
cancers

Review

Relationship between Lung Carcinogenesis and Chronic
Inflammation in Rodents

Yuko Nakano-Narusawa, Masanao Yokohira , Keiko Yamakawa, Juanjuan Ye, Misa Tanimoto, Linxuan Wu,
Yuri Mukai, Katsumi Imaida and Yoko Matsuda *

����������
�������

Citation: Nakano-Narusawa, Y.;

Yokohira, M.; Yamakawa, K.; Ye, J.;

Tanimoto, M.; Wu, L.; Mukai, Y.;

Imaida, K.; Matsuda, Y. Relationship

between Lung Carcinogenesis and

Chronic Inflammation in Rodents.

Cancers 2021, 13, 2910. https://

doi.org/10.3390/cancers13122910

Academic Editor: Luis Montuenga

Received: 19 March 2021

Accepted: 8 June 2021

Published: 10 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University,
1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; y_nakano@med.kagawa-u.ac.jp (Y.N.-N.);
yokohira@med.kagawa-u.ac.jp (M.Y.); yamakawa@med.kagawa-u.ac.jp (K.Y.); jj528575963@gmail.com (J.Y.);
mi-tanimoto@med.kagawa-u.ac.jp (M.T.); s20d702@stu.kagawa-u.ac.jp (L.W.);
mky-39@med.kagawa-u.ac.jp (Y.M.); imaida.katsumi@kagawa-u.ac.jp (K.I.)
* Correspondence: youkoh@med.kagawa-u.ac.jp; Tel.: +81-87-891-2109; Fax: +81-87-891-2112

Simple Summary: Lung cancer is the most common cause of cancer-related deaths worldwide.
There are various risk factors for lung cancer, including tobacco smoking, inhalation of dust particles,
chronic inflammation, and genetic factors. Chronic inflammation has been considered a key factor
that promotes tumor progression via production of cytokines, chemokines, cytotoxic mediators,
and reactive oxygen species by inflammatory cells. Here, we review rodent models of lung tumor
induced by tobacco, tobacco-related products, and pro-inflammatory materials as well as genetic
modifications, and discuss the relationship between chronic inflammation and lung tumor. Through
this review, we hope to clarify the effects of chronic inflammation on lung carcinogenesis and help
develop new treatments for lung cancer.

Abstract: Lung cancer remains the leading cause of cancer-related deaths, with an estimated 1.76 mil-
lion deaths reported in 2018. Numerous studies have focused on the prevention and treatment
of lung cancer using rodent models. Various chemicals, including tobacco-derived agents induce
lung cancer and pre-cancerous lesions in rodents. In recent years, transgenic engineered rodents, in
particular, those generated with a focus on the well-known gene mutations in human lung cancer
(KRAS, EGFR, and p53 mutations) have been widely studied. Animal studies have revealed that
chronic inflammation significantly enhances lung carcinogenesis, and inhibition of inflammation
suppresses cancer progression. Moreover, the reduction in tumor size by suppression of inflam-
mation in animal experiments suggests that chronic inflammation influences the promotion of
tumorigenesis. Here, we review rodent lung tumor models induced by various chemical carcinogens,
including tobacco-related carcinogens, and transgenics, and discuss the roles of chronic inflammation
in lung carcinogenesis.

Keywords: lung carcinogenesis; tobacco related substances; chronic inflammation; rodent model

1. Introduction

Cancer is the first or second leading cause of death before the age of 70 years in
numerous countries cause of death worldwide, and was responsible for an estimated
10.0 million deaths in 2020 [1]. An estimated 19.3 million new cancer cases and almost
10.0 million cancer deaths occurred in 2020 [2]. Lung cancer remained the leading cause
of cancer death, with an estimated 1.8 million deaths [1]. Approximately 80–90% of lung
cancer cases are associated with the carcinogens released during the combustion of tobacco,
either as first- or second-hand smoke. International variation in lung cancer rates and
trends largely reflects the maturity of the tobacco epidemic [3]. Other than tobacco, there
are various risk factors, such as radon, inhalation of fine or nano particles (e.g., asbestos,
clistalin silica, etc.), domestic fuel smoke (biomass), e-cigarettes, occupational hazards, air
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pollution, sex, steroids, infectious diseases, interstitial pneumonia (especially idiopathic
pulmonary fibrosis), previous radiation therapy of the lungs and family history of lung
cancer [4–8]. Although genetic mutations underlie malignant transformation, the presence
of mutations alone is not sufficient for tumor formation, and additional alterations are
necessary for the development of cancer [9,10]. Carcinogenesis is a complex, stepwise
process that involves the acquisition of genetic mutations and epigenetic changes that alter
cellular processes, such as proliferation, differentiation, invasion, and metastasis [11]. In
addition to the environmental and hereditary factors, stochastic effects, which are random
mutations arising during DNA replication in non-cancerous stem cells, are involved in the
development of cancer [12]. Among the multiple factors initiating and supporting tumor
growth, inflammation plays one of the most important roles [13,14].

Inflammation is a tissue response to a variety of harmful stimuli, such as pathogens,
irritants, and injuries, and can eliminate tissue damage. However, dysregulated inflam-
mation is a recognized cause of many human diseases, exemplified by organ fibrosis and
cancer [15]. Etiologic studies revealed close relationship between chronic inflammation
and lung cancer induced by inhalation of dust particles, such as silica and asbestos. Fur-
thermore, we reported that quartz or the other particles enhanced inflammation and tumor
formation in rodent lungs [13,16–23]. In this review, we discuss the relationship between
lung carcinogenesis and chronic inflammation in rodent models.

2. Rodent Models of Lung Tumorigenesis
2.1. Rodent Lung Tumor Models of Tobacco Smoke and Smoking-Related Substance Carcinogenesis

The geographic and temporal patterns of lung cancer incidence as well as mortality at
a population level are mainly determined by tobacco consumption, the main etiological
factor of lung carcinogenesis. Approximately 75% of lung cancer cases in the world are
attributable to tobacco smoking [24]. More than 55 out of the 4000 chemicals in tobacco
smoke have carcinogenic activity according to the International Agency for Research on
Cancer (IARC), an intergovernmental agency that is a part of the World Health Organization
of the United Nations [25,26].

Although nicotine induces addiction in humans, nicotine itself is not considered car-
cinogenic. However, we reported that nicotine promoted neurologic symptoms during the
acute phase, and strong inflammation, e.g., neutrophil infiltration, edema and fibrosis, in the
lungs during the chronic phase, even at a low dose. Histopathologically, though prolifera-
tive changes were not observed [27]. Cigarette contains a mixture of carcinogens, including
a small dose of polycyclic aromatic hydrocarbons (PAHs) and 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone (NNK), that are tumor promoters and co-carcinogens in the
lungs [28]. Tobacco smoke includes many carcinogens, such as PAH, N-Nitrosamines in-
cluding NNK, aza-arenes, aromatic amines, heterocyclic amines, aldehydes, miscellaneous
organic compounds, and inorganic compounds [28]. N-nitrosodiethylamine (DEN) an
N-Nitrosoamine [29–31], and benzo[a]pyrene (BaP), a PAH [32,33], are well-known carcino-
gens in tobacco smoke and induce carcinoma in almost all human tissues, including the
lungs, mouth, throat, larynx, esophagus, stomach, colon, kidneys, liver, pancreas, cervix,
bladder, and blood. However, tobacco smoke inhalation assays in laboratory animals show
low incidence of pulmonary tumor formation, and most of the tumors are adenomas with
the occasional adenocarcinoma as opposed to the highly invasive squamous cell carcinoma
seen in human smokers [34]. NNK is considered a strong carcinogen for tobacco-related
lung cancer in humans and rodents [35]. In our study, the A/J mouse models using NNK
induced development of lung tumors, including hyperplasias, adenomas, and adenocarci-
nomas (Figure 1). Oral administration or peritoneal injection of NNK induced adenoma
and adenocarcinoma in the lungs of both sensitive and resistant strains of mice [28], while
exhibiting low carcinogenic effects in other organs. In addition, small cell or squamous
cell carcinomas were rarely seen in these models. Urethane, another natural constituent of
tobacco, is also present in tobacco smoke and causes malignant lung tumors [36]. Urethane,
administered through drinking water, induced lung inflammation, alveolar and bronchiolar
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hyperplasia, alveolar/bronchiolar adenomas, nephropathy, cardiomyopathy, lymphoid
and bone marrow cell depletion, seminiferous tubule degeneration, and ovarian atrophy
and follicular degeneration in mice [37]. In male Syrian golden hamsters were treated with
DEN with or without exposure to tobacco smoke to investigate the potential short-term pro-
moting effects of cigarette smoke on the development of tumors in the respiratory system.
Bronchial epithelial hyperplasia and squamous papilloma were observed in DEN-treated
lungs and small aggregations of macrophages in the smoke-exposed lung alveoli [38].
In addition, exposure to tobacco smoke induces pulmonary adenocarcinomas in murine
models and establishment of such models allows the testing of potential chemopreventive
strategies [39,40].
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[41]. It has been reported that women are more susceptible to tobacco smoke and have a 
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Figure 1. Histopathological findings in DHPN-induced rat lung proliferative lesions. (a,b), adeno-
carcinoma; (c,d), adenoma; (e,f), hyperplasia. (a,c,e), low magnification; (b,d,f), high magnification.
H&E staining. Scale bar, 100 µm.

Genetic susceptibility, occupational exposures, air pollution, and eating habits (high
intake of meat, in particular fried or well-done red meat, coffee and alcohol consump-
tion) may act independently or in concert with tobacco smoking in development of lung
cancer [41]. It has been reported that women are more susceptible to tobacco smoke and
have a higher incidence of tobacco-related lung cancer than men [42]. Lung cancers in
the never-smokers is more common in women, especially Asian women, than men [43].
Previously, we reported the correlations between tumor size and epidermal growth factor
receptor (EGFR) expression, as well as between EGFR and progesterone receptor expression
in NNK-induced female mouse lung adenocarcinomas. Notably, adenoma and adenocarci-
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noma were significantly suppressed by ovariectomy [44,45]. Further studies are needed to
clarify the roles of sex hormones and race on lung cancer.

2.2. Carcinogens Used in Rodent Lung Tumor Models

Table 1 shows the main chemical-induced lung carcinogenesis rodent models, and
most of them were related to tobacco smoke exposure. N-bis(2-hydroxypropyl)nitrosamine
(DHPN), a nitrosamine, is a dipropylamine in which the hydrogen attached to the ni-
trogen is replaced by a nitroso group, and the synthesized carcinogen does not exist
in nature [46,47]. It is a carcinogen targeting the lungs, liver, thyroid gland, kidneys,
etc. [13,17,19,20,22,48–50]. DHPN induced double-strand breaks in pulmonary epithelial
cells, as determined by the expression of γH2AX that is formed as a result of a double-
strand break and can act as a sensitive marker of genomic instability [51,52]. In our study,
the rodent tumor model generated using DHPN induced lung tumor, including hyper-
plasias, adenomas, and adenocarcinomas (Figure 1). DHPN also induced squamous cell
carcinomas at low incidence, and most of them were adenocarcinomas with squamous cell
metaplasia [13] (Table 1).

Aflatoxin B1 is a mycotoxin and a member of a family of difuranocoumarins produced
by Aspergillus flavus and related fungi. The lungs and liver are targets of aflatoxin B1,
following dietary or inhalational exposure [53,54]. Oral administration of aflatoxin G1,
another member of the carcinogenic aflatoxin family, caused tumor necrosis factor (TNF)-
α-dependent inflammation that enhanced oxidative DNA damage in alveolar epithelial
cells, which in turn may be related to aflatoxin G1-induced lung carcinogenesis [55].

Similarly, 4-nitroquinoline 1-oxide (4-NQO) is a pluripotent carcinogen in several
tissues, and is frequently used to induce oral and lung cancers in vivo [56,57]. It is thought
to elicit its carcinogenicity by producing DNA adducts after being metabolized to 4-
hydroxyaminoquinoline 1-oxide, which forms 8-hydroxydeoxyguanosine (8OHdG), a
marker of oxidative damage [58].

Several rodent models of lung adenocarcinoma have been reported; however, there are
few reports on rodent models of other types of lung cancers, including squamous cell carci-
nomas that is the most common human lung cancer type. N-nitroso-tris-chloroethylurea
(NTCU), one of components of nitrosoalkylureas, induced squamous cell carcinomas in
mice at high incidence [59,60]. Furthermore, intravenous injection of H69/VP cells (human
small cell carcinoma cell line) into SCID mice formed lung small cell carcinoma with liver
and systemic lymph node metastases [61].

Table 1. Chemical induced lung tumorigenesis in animal models.

Chemical Dose Animals Histopathological Type Reference

Tobacco related

NNK

2 mg/0.1 mL saline/mouse, single
i.p. A/J mice AH, AD, AC [16,21,35,44–46,50,62–68]

2 mg/0.1 mL saline/mouse,
2 times i.p. A/J mice AH, AD, AC [22,44,69–71]

10 mg/mL saline/rat, 3 times i.p. F344 rats AH [17,49]
20 mg/mL saline/rat, single i.p. F344 rats AH [49]

50 mg/kg BW, i.p. A/J mice Tumor [72]

Urethane

1 g/kg BW, single i.p. FVB mice AAH, AD [14]
1 mg/kg BW, 10 times i.p., C57/BL6 mice AAH, AD, AC [73]

250 mg/kg BW, i.p. A/J mice AD [46]
1 mg/kg BW, 10 times i.p. F344 rats AH [19,21]
5 mg/mouse, single i.p. A/J mice AH [21]
1 mg/g BW, single i.p. FVB/J mice AD [74]

DEN
15 µg/g BW, single i.p. FVB/N mice AC [29]
15 µg/g BW, single i.p. A/J mice AC [75]

100 mg/kg BW, single s.c. Syrian golden hamster BH, squamous papilloma [38]

MeIQx
600 ppm MeIQx

in a basal diet for 12 weeks A/J mice AH, AD [46,50]



Cancers 2021, 13, 2910 5 of 17

Table 1. Cont.

Chemical Dose Animals Histopathological Type Reference

0.01, 0.1, 1, 10, 100 ppm MeIQx in a
basal diet for 32 weeks A/J mice AH, AD [67]

BaP 20 mg/kg BW, i.t. F344 rats AH [19,21]

Tobacco smoke
expose MCS for 22 weeks FVB/N mice AD, AC [39]

whole-body to MCS during the first
4 months of life H neonatal mice AH, AD, AC [40]

expose MCS for 12 weeks Syrian golden hamster BH, squamous papilloma [38]
Others

DHPN

100 or 500 ppm, drinking water Wistar rats AD, AC, SCC, ADSC [76]
2000 ppm, drinking water, 12 weeks Wistar rats AC, SCC, ADSC [77,78]

0.1% drinking water, 2 weeks F344 rats AH, AD, AC [17,19–22,49–51]
0.2% drinking water, 1 week F344 rats AH, AD, AC [79]

Aflatoxin B1
150 mg/kg BW, i.p. divided
into 24 doses over 8 weeks AC3F1 mice AH, AD, AC [54]

Aflatoxin G1
100 µg/kg BW,

orally administered Balb/c mice AD [55]

4-NQO 2 mg/mL, s.c. ICR mice AD [57]
10 mg/kg BW, single s.c. TSOD mice AH, AD, AC [56]

DMN 30 mg/kg BW, single i.p. F344 rats AH, AD [19,21]
X-ray 3.0 Gy X-rays Wistar rats AD, AC [46]

NTCU

skin painted, 2 times/week,
for 35–40 weeks Swiss mice SCC, ADSC, AC,

a single ciliated-cell tumor [59]

skin painted, 2 times/week,
for 8 months Swiss mice SCC [80]

0.5 mmol/L/mouse,
intranasal administration,
once a week for 26 weeks

A/J mice BH, SCC [81]

NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; DEN, diethlnitrosamine; MeIQx, 2-amino-3,8 dimethylimidazo[4, 5-f]quinoxaline;
DHPN, N-bis(2-hydroxypropyl)nitrosamine; BaP, Benzo[a]pyrene; MCS, mainstream cigarette smoke; 4NQO, 4-Nitroquinoline 1-oxide;
DMN, N-nitrosodimethylamine; N-nitroso-tris-chloroethylurea, NTCU; i.p., intraperitoneal injection; i.t., intratracheal instillation; s.c.,
subcutaneous; AH, alveolar hyperplasia; AAH, atypical adenomatous hyperplasia; AD, adenoma; AC, adenocarcinoma; SCC, squamous
cell carcinoma; ADSC, adenosquamous carcinoma; BH, bronchial hyperplasia; BW, body weight.

2.3. Gene Mutation and Transgenic Animal Models

Kirsten rat sarcoma viral oncogene homolog (KRAS) and EGFR are the most frequently
mutated oncogenes in human lung adenocarcinoma [82,83]. KRAS mutations are asso-
ciated with a strong history of tobacco smoking, whereas EGFR mutations are the most
frequent oncogene alterations in lung tumors of never-smokers [24,83]. Gene mutations,
such as KRAS and EGFR, have been studied in various chemical carcinogen-induced ro-
dent lung tumors. In rodent lung carcinogenesis models, KRAS mutations are frequently
detected, whereas genetic alteration in EGFR is rare. A silent mutation in EGFR exon 20
(AAAAC→AA T; N772) was detected in DHPN-induced rat lung tumor. Activating muta-
tions in KRAS codon 12, G/C→A/T transitions, were commonly detected in NNK-induced
mouse tumors (5/6, 83%), MeIQx-induced mouse tumors (1/1, 100%), and DHPN-induced
rat tumors (7/15, 47%) [50]. Previously, we revealed the association between extracellu-
lar signal-regulated kinase 1/2 (ERK1/2) activation and mutation in KRAS encoding an
upstream activator of ERK1/2 in NNK-induced mouse lung premalignant lesions [68].

The introduction of genetic lesions found in human lung cancer into mouse germline
or pulmonary tissue has resulted in murine lung tumors that harbor similar characteristics
to human lung cancer. Various transgenic models have been developed in which oncogene
expression is targeted in a specific subset of lung epithelial cells (Table 2). Classic transgenic
models are based on knock-in and knockout strategies [83–86], as well as ectopic expression
under promotors that target specific subsets of lung epithelial cells [87–92]. Recently,
inducible bitransgenic [93,94] and conditional cre/loxP models [95] have been developed
that allow spatiotemporal expression of a gene in a somatic tissue to be conditionally
regulated, to recapitulate its in vivo situation.
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Table 2. Gene Mutation and Transgenic Animal Models [84].

Methods Genes

Knockout Fhit-Vhl [85]
Knock-in K-rasG12D [83,86]

Promotors
keratin papillomavirus-16 E6/E7 [87]

surfactant protein C simian virus large T antigen [88], c-myc, epidermal growth factor [89], Ron,
Raf-1, p53 [90,91]

Clara cell secretory protein (CCSP) simian virus large T antigen [92]
calcitonin gene-related peptide

Reverse tetracycline transactivator inducible system CCSP-rtTA/Tet-Op-FGF7 [93]
CCSP-rtTA/Tet-Op-K-ras4G12D [94]

Conditional cre/loxP Lox-STOP-Lox-K-rasG12D [95]

Compound conditional models conditional activation of Kras2 with conditional inactivation of Rb or p53 by
cre/loxP [96]

conditional knock-in of LSL-K-ras G12D and LSL-p53R270H [97]

The EGFR signaling pathway plays an important role in multiple lung cancers [98].
EGFR is a transmembrane protein with cytoplasmic kinase activity that transduces im-
portant growth factor signaling from the extracellular milieu to the cell [99]. EGFR be-
longs to the HER/erbB family of receptor tyrosine kinases (RTKs), which includes HER1
(EGFR/erbB1), HER2 (neu, erbB2), HER3 (erbB3), and HER4 (erbB4). EGFR dimerization
activates one or more downstream effectors including the MEK/ERK (MAPK kinase/ERK),
PI3K/AKT (phosphatidylinositol-3-kinase/protein kinase B), STAT (signal transducer and
activator of transcription), and mTOR (mammalian target of rapamycin) pathways through
receptor autophosphorylation and cytoplasmic protein binding [98,99].

Many research groups have produced mouse models with similar abnormal Erbb1
(HER1) expression as seen in human lung cancers. Aberrant expression of HER1 caused
lung adenocarcinoma development in doxycycline-inducible hEGFRL858R (CCSP-rtTA;Tet-
O7-hEGFRL858R), hEGFRDEL (CCSP-rtTA;Tet-O7-hEGFRDEL), and hEGFRVIII (CCSP-rtTA;
TetO7-hEGFRVIII) mice [100]. Doxycycline also induced multifocal tumors in the lung
parenchyma [98]. Ohashi K et al. generated transgenic mice expressing the delE748-A752
mutant version of mouse EGFR driven by the SP-C promoter, which is equivalent to the
delE746-A750 mutation found in lung cancer patients [91]. This transgenic mouse model
invariably developed multifocal lung adenocarcinomas of varying sizes at between 5
and 6 weeks of age. Additionally, they also generated transgenic mice expressing EGFR
L858R in type II pneumocytes constitutively using the surfactant protein-C promoter [90].
This model invariably developed atypical adenomatous hyperplasia at age 4 weeks and
multifocal adenocarcinoma of varying sizes at age 7 weeks. In these transgenic mice,
gefitinib inhibited tumorigenesis completely [90,91].

Deletion of EGFR suppressed mutant KRAS activity and caused tumor growth temporar-
ily. Deletion of EGFR also suppressed lung tumor in transgenic mice of KRASG12D, KRASG12D:
EGFR∆Lep/∆Lep, KRASG12D: p53∆Lep/∆Lep, KRASG12D: p53∆Lep/∆Lep: EGFR∆Lep/∆Lep [101]. Lung
tumors driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in
cancer-related genes, whereas tumors driven by MYC, a weak driver in the murine lung, har-
bored recurrent clonal oncogenic KRAS mutations [83]. Genetically engineered mice exhibit
relatively simple somatic alterations compared with human cancers. Furthermore, carcinogen-
induced lung carcinogenesis using transgenic mice have been reported. For example, Roh
et al. [102] reported decrease in pAKT expression caused by knockout of the cell cycle-related
protein, PIERCE1, in urethane- and KRASG12D-induced lung tumor mouse model. Addition-
ally, in the MeIQx-, urethane- and X-ray-treated models, G/C→C/G (AH), A/T→T/A (Ad),
and A/T→T/A (Ad) transversions in Kras, respectively, were detected in a neoplasm, while
EGFR mutations with amino acid substitution were detected in X-ray-induced tumors (4/12;
33%) [46].
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Mutations in p53 are the most common genetic alterations in human lung cancers [103].
Loss of p53 function, which is mainly induced by mis-sense mutations and rarely induced
by deletions, is found in ≥75% and ~50% of small cell carcinomas and non-small cell
carcinomas, respectively [100]. Ramelow et al. reported that codon 273 of p53 (TP53-
273H) is one of the most frequently mutated sites in human lung cancers and exhibited
a similar oncogenic potential in lung tumors of two mice strains, A/J mice and FVB/N
background mice [104]. Both strains survived more than 18 months and developed lung
adenocarcinomas according to aging. Moreover, transgenic mice containing a p53 construct
with a missense mutation in exon 5 (ala135val) induced lung cancers, and 52% of the lung
carcinomas contained mutations in KRAS (codon 61 and codon 12) [105].

Wong KK et al. reported that an increase in a single cytokine, IL-17A, without addi-
tional mutations can promote lung cancer growth by promoting inflammation using bitrans-
genic mice expressing a conditional IL-17A allele along with conditional KrasG12D [106].
Furthermore, pulsatile treatment with MEK inhibitors maintained T cell activity better
and prolonged survival in mice with Kras mutant cancer [107]. Jacks T et al. revealed
that lung cancer development was associated with increased bacterial burden and altered
bacterial composition in the lung using KRAS/p53 mutant mouse [108]. Barbacid M et al.
revealed that combined genetic inactivation of CDK4 and RAF1 in advanced KRAS/p53
mutant mouse lung tumors leads to effective tumor regression [109]. Transgenic animal
models represent useful tools to clarify the underlying mechanisms inflammation related
carcinogenesis and to test new therapeutic approaches, including immune checkpoint
inhibitors, for lung cancer because they reflect the characteristics of human lung cancer
rather than immunodeficiency.

In addition, the small RNAs termed microRNAs (miRNAs) regulate proliferation,
morphogenesis, apoptosis, and differentiation [110]. Izzotti et al. reported that an extensive
miRNA dysregulation was detected in the lungs of tobacco smoke-exposed mice [40].
Modulation of miRNA profiles was specifically related to the histopathological changes, no
effect being detected in the lung fragments with non-neoplastic lung diseases (emphysema
or alveolar epithelial hyperplasia), whereas a close association was observed with the
presence and multiplicity of microadenomas and adenomas.

Most transgenic animal models develop lung adenocarcinoma. Few rodent models
exist for testing and developing novel therapeutics in squamous cell carcinomas [111].
Furthermore, two models of murine lung neuroendocrine carcinomas induced by proneu-
ral transcription factor human achaete-scute homolog-1 (hASH-1) [112] and conditional
knockdown of p53 and Rb by intrabronchial Adeno-Cre infection system [113] have
been reported.

3. Lung Carcinogenesis and Chronic Inflammation
3.1. Chronic Inflammation

In the lungs, inflammation is commonly caused by pathogens or by exposure to
toxins, pollutants, irritants, and allergens. Acute lung inflammation is dominated by
neutrophils, whereas chronic reactions mainly involve macrophages and lymphocytes [114]
(Figure 2). Lymphocytes are divided into two major populations: thymus-dependent T
cells and bone marrow-dependent B cells. T lymphocytes have two major subsets: CD4+

and CD8+. CD4+ T lymphocytes, also known as helper T cells, are further subdivided
into Th1 and Th2 cells that possess different cytokine profiles. Th1 cells drive cellular
immunity and Th2 cells drive humoral immunity to upregulate antibody production to
fight extracellular organisms. CD8+ T cells are mainly cytotoxic T cells. They secrete
molecules that kill infected cells and tumor cells. In addition, there is a natural killer (NK)
cell subset of T cells with no antigen-specific receptors [115,116]. Acute inflammation first
directs neutrophil migration and then chemokine production to orchestrate formation of
granulation tissue comprising cellular matrix, fibroblasts, endothelial cells, and leukocytes.
Chronic inflammation occurs when resolution of acute inflammation is incomplete. In
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chronic lung inflammation, profibrotic and immunoregulatory Th2 cytokines (interleukin
(IL)-4, IL-5, IL-9, and IL-13) are dominant [114].
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Typical diseases involving chronic inflammation of the lungs include chronic ob-
structive pulmonary disease, interstitial pneumonia, and silicosis. Chronic obstructive
pulmonary disease (COPD) is characterized by persistent airway inflammation and fixed
airflow obstruction [117]. Over a third of the individuals with lung cancer have a prior di-
agnosis of COPD [118]. Interstitial pneumonia, a condition that causes progressive fibrosis,
is a known risk factor for lung carcinogenesis independent of smoking; epidemiologically,
the risk of lung carcinogenesis is 6.42 times in healthy subjects [5]. Silicosis is induced by
chronic occupational exposure to quartz [7]. A significant positive relationship between
cumulative silica exposure and lung cancer mortality has already been reported [119]; in
this study, 1079 of 65,980 silica-exposed workers died due to lung cancer.

Immune system plays a critical role in maintaining tissue homeostasis, cell turnover,
tissue remodeling, and preventing infection and cell transformation. During inflamma-
tion, numerous types of inflammatory cells are activated. Chronic lung inflammation is
a significant risk factor for lung cancer. During cancer development, there are dynamic
alterations in inflammatory cell population, including macrophages, neutrophils, dendritic
cells, NK cells, and T and B lymphocytes [120]. Tumor-associated macrophages (TAMs)
are significant for fostering tumor progression. The protumor properties of TAMs derive
from regulation of angiogenic programming, production of soluble mediators that support
proliferation, survival, and invasion of malignant cells, and direct and indirect suppression
of cytotoxic T cell activity [121]. As neutrophils contribute directly to neoplastic trans-
formation by amplifying the genotoxicity of urethane in lung cells via reactive oxygen
species (ROS), neutrophil-released ROS can cause tissue damage that potentially favors
tumorigenesis [74] (Figure 2). Neutrophils are emerging as an important player not only in
tissue injury but also in post-injury tissue regeneration [122]. Several recent studies have
reported conflicting functions of neutrophils in both promoting and limiting tumorige-
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neses [123], suggesting a context-dependent regulation [74]. Tumor-infiltrating immune
cells have been widely implicated to play a significant role in carcinogenesis, through both
pro- and anti-tumor effects [124]. Tumor-infiltrating T lymphocytes, particularly the CD4+

and CD8+ T cells, and their immunoregulatory cytokines, representing adaptive immunity,
execute key effector cytotoxic functions in the tumor microenvironment and mediate re-
sponses to immune checkpoint inhibition [125]. B lymphocytes exist as long-lived plasma
cells to produce antigen-specific antibody. Patel et al. reported that most studies largely
focus on human non-small cell lung carcinoma wherein the strongest correlation between
tumor-infiltrating B lymphocytes and disease-specific outcome has been shown in com-
parison with other forms of lung cancer [124]. These cells are considered to be key factors
promoting tumor progression via their ability to release a variety of cytokines, chemokines,
and cytotoxic mediators such as reactive nitrogen species (RNS), ROS, metalloproteinases,
ILs, and interferons. Cancer-related inflammation affects many aspects of malignancy,
including the proliferation and survival of malignant cells, angiogenesis, tumor metastasis,
and tumor response to chemotherapeutic drugs and hormones [126] (Figure 2).

3.2. Lung Carcinogenesis and Chronic Inflammation in Rodent Models

Various animal lung tumor models with chronic inflammation have been studied
(Table 3). Risk analysis of environmental chemicals on lung carcinogenesis is particularly
important [35]. Many carcinogens are prevalent in the environment, and their inhalation
poses a risk of carcinogenesis. Particulate matter is a major factor contributing to air
quality deterioration and enters the atmosphere as a consequence of various natural and
anthropogenic activities [127]. One such example is asbestos that comprises a group of
naturally occurring fibrous minerals. Asbestos has been linked to a spectrum of pulmonary
diseases, such as pleural fibrosis and plaques, asbestosis, benign asbestos pleural effusion,
small cell lung carcinoma, non-small cell lung carcinoma, and malignant mesothelioma.
Asbestos is associated with several carcinogenic mechanisms that include alterations at the
chromosomal level, activation of oncogenes, loss of tumor suppressor genes, alterations in
cellular signal transduction pathways, generation of reactive oxygen and nitrogen species,
and direct mechanical damage to cells by asbestos fibers [128].

Quartz is classified as a Group 1 agent or human carcinogen [129] and is known to
cause silicosis. Borm et al. reviewed the different modes of action of respirable quartz-
induced genotoxicity in a series of independent studies [130]. They found that in vitro
results of comet assay were mostly negative, except from two studies that used primary or
cultured macrophages. In vivo studies confirmed the role of persistent inflammation due
to quartz surface toxicity, which led to antioxidant responses in mice and rats; however,
DNA damage was only observed in rats. We have developed a rat model with DHPN-
initiation and quartz intratracheal instillation (i.t.) [13] as well as single quartz i.t. [7]. In
our single quartz i.t. study, after 52 or 96 weeks from quartz i.t., quartz particles were
observed in the lungs of all quartz-treated rats, and the quartz-treated rats had higher
incidences of adenoma (85.7%) and adenocarcinoma (81.0%) than control rats (20% and
20%, respectively). In this study, the number of lung neoplastic lesions per rat positively
correlated with the degree of macrophage and lymphocyte infiltration, edema, fibrosis, and
lymph follicle formation around the bronchioles (Figure 3). We compared three rat strains
(F344, Wistar–Hannover, and Sprague–Dawley rats) treated with the same concentration of
quartz i.t. [13] and found the highest tumor-promoting effect in F344 compared with other
strains, correlating to the increase in histopathological inflammatory changes (Figure 3)
and IL-6 levels in the serum and bronchoalveolar lavage fluid. In another study, the Balb/c
mice lung lesions induced by N-nitrosodimethylamine (NDMA) and quartz i.t. were
similar to those seen in human silicosis. It was reported that silica-mediated inflammation
generated an immunosuppressive microenvironment and some of the early molecular
changes associated with lung carcinogenesis [131]. In addition, we found that single quartz
i.t. may induce lung tumor in rats along with chronic inflammation without chemical-
induced tumor promotion [7]. In our previous study, NNK-induced lung tumors in A/J
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mice were inflamed in the lungs by quartz i.t. (tumor-orthotopic inflammation) and sodium
dextran sulfate induced inflammation in the colon (tumor and ectopic inflammation);
however, strong inflammation did not persist in A/J mice, and the possibility of tumor
promotion could not be confirmed [16].
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In C57BL/6 mice, tumorigenesis was induced by BaP and lipopolysaccharide (LPS),
a potent proinflammatory agent found in tobacco and tobacco smoke [81,132]. In an
NNK plus LPS model, LPS-mediated chronic inflammation induced T-cell exhaustion,
upregulated the programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1)
axis, and enhanced NNK-induced lung tumorigenesis through an immunosuppressive
microenvironment characterized by accumulation of myeloid-derived suppressive cells
and regulatory T cells [133]. Mice treated with NTCU plus LPS showed significantly
increased expression of the inflammatory cytokines IL-1α, IL-6, and TNF-α [81]. Moreover,
these mice exhibited significantly enhanced NF-κB, STAT3, ERK, p-38, and Akt activation,
p53, COX-2, and Mcl-1 expression, as well as NF-κB–DNA and STAT3–DNA binding
in the lungs. In recent years, heat-not-burn cigarette products have been promoted as
safer and less harmful alternatives to cigarettes [134]. However, rat alveolar epithelial
cells exposed to tobacco smoke extract induced oxidative stress response genes, such as
Hmox-1, Gsta1, Gsta3, and Nqo1 [135]. Therefore, the effects of heat-not-burn products
on lung carcinogenesis need to be investigated in the future. Furthermore, BaP has an
immunosuppressive role as evidenced by increased expression of TGF-β, CTLA-4, PD-L1,
and FOXP3 and decreased expression of IL-12 in the lungs of BaP-treated mice as well as the
increase in CD166+ cancer stem-like cells in the mice lungs [33]. Thus, in COPD-associated
lung cancer mouse model, the immunosuppressive microenvironment could be related to
tumor formation and progression [136,137].

PM2.5, a fine particle with diameter ≤ 2.5 µm [138], promotes inflammation and lung
injury through IL-6/estrogen receptor (ER)β pathway. ERβ regulates IL-6 expression via
MAPK/ERK and PI3K/AKT pathways [139]. Continuous exposure of PM2.5 exacerbates
asthma in mouse lungs through JAK-STAT6 signaling pathway [140].
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Table 3. Lung carcinogenesis models with inflammation.

Lung Tumor Inducer Inflammatory or Anti-Inflammatory
Substances Animals Histopathological

Type of Tumors References

DHPN quartz and dextran sulfate sodium F344 rats AD, AC [13]
erythromycin, ampicillin, sho-saiko-to or

piroxicam Wistar rats AC, SCC, ADSC [78]

None Wistar rats AC, SCC, ADSC [78]
NNK quartz A/J mice AD, AC [16]

LPS FVB/NJ mice AD, AC [133,136]
flaxseed A/J mice AD, AC [141]

NDMA quartz Balb/c mice AD, AC [131]
BaP LPS C57BL/6 AD, AC [132]

NTCU LPS A/J mice SCC [81]
None quartz F344 rats AD, AC [7]

NDMA, N-nitrosodimethylamine; LPS, lipopolysaccharide; AD, adenoma; ADC, adenocarcinoma; ADSC, adenosquamous carcinoma,
SCC, squamous cell carcinoma; None, no use of tumor inducer or inflammatory substance.

Recent studies suggest that the interaction between tobacco carcinogens and endoge-
nous and exogenous sex steroids may be important [6]. Higher incidence of lung cancer is
observed in women taking hormone replacement therapy or oral contraceptives. These
results indicate that lung carcinogenesis by alterations of various inflammatory-related
pathways, including the involvement of sex hormones, might influence the inflammation-
related cancer progression.

3.3. Inhibition of Lung Cancer by Suppressing Inflammation

Various immune cells, cytokines and signaling pathways participate in inflammation-
mediated lung carcinogenesis (Figure 2). Thus, various potential targets for inflammation
have been proposed, including Cox-2, NK-κB, TNFα, NOS, AKT, or CXC chemokines.
Furthermore, several natural compounds, such as curcumin, resveratrol, lycopene, antho-
cyanins, catkin, and genistein, have shown anticarcinogenic activity via the suppression
of inflammation.

Administration of antibiotics and anti-inflammatory drugs (erythromycin, ampicillin,
sho-saiko-to or piroxicam) was effective in suppressing the lung carcinogenesis promotion
process in a DHPN-induced rat lung tumor model [78]. Furthermore, flaxseed consumption,
reduced oxidative stress, reduced NNK-induced lung tumorigenesis and inflammation-
mediated cytokine signaling (IL-1, 6, 8, 9, and 12α) [141].

Some recent reports have shown that lung cancer patients with COPD exhibited
a higher response to immune checkpoint proteins PD-1 blockade compared with lung
cancer patients without COPD [142]. Blockade of PD-L1/PD-1 immune checkpoints by
monoclonal antibodies has shown measurable success in cancer therapy against a variety of
tumor types, including non–small-cell lung cancer [143]. PD-L1 is expressed on both tumor
cells and immune cells, and PD-1 is predominantly expressed on activated T cells. Binding
of PD-L1 to PD-1 inhibits T cell effector function by inducing exhaustion and apoptosis of
T cells, resulting in an immunosuppressive state [144]. Expression of PD-L1 in tumor cells
plays an important role in tumor immune escape and cancer progression.

4. Conclusions

Many studies have clarified the molecular mechanism and roles of chronic inflamma-
tion in lung cancer. Further studies are needed to develop novel treatment strategies based
on inhibition of inflammation for lung cancer. Furthermore, improvement of environmental
air quality, especially with respect to reduction in tobacco smoke and dust particles, such as
asbestos and silica, is a promising strategy to improve lung cancer motility and mortality.
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