum [65] and was

reported to interact with AtGPA1 [59]. Both G protein genes

and GCR1 are involved in abscisic acid (ABA)-dependent sto-

mate closure (see §5 for details) [13,59]. However, direct GEF

activity of GCR1 on AtGPA1 is not shown, and the combi-

nation of AtGPA1 and GCR1 null mutations indicated the

existence of a G-protein-independent function for GCR1 in

brassinosteroid (BR) and GA responses [73]. The interaction

between GCR1 and AtGPA1 is controversial [59,74].

Using the weak sequence similarity between cAR1 and GCR1

to claim GPCR homology may not be warranted because it is not

confirmed whether D. discoideum cAR1 has guanine nucleotide

exchange activity on Ga protein(s) [75]. In fact, cAR-like pro-

teins are found in organisms lacking G proteins. Furthermore,

the human genome encodes around 800 GPCR genes, but none

are homologous to D. discoideum’s cAR1 gene [76], and no hom-

ologous gene encoding a non-cAR GPCR is found in plant

genomes [76]. Therefore, without homology support or biochemi-

cal proof and without the need for a GEF to activate a plant Ga-

subunit, there is no compelling reason to designate GCR1 as a

GPCR. Among other plant GPCR candidates published,

GCR2 was disproved because it lacks a 7TM domain [77,78]

and its published ABA-related phenotypes [68] are not repro-

ducible [78–80]. MLO proteins are the only plant 7TM

candidates to have a proved GPCR topology; however, there

is no genetic evidence that MLOs regulate G proteins [81].

Recently, GTG1 and GTG2 were proposed to be plant

GPCRs. GTG proteins are highly homologous to the human

GPR89a that was erroneously annotated as GPCR 89 [60]. The

human GPR89a protein is a voltage-dependent anion channel

and is now re-annotated as a Golgi pH transporter [61]. This

biochemical function for GTG proteins is supported by a

recent study [82] showing that GTG1 is localized primarily in

Golgi bodies and in the endoplasmic reticulum, but not in the

plasma membrane, raising doubts about whether GTG proteins

function as GPCRs. It should be emphasized that not all seven

transmembrane proteins function as GPCRs. Instead, they also

have other functions such as ion channels in insects, channel

rhodopsins in green algae or bacterial rhodopsins [83–85].

Finally, many of the so-called plant GPCRs have homologues

in organisms that lack G signalling altogether, indicating that

the constrained evolutionary function is something other than

G protein activation [86]. Therefore, plant biologists must

exercise extreme caution in interpreting plant GPCR functional-

ity, especially because some human GPCR-like genes, such

as those called orphan receptors, are not yet proved to have

G-protein-dependent functions [87].
4. G protein components and their
regulators in plants

The Arabidopsis genome contains one canonical Ga (AtGPA1)

[7], one Gb (AGB1) [30] and three Gg (AGG1, AGG2 and

AGG3) genes [31,32,88]. This is roughly the G protein inventory

for most diploid plants; for example, rice encodes one cano-

nical Ga, one Gb and 5 Gg-subunits [89]. The few species

having more than one Ga-subunit are recent polyploids, and

there is no reason to conclude that these Ga-subunits evolved

subfunctions [12]. Loss-of-function mutants of AtGPA1 and

AGB1 share phenotypes, including altered sugar sensing

[21,22,90,91], stomate closure [13,38] and seedling development

[26,37], whereas agb1 mutants, but not gpa1 mutants, show
increased lateral root production [37] and are hypersensitive

to fungal infection (table 1) [16,18,39]. agg1 and agg2 mutants

singly and in combination selectively phenocopy the AGB1

null mutant in pathogen resistance, development and sugar

sensing [39,93], whereas the triple agg1 agg2 agg3 mutant dis-

plays all the AGB1 null mutant phenotypes examined [88,94].

Therefore, as in mammalian systems, the Gbg dimer functions

as one signalling element and not as free Gb- or Gg-subunits.

G protein g-subunits exhibit an extraordinary level of

structural diversity (figure 5) and show important differences

to their animal counterparts [89]. While all animal g-subunits

are very small proteins (less than 100 amino acids), AGG3 is

251 amino acids long and some AGG3 homologues can be in

excess of four times the average mammalian size (the rice

AGG3 homologue DEP1 is 426 amino acids long). Another

important difference is that many plant g-subunits do not

contain an isoprenylation motif at their C-terminus, an obli-

gate requisite in all animal g-subunits and essential for

membrane anchoring. At this time, there are three classes of

g-subunits based on their structure [89]. Type A groups the pro-

totypical g-subunits, small in size and containing a C-terminal

CaaX isoprenylation motif (CaaX means cytosine, then any 2

aliphatic residues and then, X, any residue). Type B g-subunits

are similar to type A, still small in size but lacking the CaaX

motif, or indeed any cysteine residues at the C-terminal end

of the protein. Type C g-subunits have two well-defined

regions: an N-terminal domain with high similarity to classic

g-subunits and a C-terminal domain highly enriched in cysteine

residues [89]. Importantly, Arabidopsis does not have a type B

g-subunit, with AGG1 and AGG2 both being type A subunits,

whereas AGG3 is type C. Arabidopsis AGG1 and AGG2 and rice

Gg1 (RGG1) have the prototypical Gg architecture [27–29]. Rice

Gg2 (RGG2) lacks the prenylation site [29]. Arabidopsis AGG3

has an N-terminal Gg domain, a weakly predicted transmem-

brane helix near the centre, and a C-terminal-cysteine-rich

region [72]. The rice genome encodes three AGG3 homologues:

GS3, DEP1 and G protein g-subunit type C 2 (OsGGC2) [73].

Compared with the Gg-domain possessing typical length and

predicted secondary structure, the cysteine-rich domain is

highly divergent among different species [73].

In addition to the single canonical Ga-subunit, Arabidopsis
has three extra-large G protein genes (XLG1, XLG2 and XLG3),

composed of a C-terminal Ga-like domain and an N-terminal

extension containing a nuclear localization signal and a

cysteine-rich region (figure 5) [57]. The XLG proteins bind

and hydrolyse guanine nucleotides [101], interact with Gb

[102], localize primarily to the nucleus [103] and exhibit phys-

iological functions in root morphogenesis [103]. While typical

a-subunits use small bivalent cations (e.g. magnesium, calcium

or manganese) for optimal nucleotide binding and hydrolysis,

XLG proteins require an extremely low amount of calcium as

cofactor, but not magnesium. These findings are not consistent

with structural predictions [58]; thus our understanding of

these unusual Ga-subunits is unclear, and future work will

undoubtedly yield new surprises.

Figure 6 summarizes the presence of G protein com-

ponents and regulators in representative species in eudicots

(Arabidopsis thaliana), monocots (Oryza sativa and Phoenix
dactylifera), gymnosperms (Picea sitchensis), spikemosses

(Selaginella moellendorffii), bryophytes (Marchantia polymorpha
and Physcomitrella patens) and green algae (Micromonas pusilla
and Chlamydomonas reinhardtii) [48]. With few exceptions, the

G protein components (a-, b- and g-subunits) and the RGS



Table 1. Characteristic morphological phenotypes of heterotrimeric G protein subunit mutants in Arabidopsis and rice. n.d., not determined.

mutant seedling (etiolated)
seedling
(light-grown) mature plant references

Arabidopsis

Ga (gpa1) short hypocotyl, open

apical hook

fewer lateral

root

round leaves, reduced root mass, long sepals,

wide silique

[26,27,37]

Gb (agb1) short (shorter than

gpa1) hypocotyl,

open apical hook

more lateral

root

round leaves, small rosette size, increased root

mass, short sepals, short and wide silique with

blunt tip, reduced height

[27,36,37,39,88]

Ga Gb

(gpa1 agb1)

phenocopy agb1 phenocopy

agb1

phenocopy agb1 [27]

Gg1 (agg1) wild-type-like more lateral

roots

wild-type-like [39]

Gg2 (agg2) wild-type-like more lateral

roots

wild-type-like [39]

Gg3 (agg3) short hypocotyl more lateral

roots

phenocopy agb1 except reduction in rosette size

and small differences in flower and silique size

[88,92]

Gg1Gg2

(agg1 agg2)

wild-type-like more lateral

roots

wild-type-like [93]

Gg1Gg2Gg3

(agg1 agg2

agg3)

short hypocotyl phenocopy

agb1

phenocopy agb1 [94]

rice

Ga (rga1, d1) n.d. dwarf dwarf, erected leaf, short panicle, short seed [28,29,95,96]

Gb (rgb1RNAi) n.d. dwarf dwarf, reduced size of panicles, browning of the

lamina joint regions and nodes, reduced seed

size (short length and width), reduced seed

number and fertility

[97]

rgb1RNAi/d1 – 5 n.d. dwarf similar to rgb1RNAi with more severe phenotypes [97]

Gg (gs3) n.d. n.d. a major quantitative trait locus (QTL) for grain

length and weight, and a minor QTL for grain

width and thickness

[98,99]

Gg (dep1) n.d. n.d. gain-of-function mutation results in a reduced

length of the inflorescence internode, an

increased number of grains per panicle and an

increase in grain yield

[100]
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genes are either found or deleted together in each genome [104].

This suggests that these four proteins function together, and

deletion of one of the components from the genome releases

the other elements from an evolutionary constraint to keep

them intact in the genome. Homologous genes of Arabidopsis
Ga, Gb, Gg and XLG are broadly found in land plants, except

the moss, P. patens, which encodes no Ga homologous gene

[48]. No G protein elements are yet found in the sequenced

green algae genomes. The 7TM-RGS genes are found in eudi-

cots, a monocot (date palm), gymnosperms and Selaginella,

but not in the fully sequenced genomes of true grasses (e.g.

rice and maize), bryophytes and green algae [48]. Both the

7TM domain and the RGS box of the 7TM-RGS genes are

well conserved throughout the land plants, suggesting that

the two domains were fused early during plant evolution [48].
The two ‘RGS-less’ exceptions in plants raise the opportu-

nity to find still another mechanism for G protein activation.

While monocots have 7TM-RGS proteins, the cereals, a sub-

group of monocots, and the liverwort M. polymorpha lack

functional RGS proteins [48]. Interestingly, the liverwort

Ga-subunit hydrolyses its GTP rapidly in the absence of any

regulatory protein (M. polymorpha MpGa, kcat ¼ 0.87 min21)

[48] likely to compensate for the loss of the 7TM-RGS protein

in liverwort. This drastic difference in the intrinsic property

of the liverwort Ga-subunit indicates that an intrinsic regu-

latory feature of signalling molecules is constrained or

determined by the binding partner, and that a loss of the regu-

lator gene may lead to a drastic change of intrinsic property of

the target molecule during evolution. In contrast to liverwort,

the rice G protein is self-activating—like AtGPA1, because of
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Figure 6. G protein components in the plant kingdom. Homologous genes of
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its rapid nucleotide exchange (RGA1; kon ¼ 0.9–2.4 min21)

and slow hydrolysis of GTP (RGA1, kcat ¼ 0.05 min21)

[48,105]. No regulatory element of rice G protein has been

identified so far, but the intrinsic property of RGA1 implies

that it is regulated by unknown GAP proteins. These obser-

vations make study of rice and liverwort signalling of

foremost importance; no doubt we will find even more bizarre

mechanisms controlling the G protein activation state.

It should be noted that GCR1, GCR2, GTG and MLO proteins

are well conserved in land plants and green algae, even in species

lacking encoded Ga and/or the other G protein components in

their genomes (figure 6). The homologies between the A. thaliana
and the green alga M. pusilla genes are supported by high expec-

tation values (AtGCR1, E-value ¼ 7e221; AtGTG1 E-value ¼

1e237; and AtMLO1, E-value ¼ 2e295). Normally, genes losing

their functional partners are released from genetic constraint,

quickly mutate and become deleted from the genome (neutral

theory of evolution [106]). The lineage of green algae was separ-

ated from land plants more than 1 billion years ago [107].

Therefore, these GPCR-like genes conserved in green algae

probably have a function irrelevant to G signalling [86].
5. The G protein effectors and the plant
G protein interactome

Table 2 lists plant G protein interactors that are partially

characterized. Animal G proteins have adenylyl cyclases
and other well-known effectors; however, plant genomes do

not encode the canonical G protein effectors [121]. Among

many G protein interactors [91,115,116,119–123], some function

as potential G protein effectors, such as thylakoid formation 1

(THF1) for Ga [91] and ACI-reductone dioxygenase 1 for Gbg

[119], although effectors identified so far are not sufficient to

explain divergent functions of plant G proteins. An inter-

national consortium of plant G protein researchers undertook

a focused screen to identify, ab initio, plant G protein effectors

[42]. The interactors include many proteins having different

intracellular localizations, physiological functions and domain

architectures. Some of them are completely uncharacterized

proteins, but others have well-defined domains, such as kina-

ses, phosphatases and transcription factors. Within the set

of kinases, AtWNK8 phosphorylates AtRGS1 and induces

AtRGS1 endocytosis [53]. Interestingly, AtRGS1 is predicted

to interact with some receptor-like kinases (RLKs) [42]. The

Arabidopsis genome has more than 600 genes in the RLK gene

family, and many of them have known ligands and signal trans-

duction pathways. Because there are genetic links between the

RLKs, such as ERECTA [16,36], and heterotrimeric G proteins,

it is possible that the RLKs may transmit signals to G proteins

through the phosphorylation and endocytosis of AtRGS1. As

mentioned earlier, despite the small subset of the genes, plant

G proteins operate in many signal pathways; adding the RLK

to the mix is a possible explanation of how so many signals

can propagate through this G protein nexus. Because plant G

proteins are detected in a huge protein complex in vivo
[33,124], the RLKs or other unidentified proteins would com-

pose the stable machinery with G proteins.

There are a few findings that should be noted but still do

not make sense. Wang’s group reported that AtGPA1 directly

inhibits activity of the phospholipase, PLDa [105], and that

this enzyme possesses a ‘DRY’ motif [116] found on GPCRs

that is important for G activation in animals. The PLDa inter-

action is to the GDP form and purportedly stimulates steady-

state hydrolysis, but this is unexpected because increased

hydrolysis dictates interaction with the GTP-bound form or

the transition state. Moreover, their published PLDa ‘DRY’

sequence was shown to be incorrect [125], and there are no

follow-up publications of this exciting finding, suggesting

this avenue may be a dead end. Similarly, a claim is made

that pea and wheat Ga-subunit interacts with PLC [11,126],

but, again, with no follow-up in 5 years and the fact that

plant PLCs do not have the G activation ‘bells and whistles’

of the corresponding animal PLC enzymes, there is cause

for pause and bewilderment.
6. Physiological function of G proteins
This section summarizes physiological functions found from

loss-of-function G protein mutants in Arabidopsis and rice

(figure 7; tables 1 and 3).

6.1. Growth and morphology
The analysis of loss-of-function alleles and transgenic lines

of Arabidopsis Ga (AtGPA1) and Gb (AGB1) makes it clear

that G proteins mediate processes throughout development.

Knockout mutants of AtGPA1 and AGB1 display and

share developmental phenotypes, from seed germination to

flower and silique development [21,26,36,37] (figure 7a–e),



Ta
bl

e
2.

Lis
to

fp
ar

tia
lly

ch
ar

ac
te

riz
ed

he
te

ro
tri

m
er

ic
G

pr
ot

ein
in

te
rac

to
rs

in
Ar

ab
ido

ps
is.

pr
ot

ei
n

en
co

de
d

pr
ot

ei
n

re
la

tio
n

to
G-

pr
ot

ei
ns

fu
nc

tio
n

re
fe

re
nc

es

ph
ys

ica
li

nt
er

ac
to

rs

At
RG

S1
a

pr
ed

ict
ed

se
ve

n
tra

ns
m

em
br

an
e

pr
ot

ein
w

ith
C-

te
rm

in
al

RG
S

bo
x

pr
ef

er
en

tia
lly

bi
nd

GT
P-

bo
un

d
At

GP
A1

an
d

ex
hi

bi
tG

TP
as

e-
ac

ce
ler

at
in

g

pr
ot

ein
ac

tiv
ity

on
At

GP
A1

at
te

nu
at

e
ce

ll
elo

ng
at

ion
in

hy
po

co
ty

ls;
at

te
nu

at
e

ce
ll

di
vis

ion
in

pr
im

ar
y

ro
ot

s;
up

re
gu

lat
e

th
e

ex
pr

es
sio

n
of

AB
A

bi
os

yn
th

es
is

ge
ne

s;
po

sit
ive

ly

re
gu

lat
e

D-
gl

uc
os

e
se

ns
in

g
in

hi
gh

co
nc

en
tra

tio
ns

of
D-

gl
uc

os
e-

in
hi

bi
te

d

hy
po

co
ty

le
lo

ng
at

ion
,r

oo
te

lo
ng

at
ion

an
d

co
ty

led
on

gr
ee

ni
ng

[2
3,

27
,4

0,
51

,1
08

,1
09

]

XL
G1

ha
s

a
C-

te
rm

in
al

Ga
-li

ke
do

m
ain

an
d

an
N-

te
rm

in
al

ex
te

ns
ion

co
nt

ain
in

g
a

nu
cle

ar
lo

ca
liz

at
ion

sit
e

an
d

a
cy

ste
in

e-
ric

h
re

gi
on

ne
ga

tiv
ely

re
gu

lat
e

pr
im

ar
y

ro
ot

gr
ow

th
;n

eg
at

ive
ly

re
gu

lat
e

AB
A

in
hi

bi
tio

n
of

se
ed

ge
rm

in
at

ion

[5
7,

10
3]

XL
G2

ha
s

a
C-

te
rm

in
al

Ga
-li

ke
do

m
ain

an
d

an
N-

te
rm

in
al

ex
te

ns
ion

co
nt

ain
in

g
a

nu
cle

ar
lo

ca
liz

at
ion

sit
e

an
d

a
cy

ste
in

e-
ric

h
re

gi
on

co
-im

m
un

op
re

cip
ita

te
d

w
ith

AG
B1

ne
ga

tiv
ely

re
gu

lat
e

pr
im

ar
y

ro
ot

gr
ow

th
;n

eg
at

ive
ly

re
gu

lat
e

AB
A

in
hi

bi
tio

n
of

se
ed

ge
rm

in
at

ion
;e

nh
an

ce
d

su
sc

ep
tib

ilit
y

to
P.

sy
rin

ga
e;

re
gu

lat
e

flo
ra

lt
ra

ns
iti

on

[1
01

–
10

3]

XL
G3

ha
s

a
C-

te
rm

in
al

Ga
-li

ke
do

m
ain

an
d

an
N-

te
rm

in
al

ex
te

ns
ion

co
nt

ain
in

g
a

nu
cle

ar
lo

ca
liz

at
ion

sit
e

an
d

a
cy

ste
in

e-
ric

h
re

gi
on

ne
ga

tiv
ely

re
gu

lat
e

pr
im

ar
y

ro
ot

gr
ow

th
;n

eg
at

ive
ly

re
gu

lat
e

AB
A

in
hi

bi
tio

n
of

se
ed

ge
rm

in
at

ion
;p

os
iti

ve
ly

re
gu

lat
e

ro
ot

wa
vin

g
an

d

ro
ot

sk
ew

in
g

[1
03

,1
10

]

GC
R1

a
7T

M
pr

ot
ein

w
ith

we
ak

se
qu

en
ce

ho
m

ol
og

y
w

ith

th
e

cA
M

P
re

ce
pt

or
,c

AR
1,

of
th

e
sli

m
e

m
ou

ld

bi
nd

At
GP

A1
ne

ga
tiv

ely
re

gu
lat

e
AB

A
in

hi
bi

tio
n

of
se

ed
ge

rm
in

at
ion

,e
ar

ly
se

ed
lin

g

de
ve

lo
pm

en
ta

nd
ge

ne
ex

pr
es

sio
n;

ne
ga

tiv
ely

re
gu

lat
e

AB
A-

in
hi

bi
te

d

sto
m

at
e

op
en

in
g

an
d

AB
A-

pr
om

ot
ed

sto
m

at
e

clo
su

re
;p

os
iti

ve
ly

re
gu

lat
e

GA
-

an
d

BR
-st

im
ul

at
ed

se
ed

ge
rm

in
at

ion
;p

ro
m

ot
e

bl
ue

lig
ht

-

in
du

ce
d

ge
ne

ex
pr

es
sio

n;
pr

om
ot

e
ce

ll
di

vis
ion

in
to

ba
cc

o
BY

-2

su
sp

en
sio

n
ce

lls

[2
2,

59
,6

5,
66

,7
3,

11
1–

11
3]

GC
R2

a
pr

ed
ict

ed
m

em
br

an
e

pr
ot

ein
w

ith
se

qu
en

ce

ho
m

ol
og

y
w

ith
m

em
be

rs
of

th
e

eu
ka

ry
ot

ic

lan
th

ion
in

e
sy

nt
he

ta
se

co
m

po
ne

nt
C-

lik
e

pr
ot

ein

fa
m

ily

co
nt

ra
di

cto
ry

At
GP

A1
bi

nd
in

g
co

nt
ra

di
cto

ry
AB

A
bi

nd
in

g
an

d
AB

A
re

ce
pt

or
ro

le
(A

BA
in

hi
bi

tio
n

of
se

ed

ge
rm

in
at

ion
,e

ar
ly

se
ed

lin
g

de
ve

lo
pm

en
t,

an
d

ro
ot

elo
ng

at
ion

,a
nd

AB
A-

in
du

ce
d

ge
ne

ex
pr

es
sio

n)

[6
8,

77
,7

9,
80

,1
14

]

(C
on

tin
ue

d.
)

rsob.royalsocietypublishing.org
Open

Biol3:120186

9



Ta
bl

e
2.

(C
on

tin
ue

d.
)

pr
ot

ei
n

en
co

de
d

pr
ot

ei
n

re
la

tio
n

to
G-

pr
ot

ei
ns

fu
nc

tio
n

re
fe

re
nc

es

GT
G1

GT
G2

pr
ed

ict
ed

to
co

ns
ist

of
eig

ht
to

10
tra

ns
m

em
br

an
e

do
m

ain
s

w
ith

se
qu

en
ce

ho
m

ol
og

y
to

ha
m

ste
r

GP
HR

,a
n

an
ion

ch
an

ne
lc

rit
ica

lf
or

Go
lg

i

ac
id

ifi
ca

tio
n

an
d

fu
nc

tio
n

bi
nd

At
GP

A1
;h

av
e

in
tri

ns
ic

GT
P

bi
nd

in
g

an
d

GT
Pa

se
ac

tiv
ity

;i
ts

GT
Pa

se
ac

tiv
ity

is
in

hi
bi

te
d

by

At
GP

A1

a
pu

ta
tiv

e
AB

A
re

ce
pt

or
;c

on
tra

di
cto

ry
ro

le
in

th
e

re
gu

lat
ion

of
AB

A

in
hi

bi
tio

n
of

se
ed

ge
rm

in
at

ion
,p

os
t-g

er
m

in
at

ion
gr

ow
th

an
d

AB
A-

in
du

ce
d

ge
ne

ex
pr

es
sio

n;
po

sit
ive

ly
re

gu
lat

e
AB

A-
in

du
ce

d
pr

om
ot

ion
of

sto
m

at
e

clo
su

re
;r

eg
ul

at
e

fe
rti

lit
y,

hy
po

co
ty

la
nd

ro
ot

gr
ow

th
,a

nd

re
sp

on
se

s
to

lig
ht

an
d

su
ga

rs

[6
0,

82
]

At
PI

RI
N1

a
m

em
be

ro
ft

he
cu

pi
n

pr
ot

ein
su

pe
rfa

m
ily

bi
nd

At
GP

A1
ne

ga
tiv

ely
re

gu
lat

e
AB

A
sig

na
llin

g
in

se
ed

ge
rm

in
at

ion
an

d
ea

rly
se

ed
lin

g

de
ve

lo
pm

en
t;

m
ed

iat
e

bl
ue

lig
ht

-in
du

ce
d

ge
ne

ex
pr

es
sio

n

[1
13

,1
15

]

PL
Da

1
a

m
ajo

ri
so

fo
rm

of
ph

os
ph

ol
ip

as
e

D
bi

nd
At

GP
A1

an
d

ex
hi

bi
tG

AP
ac

tiv
ity

on
At

GP
A1

pr
od

uc
e

ph
os

ph
at

id
ic

ac
id

;p
os

iti
ve

ly
re

gu
lat

e
AB

A-
in

hi
bi

te
d

sto
m

at
e

op
en

in
g

an
d

AB
A-

pr
om

ot
ed

sto
m

at
e

clo
su

re

[1
16

,1
17

]

TH
F1

a
pl

as
tid

pr
ot

ein
;n

o
sig

ni
fic

an
t

se
qu

en
ce

ho
m

ol
og

y

w
ith

ot
he

rp
ro

te
in

s

bi
nd

At
GP

A1
ac

td
ow

ns
tre

am
of

At
GP

A1
to

re
gu

lat
e

D-
gl

uc
os

e
se

ns
in

g;
pr

om
ot

e

ch
lo

ro
pl

as
td

ev
elo

pm
en

t
w

ith
At

GP
A1

[9
1,

11
8]

PD
1

a
cy

to
so

lic
pr

ep
he

na
te

de
hy

dr
at

as
e

bi
nd

At
GP

A1
re

gu
lat

e
bl

ue
lig

ht
-m

ed
iat

ed
sy

nt
he

sis
of

ph
en

ylp
yr

uv
at

e
an

d

ph
en

yla
lan

in
e

an
d

ge
ne

ex
pr

es
sio

n

[6
7,

11
3]

AR
D1

AC
I-r

ed
uc

to
ne

di
ox

yg
en

as
e

1
bi

nd
AG

B1
an

d
AG

B1
-A

GG
1

ov
er

ex
pr

es
sio

n
of

AR
D1

su
pp

re
ss

es
th

e
2-

da
y-

ol
d

et
iol

at
ed

ph
en

ot
yp

e
of

ag
b1

–
2;

AG
B1

sti
m

ul
at

es
th

e
en

zy
m

at
ic

ac
tiv

ity
of

AR
D1

.

[1
19

]

ND
L1

ND
L2

ND
L3

N-
M

YC
do

w
nr

eg
ul

at
ed

-li
ke

,a
pr

ed
ict

ed
m

em
be

rs
of

a

lip
as

e
su

pe
rfa

m
ily

co
nt

ain
in

g
an

ND
R

do
m

ain
an

d

an
a

/b
hy

dr
ol

as
e

fo
ld

.

bi
nd

AG
B1

-A
GG

1
an

d
AG

B1
-A

GG
2

a
po

sit
ive

m
od

ul
at

or
of

pr
im

ar
y

ro
ot

gr
ow

th
an

d
lat

er
al

ro
ot

fo
rm

at
ion

;

po
sit

ive
ly

m
od

ul
at

e
ba

sip
et

al
an

d
ne

ga
tiv

ely
m

od
ul

at
e

ac
ro

pe
ta

la
ux

in

tra
ns

po
rt

in
an

AG
B1

-d
ep

en
de

nt
m

an
ne

r;
w

or
k

to
ge

th
er

w
ith

AG
B1

to

re
gu

lat
e

pr
im

ar
y

ro
ot

len
gt

h
an

d
lat

er
al

ro
ot

de
ns

ity
th

ro
ug

h

m
od

ul
at

ion
of

au
xin

tra
ns

po
rt;

AG
B1

is
re

qu
ire

d
fo

rN
DL

1
pr

ot
ein

sta
bi

lit
y

in
re

gi
on

s
of

th
e

ro
ot

w
he

re
au

xin
gr

ad
ien

ts
ar

e
es

ta
bl

ish
ed

[1
20

]

rsob.royalsocietypublishing.org
Open

Biol3:120186

10



Col-0 rgs1–2 gpa1–4 agb1–2

Col-0 rgs1–2 gpa1–4 agb1–2(a)

(b) (c)

(d)

(g)

( f )
(e)

Nipponbare Ga null (d1) Gb RNAi Nipponbare Ga null (d1) Gb RNAi

Nipponbare Ga null (d1) Gb RNAi

Col-0 rgs1–2 gpa1–4 agb1–2

Col-0 rgs1–2 gpa1–4 agb1–2

Figure 7. Morphology of loss of G protein mutants in Arabidopsis and rice. (a – c) Growth and leaf shape; Arabidopsis T-DNA insertion lines for Ga (gpa1 – 4), Gb
(agb1 – 2) or RGS1 (rgs1 – 2) and wild-type Col-0 were grown for 37 days in a short day chamber (8 L : 16 D cycle, 100 mmol m22 s21) at 238C. Cotyledons (c) or
ninth leaves (b) are shown with a scale. (d ) Two-day-old etiolated seedlings; Arabidopsis T-DNA lines were grown vertically on half of MS plate containing 1%
D-glucose under dark condition at 238C. (e) Growth of rice; Nipponbare (wild-type), the Ga knockout (d1, DK22) or Gb knockdown (5-4-1) lines were grown in a
short day chamber (8 L : 16 D cycle, 34 C during day per 28 C during night time, 320 mmol m22 s21) for 47 days. ( f ) Colour of joint region; lamina joint regions of
fourth leaves of Nipponbare and the G protein mutants. Gb knockdown line shows brown colour [97]. (g) Seed shape; rice seeds for wild-type Nipponbare, Ga
knockout (DK22) or Gb knockdown (5-4-1) lines. Ga knockout causes abnormal round shape of seeds [28,29].
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except that agb1, but not gpa1, promotes lateral root pro-

duction [37]. Although loss-of-function alleles of Arabidopsis
Gg1 (AGG1) and Gg2 (AGG2) appear to be largely normal,

agg3 single and agg1 agg2 agg3 triple mutants exhibit many

similar morphological phenotypes previously observed in

agb1 mutants [39,88,93,94], indicating that the repertoire of

Gg-subunits in Arabidopsis is complete [94]. Table 1 lists vis-

ible morphological phenotypes reported in G protein

mutants. Four of these phenotypes are frequently described

as characteristic of G protein mutants: (i) short hypocotyl

and open apical hook in etiolated seedlings in gpa1 and

agb1 mutants; (ii) round-shaped rosette leaves in gpa1, agb1,

agg3 and agg1 agg2 agg3 mutants; (iii) reduced lateral root for-

mation in gpa1 mutant and increased lateral root formation in

agb1 mutants; and (iv) erecta-like flower morphology in agb1
and agg1 agg2 agg3 mutants.

Although the precise cause of these growth and morpho-

logical phenotypes of G protein mutants is unclear, many of

them are attributed to their fundamental cellular defects in

cell division or elongation. For example, the short hypocotyl

in gpa1 and agb1 etiolated seedlings is due to reduced axial

cell division in hypocotyl epidermal cells [26,37]. The

round-shaped rosette leaves in gpa1 mutants contain larger

and fewer epidermal cells, presumably owing to increased
cell expansion compensating reduction in cell division [26].

The reduced lateral root formation in gpa1 mutant and

increased lateral root formation in agb1 mutant is largely

due to altered activity in lateral root primordia, again point-

ing to a modulatory role on cell proliferation [37]. However,

the molecular mechanism underlying the regulation of cell

proliferation by G protein remains unclear. Because over-

expression of AtGPA1 in synchronized tobacco BY-2 cells

shortens the G1 phase of the cell cycle and promotes the

formation of nascent cell plate [26], AtGPA1 may modulate

the cell cycle at the G1-to-S transition phase.

Some striking differences in growth and morphological

phenotypes are observed between Arabidopsis and rice

G protein mutants (table 1 and figure 7). The dwarf rice d1
mutant has dark green and broad leaves as well as compact

panicles and short grains [130]. While Arabidopsis G protein

mutants, gpa1 and agb1, are largely similar to wild-type

plant in terms of height, both rice G protein mutants, rga1
and rgb1, are dwarf [28,29,95,97]. Moreover, two rice type C

Gg-subunits, grain size 3 (GS3) and dense and erect panicle 1
(DEP1), are important quantitative trait loci for grain

size and yield [89,98–100], and mutations in both rice

Gg-subunits enhanced yield. In Arabidopsis, gpa1, agb1 and

agg3 mutant seeds are shorter and wider [88], contrasting to
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the seed phenotype of the gs3 mutant. These findings suggest

that cereals may use G protein signalling mechanisms distinct

from other flowering plants. For example, a key regulator of

G protein signalling (RGS) protein has been discovered in

Arabidopsis but not in rice. A single amino substitution

found in grass Ga is responsible for the physical decoupling

of the RGS protein and its cognate Ga partner [48]. This may

help explain some fundamental differences in growth and

morphological phenotypes observed in G protein mutants

between Arabidopsis and rice.

6.2. Hormone and glucose responses
Plant hormones regulate every aspect of plant growth

and development. Given that G protein mutants display an

array of phenotypes, it is not surprising that G protein

mutants show alterations in responses to multiple plant hor-

mones. Table 3 lists all published responses of G protein

mutants to plant hormones.

The most direct and compelling evidence for the involve-

ment of G protein in a plant hormone response came from the

work on rice dwarf mutant, d1 [28,29,95]. d1 was initially

identified as a GA-insensitive mutant. Map-based cloning

revealed that the defect in the d1 mutant was, in fact, due

to a loss-of-function mutation in the gene encoding Ga,

RGA1. Consistent with a role in GA, signalling, d1 rice aleur-

one cells are markedly less sensitive to GA, as quantitated by

transcription of a-amylase and OsGAMYB that encodes a GA-

inducible transcription factor that positively regulates the

expression of a-amylase. Similar to the rice d1 mutant,

Arabidopsis G protein mutants also display reduced sensitivity

to GA in seed germination [21,73].

gpa1, agb1 and agg3 mutants all are hypersensitive to ABA

inhibition of seed germination [21,22,88], early seedling devel-

opment and root elongation [21,22], and ABA-induced gene

expression [22]. On the other hand, these mutants are hyposen-

sitive to ABA inhibition of stomatal opening and inward

Kþ-channels [13,38,88]. These findings suggest that G proteins

function as both negative and positive regulators of ABA

signalling, depending on the specific cell type. Consistent

with a role of G proteins in ABA signalling, several AtGPA1-

interacting proteins regulate ABA responses. For example,

similar to gpa1 mutants, the gcr1 mutants are hypersensitive

to ABA inhibition of seed germination, early seedling deve-

lopment and ABA-induced gene expression [22]. Similarly,

pirin1 mutants are hyposensitive to ABA inhibition of seed

germination and early seedling development [115].

G proteins are not essential for auxin responses because

G protein mutants have wild-type responses to auxin inhi-

bition of hypocotyl growth and primary root elongation [37].

However, G protein mutants have altered sensitivity to auxin

in lateral root formation. While gpa1 mutants are less sensitive

to auxin, agb1, agg1, agg2 and agg1 agg2 mutants are more sen-

sitive to auxin in lateral root formation [37,88,127]. Data from

follow-up studies of these observations indicate that G proteins

modulate auxin transport. The effect of the auxin polar trans-

port inhibitor, N-1-naphthylphthalamic acid (NPA), either

applied at the shoot–root junction (to block polar auxin trans-

port from the shoot) or at the root tip (to block basipetal auxin

polar transport from the root tip), proves that AGG1 (together

with AGB1) acts within the central cylinder to attenuate signal-

ling from acropetally transported auxin, and that AGG2

(together with AGB1) affects the action of basipetally
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transported auxin within the epidermis and/or cortex

[127]. These findings indicate that the Gg-subunits provide

functional selectivity in Gbg dimer signalling.

Arguably the most known about the role of G proteins is

in sugar signalling. All G protein subunit mutants are hyper-

sensitive to glucose in seed germination [21,22,88,91,127].

gpa1 and agb1 are hypersensitive to glucose inhibition of

early seedling development and root elongation [21,22,91].

The loss-of-function of AtRGS1 confers glucose hyposensitivity

[23,40,51,73]. Glucose also attenuates G protein modulation of

lateral root formation [90]. Because glucose regulates AtRGS1

activity towards AtGPA1 [40], and glucose stimulates the

endocytosis of AtRGS1 protein and subsequently physically

uncouples the GAP activity of AtRGS1 from AtGPA1, permit-

ting the sustained activation of AtGPA1 [53], it has been

proposed that AtRGS1 functions as a receptor or co-receptor

for glucose. Considering the regulatory role of glucose in

diverse hormone biosynthesis and signalling, it is possible

that many of the hormone sensitivity phenotypes observed in

G protein mutants may be due to altered glucose signalling.

An attractive hypothesis is that plant hormone signalling

integrates information about the plant nutrient status. This

information is relayed, in part, by the RGS1 pathway.

Glucose and auxin mergedrecently inresearchonG-protein-

mediated root growth and development [90,120,131,132]. Root

architecture is established and maintained by gradients of auxin

and nutrients such as sugars. Auxin is transported acropetally

through the root within the central stele and then, upon reach-

ing the root apex, auxin is transported basipetally through the

outer cortical and epidermal cells. In Arabidopsis, AGG1 and

AGG2 are differentially localized to the central and cortical tis-

sues of the root, respectively. AGB1/AGG dimers bind a

protein designated N-MYC downregulated-like1 (NDL1)

[120]. NDL proteins act in a signalling pathway that modulates

root auxin transport and auxin gradients in part by affecting the

levels of at least two auxin transport facilitators. Gain- and loss-

of-function mutations place NDL proteins central to root

architecture through a direct effect on auxin transport and

auxin maxima patterns. Feedback controls involving AGB1,

auxin and sugars are required for NDL1 protein stability in

the regions of the root where auxin gradients are established.

Finally, gpa1 and agb1 mutants are hyposensitive to BR

[21,26,128,129,133] in BR promotion of seed germination

[26,73], and in BR inhibition of hypocotyl and root elongation

[26]. agb1 mutants are hyposensitive to methyl jasmonate

(MeJA) inhibition of root elongation and seed germination

[18]. Rice rga1 mutants are hyposensitive to 24-epi-BR inhibition

of root growth, the inclination of leaf lamina, the promotion of

coleoptile and second leaf sheath elongation [128,129].

In addition to hormonal and sugar responses, G proteins

are involved in light responses [24,134,135], in mechanical

sensing at the root tip [130] and in calcium response to extra-

cellular nucleotides [136], although the detailed mechanisms

are unknown.

6.3. Stomatal movements and ion channel regulation
Stomata allow plants to exchange gases and water with the

atmosphere. Oxygen and carbon dioxide diffuse out of or

into leaves for photosynthesis, and water is lost from the

leaves through transpiration. Stomatal opening and closing

are regulated by environmental signals (e.g. light and humid-

ity), plant hormones and pathogen infection [137–139]. The
stomatal aperture size is determined by a pair of guard cells,

which change cell shape through turgor pressure. The cell

turgor is determined by ionic strength, gated by transmem-

brane flux of Kþ, Cl2 and malate [138,139]. In addition,

cytosolic calcium and reactive oxygen species (ROS) function

as second messengers to regulate the ionic strength and stoma-

tal movements [138,139].

G proteins are involved in ABA-induced stomatal

movements by controlling inward- and outward-rectifying

potassium current or an anion channel [13,14,38,88,140].

Loss-of-function mutants of Arabidopsis AtGPA1, AGB1 or

AGG3 are impaired in ABA-dependent inhibition of inward

Kþ channels, and are hypersensitive to ABA in inhibiting

light-induced stomatal opening [13,38,88]. In agb1, agg3 or

gpa1 agb1 mutant leaves, stomatal movement does not

occur either with ABA or light, and Kþ flux is not changed

with ABA treatment [38,88]. However, the ABA-dependent

regulation is not impaired in the Gg1/Gg2 double null

plants [93], suggesting that the Gbg3 (AGB1/AGG3) complex

specifically regulates this pathway. The Ga null plant has

wild-type responsiveness to the pathogen bacterial peptide

flg22 known to inhibit inward Kþ channels and stomatal

opening [140].

In addition to ion channel regulation, G protein mutations

affect water availability [141,142], but this cannot be

explained simply by aberrant stomate development [143].

gpa1 null mutations confer reduced, but agb1 or rgs1
mutations confer increased stomate density on cotyledons

[142]. The gpa1 mutations also confer reduced stomate

formation on mature leaves [141].

Arabidopsis G protein mutants have altered responsiveness

to ozone [20], a chemical that elicits a bimodal oxidative burst

in leaf cells [19,144]. Both gpa1 and agb1 mutants lack the early

peak in the ozone-induced oxidative burst, whereas only gpa1
lacks the second peak [19]. In addition, when exposed to ozone,

gpa1 mutants are more sensitive to damage, whereas agb1
mutants are less sensitive than wild-type plants. G proteins

are also involved in the production of cytoplasmic H2O2

necessary for the stomata closure induced by extracellular

calmodulin (ExtCaM), also dependent on nitric oxide accumu-

lation [15,62]. ExtCaM induces an increase in H2O2 levels and

cytosolic calcium, leading to a reduction in stomatal aperture.

gpa1 mutants are impaired in ExtCaM-induced production of

H2O2 in guard cells and the subsequent stomata closure.

ExtCaM-mediated NO generation is regulated by AtGPA1,

whereas AtGPA1 activation of NO production depends on

H2O2. Finally, the involvement of G proteins is not confined

to the induction of ROS; agb1 mutants are more sensitive to

H2O2 than wild-type plants, suggesting that G proteins also

influence sensitivity to ROS [63].

6.4. Pathogen resistance
In order to confront a huge variety of pathogens, plants use a

two-tiered defence strategy; the primary defence recognizes

conserved microbial molecules called pathogen-associated

molecular patterns (PAMPs; sometimes referred to as

microbe-associated molecular patterns) and trigger a response

known as PAMP-triggered immunity (PTI). The second tier

recognizes specific pathogen-effector proteins, unleashing the

effector-triggered immunity (ETI). The PTI response is elicited

by a variety of membrane-bound pattern recognition receptors

that recognize PAMPs such as flagellin from bacterial
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pathogens or chitin from fungal pathogens. During evolution,

some pathogens developed strategies to overcome PTI using

virulence effectors, but plants acquired ETI.

The involvement of G proteins in plant defence was

suspected early on [64,145]. The first evidence was obtained

using chemical modulators of G protein activity, although

these chemicals have questioned specificity. Cultured soya

bean cells treated with an antigen-binding antibody fragment

recognizing a highly conserved fragment in the Ga-subunit

show a ten-fold enhancement of the elicitor-induced oxi-

dative burst, whereas heat-inactivated antibody has no

effect [146]. In addition, the synthetic peptide mastoparan,

an activator for inhibitory Ga-subunits in animals, cause a

typical defence-associated oxidative burst even in the absence

of elicitors, although it should be noted that the action of

mastoparan in plants has been called into question [147].

Transgenic tobacco plants expressing cholera toxin (CTX)

under the light-inducible promoter have reduced suscepti-

bility to Pseudomonas tabaci, accumulate high levels of

salicylic acid and display constitutive expression of several

pathogenesis-related (PR) genes [148]. CTX covalently mod-

ifies stimulatory Ga-subunits in animals, but its mode of

action in plants is unknown. G proteins and the oxidative

burst seem to be linked by activation of phospholipase C

(PLC); however, if true, this would be by a mechanism

dissimilar to animal systems [149] because plant PLCs lack

domains known for G protein activation [150]. In potato,

treatment with a non-hydrolysable analogue of GTP, which

results in G protein activation, inhibited resistance to

Phytophthora infestans [151]. Soya bean suspension cultures

pre-treated with suramin, a G-protein inhibitor, lack the

typical oxidative burst induced by Pseudomonas syringae pv.

glycinea harbouring the avrA (avirulence) gene [152].

Additional direct and indirect evidence using chemical

modulators links plant G proteins to defence responses

[153–161], although chemical treatments could produce arte-

facts owing to uneven tissue penetration and the documented

lack of specificity in plants [147,162].

The Arabidopsis and rice mutants prove the involvement of

G proteins in defence. Rice d1 mutant alleles are susceptible to

an avirulent race of the fungal pathogen Magnaporthe grisea, the

causal agent of the rice blast disease [163]. Induction of the PR

genes PR1 and PBZ1 compared with wild-type plants are

delayed in the d1 mutant. Several d1 mutants treated with

M. grisea sphingolipid elicitors produce little H2O2 and fail to

induce the PBZ1 gene [163]. Interestingly, by day 2 the

steady-state level of RGA1 mRNA decreases upon infection

with a virulent race of M. grisea and increases by an avirulent

race, especially at the points of infection [163], indicating that

induction of RGA1 expression is R-gene-dependent. In rice,

the production of defence-related ROS is mediated by a small

GTPase, OsRac1. OsRac1 acts downstream of RGA1 in the pro-

duction of H2O2 in response to M. grisea elicitors, but not in

the expression of PR genes, emphasizing the complexity

of the mechanism. The RGA1/OsRac1 defence pathway uses

the mitogen-activated protein kinases (MAPK). OsMAPK6

is post-translationally activated by an M. grisea sphingolipid

elicitor, and silencing of the gene severely suppresses the

elicitor-activated expression of the PR protein, phenyl

ammonia-lyase [164]. Both d1 and OsRac1 mutants strongly

reduce the elicitor-induced OsMAPK6 activation as well as

the OsMAPK6 protein levels, indicating that OsMAPK6 acts

downstream of both G proteins. The link between OsMAPK6
and OsRac1 is further substantiated by co-immunoprecipi-

tation experiments showing that OsMAPK6 interacts with

the active OsRac1 but not with the inactive form. The lignin

biosynthetic enzyme OsCCR1 and the ROS scavenger

metallothionein (OsMT2b) are also regulated by OsRac1, and

could be involved in the RGA1/OsRac1 defence pathway,

although a direct link with RGA1 has not yet been

demonstrated [165,166].

In contrast to the rice Ga-subunit, Arabidopsis Ga’s involve-

ment in defence is limited, and in fact Arabidopsis gpa1 mutants

have slightly increased resistance to several pathogens. The link

between G proteins and plant defence in Arabidopsis is neverthe-

less clearly established through the Gbg dimer [16,18]. Mutants

deficient in AGB1 are more susceptible to the fungal pathogens

Alternaria brassicicola, Botrytis cinerea, Fusarium oxysporum and

Plectosphaerella cucumerina [16,18]. Upon infection with

A. brassicicola or treatment with methyl jasmonate MeJA, agb1
mutants show a significant delay in the induction of the

MeJA-induced PR genes PDF1.2, OPR3 and PAD3 [18],

whereas expression of the salicylic-acid-dependent PR1 was

increased after infection with P. cucumerina [16]. The above-

mentioned fungal pathogens are necrotrophs (or in some

cases considered hemi-biotrophs, i.e. undergoing biotrophic

and necrotrophic phases during their life cycle). When agb1
mutants are challenged with the bacterium P. syringae and

the oomycete Peronospora parasitica, they do not show differ-

ences compared with the wild-type plants [16,18]. Cell wall

callose deposition, a typical response to pathogen attack, is

greatly reduced in agb1 mutants challenged with P. cucumerina,

but not with P. parasitica. The increased susceptibility to necro-

trophic fungi and the delayed induction of the MeJA-related PR

genes suggests an involvement of AGB1 in the MeJA-mediated

defence pathway. This hypothesis is supported by the

decreased sensitivity displayed by the agb1 mutants to

several MeJA-induced developmental phenotypes [18].

Three different Gg-subunits potentially confer functional

selectivity to the Gbg dimer [39]. To investigate such selectiv-

ity, the involvement of all three Ggs in defence was studied,

with AGG1 being clearly implicated in the response against

F. oxysporum and A. brassicicola [39]. agg1 mutants are hyper-

sensitive to F. oxysporum and A. brassicicola [39], the role of

AGG2 is unclear, and AGG3 has no defence-related role

[88]. Transgenic plants expressing AGG2 under the control

of the AGG1 promoter complement agg1 mutants and restore

resistance to wild-type levels, indicating that the defence speci-

ficity observed for AGG1 does not reside in its primary sequence

and is transcriptional or post-transcriptional (L. Thung &

J. S. Botella 2013, unpublished results) [167]. agb1 mutants are

hypersensitive to the pathogen P. cucumerina, whereas gpa1,

agg1 and agg2 mutants display similar levels of sensitivity

to wild-type plants [168]. The double agg1 agg2 mutant exhibits

identical sensitivity levels to agb1, implicating both Gg-subunits

in the defence against this pathogen. The level of resistance in

all mutants is correlated with lower xylose content in the cell

wall [42,168].

Aside from the canonical subunits, one of three

extra-large a-subunit XLGs [57], XLG2, is linked to plant

defence [102]. xlg2 mutants have enhanced susceptibility to

P. synringae and reduced induction of the pathogenesis-related

gene PR2. Microarray analysis revealed that, aside from PR2,

other pathogen-inducible genes are downregulated in xlg2
mutants in response to P. syringae infection, whereas

overexpression of XLG2 resulted in the production and
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accumulation of aberrant transcripts for several defence-

related genes [102]. XLG2 physically interacts with AGB1,

but the interaction is restricted to infected tissues. Interest-

ingly, in contrast to agb1 mutants, xlg2 mutants show

wild-type levels of resistance to the necrotrophic pathogens

B. cinerea or A. brassicicola [102].

In addition to the direct resistance evidence obtained for

a number of pathogens, G proteins are associated with

plant defence responses such as cell death and the oxidative

burst. Rice d1 mutants reduce hypersensitive response (HR)-

associated cell death upon infection with avirulent races of

M. grisea [163]. AtGPA1, but not AGB1, is required for the cell

death observed in response to ozone treatment in Arabidopsis
[19]. agb1 mutations decrease cell death induced by tunicamy-

cin, an antibiotic that inhibits N-linked protein glycosylation,

implicating AGB1 in the unfolded protein response (UPR)

[169,170]. The UPR is activated in response to disruption of

the protein folding machinery and results in apoptotic cell

death in mammalian systems [171]. Although the UPR is not

well characterized in plants, it is well established that the endo-

plasmic reticulum’s secretory machinery is important in plant

immunity [169]. G proteins are also involved in phytochrome

A-mediated cell death that occurs when hypocotyls of far red-

grown seedlings are exposed to white light [63]. In contrast to

the UPR, in this case, agb1 mutants show increased cell death,

whereas gpa1 mutants show decreased cell death.

A rapid increase in ROS is observed following recognition

of a pathogen by plants. Although ROS are intimately linked

to the plant immune response, they also play important

signalling roles in development, hormonal response and abio-

tic stress [19,144,172,173]. Pathogen-induced ROS production

in rice contrasts with that in Arabidopsis G protein mutants.

Rice d1 mutant cell cultures treated with elicitors derived

from M. grisea show a reduced H2O2 production, perhaps

explaining the reduced resistance shown by the mutant

[163]. Or perhaps not, because even though agb1 mutants are

hypersensitive to P. cucumerina, no reduction in ROS pro-

duction is observed upon infection with the pathogen [16,18].

These profound differences in pathogen resistance in rice

and Arabidopsis G mutants bring us back again to one of the

‘take home’ lessons from this review. Because of mechanistic

differences in G activation, it is important that both rice and

Arabidopsis be adopted as models for G signalling research.

For example, it is clear that G proteins play very different

roles in Arabidopsis and rice defence, possibly owing to the

absence of RGS proteins in grasses that might have resulted

in divergent functional evolution at least for the a-subunit.

Therefore, G protein mutants need to be produced and studied

in other species before a ‘universal’ picture can be revealed.
7. Summary and perspective
Phenotypes of the loss- and gain-of-function mutants of

G protein components, their regulators and the proposed

effectors leave no doubt that plant G signalling does not

follow in step with animal G signalling. The vast knowledge

from the field of animal science is therefore of limited value to

researchers studying G protein activation mechanisms in

plants. This global difference is largely due to the unique

‘self-activating’ property of plant G proteins (see §3). The

identification of G protein effectors and regulators will defi-

nitely advance the field. Great progress was made recently
through a genome-wide screening for physical interactions

with key signalling components in the G protein pathway

in Arabidopsis [42]. It behoves the plant biology community

to take advantage of this valuable plant resource (http://

bioinfolab.unl.edu/emlab/Gsignal/index.pl).

As for regulatory molecules, several 7TM proteins were

identified as GPCR candidates, but there is no proof of

their GEF activities. The rate-limiting step of the plant

G protein cycle is different from that of animals. It appears

that in most plants, if not all, the GTP hydrolysis is the

rate-limiting step, and 7TM-RGS modulates the hydrolysis

rate. However, G protein regulators are absent in the grasses,

where 7TM-RGS genes cannot be found in fully sequenced

genomes, implying that other proteins possessing GAP

activity may modulate GTP hydrolysis in grasses. Further-

more, plant G proteins are apparently involved in divergent

physiological processes, but the mechanism of how the

G protein system perceives the extracellular stimuli remains

unclear. We proposed that endocytosis of AtRGS1 by a

kinase pathway decouples the ‘self-activating’ G protein

from the negative regulator. Therefore, it will be informative

to determine whether other potential ligands for G protein

pathways (e.g. ABA and other hormones), in addition to

D-glucose and other sugars, promote the AtRGS1 phos-

phorylation and endocytosis. Also, because several receptor

kinases, including ERECTA [16,36], are genetically related

to G protein mutants, it is interesting to test if the kinases

directly phosphorylate AtRGS1 and promote its endocytosis.

When the regulator candidates are identified, a biochemical

approach is preferable to clarify the functionality in vitro.

In parallel, use of FRET to measure in vivo activation of

the Ga–Gbg complex is needed [124]. The downstream

G protein effectors are also unclear, although much progress

has been made in this arena (table 2).

In conclusion, Arabidopsis and rice have emerged as

important model systems to advance our understanding of

G signalling beyond what we have learned using animal

cell lines and fungi. Because plants are the most distant

eukaryotes from opisthokonts (e.g. animals and fungi) and

have distinct G protein systems, plants make it possible to

address the evolution of G signalling and network architec-

ture. However, much is still to be done; a complete set of

effectors and a better understanding of the apical reactions

in G signalling are sorely needed.

Because G signalling is at the heart of many plant physiol-

ogies of agronomic importance, such as disease resistance

and harvest index, translational work on G signalling will

certainly improve agriculture [174]. The last 10 years brought

great surprises, and we predict more to come in the next

10 years.
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