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A B S T R A C T   

The segmentation of retinal vessel takes a crucial part in computer-aided diagnosis of diseases and 
eye disorders. However, the insufficient segmentation of the capillary vessels and weak anti-noise 
interference ability make such task more difficult. To solve this problem, we proposed a multi- 
scale residual attention network (MRANet) which is based on U-Net network. Firstly, to collect 
useful information about the blood vessels more effectively, we proposed a multi-level feature 
fusion block (MLF block). Then, different weights of each fused feature are learned by using 
attention blocks, which can retain more useful feature information while reducing the interfer-
ence of redundant features. Thirdly, multi-scale residual connection block (MSR block) is con-
structed, which can better extract the image features. Finally, we use the DropBlock layer in the 
network to reduce the network parameters and alleviate network overfitting. Experiments show 
that based on DRIVE, the accuracy rate and the AUC performance value of our network are 
0.9698 and 0.9899 respectively, and based on CHASE_DB1 dataset, they are 0.9755 and 0.9893 
respectively. Our network has a better segmentation effect compared with other methods, which 
can ensure the continuity and completeness of blood vessel segmentation.   

1. Introduction 

The change of the retinal blood vessel’s structure can provide an important basis for disease diagnosis [1]. Retinal vessel seg-
mentation highlights vascular morphological information, which helps doctors make an early diagnosis of lesions. 

In the past decades, an abundance of retinal vessel segmentation methods have been proposed by researchers, mainly divided into 
unsupervised method and supervised method. The unsupervised method is to segment blood vessels without any prior labeling in-
formation, such as matched filtering, morphology, blood vessels tracking methods, etc. Many unsupervised methods have been 
studied: Upadhyay et al. [2] adopt a new algorithm which is based on rule to better segment the blood vessels of the retina. Palanivel 
et al. [3] according to the vessels’ multi-fractal features proposed a segmentation algorithm for the retinal vasculature, which can 
minimize the noise of the image and obtain better results. Tian et al. [4] used traditional Frangi filtering and mathematical morphology 
methods to construct an improved segmentation algorithm for the extraction of the vascular. In [5], a new segmentation method which 
can better extract the retinal vessel based on fundus image is proposed. And in order to better segment the blood vessels, Khan et al [6] 
presented the width bifurcation method. The above algorithms are helpful to doctors to a certain extent, but due to the time consuming 
and susceptible to human error and subjective experience, ideal results cannot be achieved when faced with a large number of fundus 
images. Thus, finding a method to segment the vessels of the retinal automatically is quite necessary. 

Other than unsupervised method, the supervised method which is based on a huge amount of data with physician annotations, can 
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automatically extract features from the images. Recently, deep learning technology has become a trend in the field of retinal seg-
mentation. At first, Convolutional Neural Network (CNN), which can automatically extract image features, is proposed. Later, Fully 
Convolutional Network (FCN) [7] achieved great performance due to its end-to-end feature learning. U-Net [8] has been employed 
extensively in recent years, which uses skip connections to build an encoder-decoder structure to make information transfer more 
efficient. However, the existing U-Net network has difficulties such as the gradient dispersion and explosion with the deepening of the 
network, so He et al. [9] proposed the Residual Network (ResNet). Afterward, Hu et al. [10] introduced an attention mechanism which 
can increase the useful feature information’s weight and reduce the redundant information’s interference, and therefore further 
improve the network’s expression. With the improvement of CNN, its application in retinal blood vessel segmentation is also deep-
ening. Such as, Lin et al. [11] proposed a multi-path-scale high-resolution representation network (MPS-Net) for retinal segmentation, 
which can improve the performance of extracting the vessels of retinal. However, the proposed network is not ideal for the tiny vessels’ 
segmentation. Tchinda et al. [12] adopted a vessel segmentation approach, which performed better in the retinal image, but fails to 
obtain satisfactory boundary structure information of blood vessels. Alom et al. [13] proposed the residual U-Net structure by 
combining residual connection and U-Net network, which can avoid the degradation of the network with deep layers and improve the 
capabilities of segmentation of small blood vessels. Zhao et al. [14] adapted an attention mechanism and a residual module called 
AttentionResU-Net, which better highlights the pixel information of the thick vessels and thin vessels, but can not segment the small 
vessels so well. Aiming to optimise the use of the contextual information of vessels in retinal images to segment fine vessels more 
accurately, Zhang et al [15] designed the U-net involving context. Deng et al. [16] introduced a new segmentation algorithm by using 
multi-scale attention mechanism to better segment the capillary and better to ensure vascular connectivity. 

In this paper, to extract retinal blood vessels more efficiently, a multi-scale residual attention network (MRANet) is proposed. The 
new method is an extension of U-Net and constitutes by integrating multi-level feature fusion block (MLF block), attention block, and 
multi-scale residual connection block (MSR block). The contributions of our work are: (1) The different parts of the network and the 
architecture of the proposed MRANet are detailed in Section 2. (2) The experimental process and the evaluation of the performance are 
illustrated in Section 3. (4) The conclusion of this paper and the next steps are discussed in Section 4. 

Figure 1. MRANet network structure.  
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2. Methodology 

MRANet is based on U-Net network. And some function blocks are adopted to make the network realize more significant repre-
sentation. Firstly, to solve the limits on the number of information flow paths and increase the utilization rate of information, MLF 
block is applied. Then MSR block is used to help deeper networks to obtain more complex information. The architecture of this network 
is shown in Figure 1. 

From Figure 1, the MRANet network is composed of two parts: the encoding part and the decoding part. The encoding part includes 
four layers, each layer consists of one MSR block and one 2 × 2 maxpooling function. The image patches are sent to the network as 
input, and each subsequent layer’s output is then forwarded for the next layer’s input. At the fourth encoding layer, 3 × 3 convolution, 
Relu, BN, and DropBlock are additionally added, which produce high semantic information. Meanwhile, all the information of the 
encoding layers is sent to the decoding layers. These encoding layers ensure that the network is able to better extract image features. 

The decoding part consists of three layers. In each layer: First, the newly proposed block, MLF block is used to avoid information 
loss while making full use of all information. Second, attention blocks are used to enhance the important features and the location 
relationship of vascular pixels and reduce the interference from useless features. Third, the proposed MSR block is adopted to 
strengthen the network’s ability of multi-scale feature extraction. In the U-net, the encoding part’s output is connected with the 
corresponding feature maps of the decoding part by using a copying and cropping procedure. Different from the original connection 
way, a new way to aggregate shallow fine information and deep rough information is proposed. Through the max-pooling operation 
and transposed convolution operation in MRANet, the multi-scale feature information of the MSR block and the information of the 
corresponding up-sampling layer are integrated, so that more global information can be extracted for improving the network’s ability 
of feature utilization. Then, the attention block is adopted to extract useful vascular information and then input to the MSR block to 
extract more feature images. The MSR block is followed by the 3 × 3 convolution, Relu, BN and DropBlock. The output map for each 
layer is twice as large as the original input, at the same time the channels are half as many as the original. In the third decoding layer, a 
2 × 2 up-sampling is utilized to restore features and a 1 × 1 convolution is using for the mapping of each component feature vector to 
obtain the required amount of categories and to get a better blood vessel segmentation map. Table 1 lists the parameters used in 
MRANet. 

MRANet is constructed by using the above functional blocks:MLF block, attention block and MSR block. And the details of these 
function blocks are presented as follows. 

2.1. MLF block 

To better aggregate the up-sampling feature information and the information of the MSR block in each layer, MLF block is used in 
the decoding path, which allows for maximum reuse of the functionality and thus reduce the loss of detail. The structure of MLF block 
is shown in Figure 2. 

As shown in Figure 2, there are two kinds of input: input1 and input2. The processing of input 1 is as follows: firstly, the information 
of all the MSR blocks in the levels that before current level goes through the DropBlock layers, which are randomly discarded regions of 
adjacent elements in the feature map by blocks. DropBlock can effectively keep the convolutional network from over-fitting. Then, for 
reducing the channel’s dimension, the 1 × 1 convolution is used after DropBlock layers. However, because of the different resolution of 
previous MSR block features, the network cannot directly transfer the information from the shallow layer to the deep nodes. To make 
all the previous MSR blocks and the corresponding up-sampling feature maps of input 2 at the same resolution levels, the asynchronous 
max-pooling operation and transpose convolution operation for the above different input features are adopted. Finally, their fusion 
feature maps are output. 

2.2. Attention block 

The attention block includes channel attention part and spatial attention part. In this paper, an approach with parallel structure that 
connect the features in space and channel is adopted. Through extracting the information of the space and the channel at the same 
time, we can obtain both vascular pixels and non-vascular pixels, and the relative positions of different features are also obtained. The 
block’s structure is presented in Figure 3. 

Table 1 
The layers and layer parameters of the proposed network.  

Block Output Shape Trainable Parameters 

Block 1 [32,32,16] 8646 
Block 2 [16,16,32] 44,053 
Block 3 [8,8,64] 165,829 
Block 4 [16,16,256] 872,202 
Block 5 [32,32,32] 667,434 
Block 6 [64,64,16] 152,549 
Block 7 [64,64,1] 32,902  
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2.2.1. Channel attention 
The main function of channel attention part is to preserve the structural information between feature channels. Common channel 

attention such as SENet [10] and GSoP-Net [17] are widely used in deep learning. However, they dedicated to generating channel 
attention maps by learning the weight of each channel, which inevitably increase the complexity of the network. Recently proposed 
ECANet [18] achieves superior performance, mainly because it avoids the dimensionality reduction operation and uses cross-channel 
information interaction. Therefore, ECANet is applied to channel attention in this paper. 

In the Channel attention structure in Figure 3, firstly, the input Fc ∈ RH×W×C is used for the asynchronous max-pooling and the 
average-pooling and gets the channel’s descriptions of Fc

mp and Fc
ap respectively. Since the features extracted between different channels 

of the image have local periodicity, a 1D convolution of size K is used to allow the information to flow between adjacent channels 
instead of the traditional FC layer. Next, all the obtained features are added to get more effective integration information. Lastly, a 
weight map of the channels can be generates by using Sigmoid activation function, that produces an output map Fc

out by multiplying it 
with the original input feature map. Briefly, the formula is as Eqs. (1), (2) and (3): 

Fc
mp =Max(Fc(i, j)), 0 < c<C, 0< i<H, 0< j<W (1)  

Fc
ap =

1
H × W

∑H

i=1

∑W

j=1
(Fc(i, j)), 0 < c<C (2)  

Fc
out =Fc ·Fscale

(
σ
(

Conv1D
(

Fc
mp

)
+Conv1D

(
Fc

ap

)))
(3) 

In these equations, σ represents the activation function of Sigmoid, Fscale represents the weight map of each channel after one- 
dimensional convolution. To be mentioned, the kernel of the 1D convolution in this paper is set as 3 (k = 3, that is, there are three 
neighbors participating in the attention prediction of this channel). 

2.2.2. Spatial attention 
The spatial attention can notice the location of key information and enhance the ability of useful feature’s extraction. 
In the Spatial attention part of Figure 3, the feature map Fs ∈ RH×W×C first generates Fs

mp and Fs
ap along the channel, among which 

Fs
mp is input to the max-pooling, Fs

ap is input to the average-pooling. Then a convolutional layer of 7 × 7 is followed by the Sigmoid 
activation function layer, output of which is the spatial map. At last, it is multiplied with the original feature map, then a new feature 

Figure 2. TYhe structure of MLF. * For MLF blocks at different levels, the number of inputs is different. For example, for the MLF block at level 7 the 
inputs are from MSR(level 1) to MSR(level 5), while for the MLF block at level 6 the inputs are from MSR(level 1) to MSR(level 4). 

Figure 3. Attention block.  
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map Fs
out is obtained. The formula is as Eqs. (4), (5) and (6): 

Fs
mp =Max(Fs(i, j)), 0 < c<C, 0< i<H, 0< j<W (4)  

Fs
ap =

1
C

∑C

i=1
(Fs(i, j)), 0 < i<H, 0< j<W (5)  

Fs
out =Fs ·Fscale

(
σ
(

f 7×7
([

Fs
mp; Fs

ap

])))
(6)  

Where σ represents the Sigmoid activation function, the convolution kernel of 7 × 7 is used to extract more important spatial features 
and obtain more location information of the target image. 

2.3. MSR block 

The traditional residual block is composed of 2 stacked 3 × 3 convolutions and skip-connections [9], which can reduce the risk of 
network degradation and gradient disappearance. But due to the structure of its convolutional core is too simple, its feature extraction 
capability is limited. Therefore, to improve the network’s abilities of extracting and transferring image features, an MSR block with 
multi-scale residual structure is designed. Figure 4 presents the detailed structure of MSR. 

In Figure 4, the MSR block consists of three branches. Among them, the first branch is composed of 2 depth-wise over-parame-
terized convolutional layers (DO-Conv) [19], which allows convolutional layers to be enhanced by using additional depth-separable 
convolutions with different 2D kernels for each input channel. Meanwhile, such layer could enhance the accuracy of the network 
without increasing the network’s computational complexity. The second branch consists of two 3 × 3 convolutions with a dilation rate 
of 3, which can expand the perceptual range to extract more image features without increasing the number of effective units. The third 
branch consists of a 3 × 3 convolution and asymmetric convolution block which is composed of 1 × 3 convolution and 3 × 1 
convolution. The asymmetric convolution block can suppress the overfitting of the network while improving the nonlinear scalability 
of the network. Therefore, it can extract more spatial information with multivariate features, and its extraction process is more stable. 
The output of the three branches in parallel are added, and then pass through the DropBlock layer and the attention block layer. At last, 
the output of the attention block is combined with the original input through skip-connection. The DropBlock layer can effectively 
prevent overfitting, the attention block layer can extract more useful information through recalibrating the features of three branches, 

Figure 4. MSR block.  
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and the skip-connection of original input can avoid the information’s loss during the process of the network’s forward propagation. 

3. Experiment 

3.1. Dataset 

For the DRIVE [20] dataset and CHASE_DB1 [21] dataset having sufficient amount of image data, more clearer annotation and 
better image quality, they are employed in this paper. The DRIVE dataset has 40 colour fundus images, measuring 586 × 565, of which 
20 are for training and 20 are for testing. The CHASE_DB1 dataset has 28 colour fundus images, the size of which is 999 × 960. We use 
its first 14 images to be the training set and its last 14 images to be the testing set. Meanwhile, the binary vascular maps can be used as 
ground truths, which are manually segmented by experts. 

To reduce the influences of background noise, uneven illumination, and other factors on the image, the extraction of green channel, 
equalization of the histogram, standardization process, and gamma to transform pre-processing are used. In Figure 5, we can see that 
the vascular contour information is more highlighted in the pre-processed images. Then, to augment the data, a sliding window with 
step size of 5 is adopted, with which the original image can be randomly cut into 200,000 image patches. Of these patches, 80% are 
used for training and the rest are for testing. The size of the patch, i.e. the input data for the network, is 64 × 64. Figure 5(a) the 
example of the original image, Figure 5(b) illustrate the example of the image being pre-processed. 

3.2. Implementation detail 

For both datasets, we choose the cross-entropy loss function and use Gradient Descent (SGD) for parameter optimization, for which 
the initial learning rate is 0.01, the decay rate is 10− 4 and the momentum is 0.9. The batch_size of network training is 8 and the number 
of iterations is 50. The simulation platform is PyCharm, using the public Keras with Tensorflow as the backend. All experiments are run 
on Intel(R)CoreTM i7-11700K CPU@3.60 GHz, 64.0 GB RAM, NVIDIA GeForce GTX 3060. 

3.3. Evaluation metrics 

To analyze the segmentation effect of the network more objective, we employ the metrics as: accuracy, Kappa coefficient, sensi-
tivity, specificity, F1-score, Matthews correlation coefficient (MCC), and area AUC under ROC, which are calculated as Eqs. (7), (8), 
(9), (10), (11), (12) and (13): 

Accuracy=
TP + TN

TP + TN + FP + FN
(7)  

pe =
(TP + FN)(TP + FP) + (TN + FN)(TN + FP)

(TP + TN + FP + FN)
2 (8)  

Kappa=
Accuracy − pe

1 − pe
(9)  

Sensitivity=
TP

TP + FN
(10)  

Specificity=
TN

TN + FP
(11)  

Figure 5. (a) DRIVE original image; (b) Pre-processed image.  
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F1 − score =
2TP

2TP + FN + FP
(12)  

MCC=
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

√ (13)  

Where TP (true positive) presents the true positive area, which means that the predicted algorithm segmentation result and the 
corresponding expert manual annotation of the same total number for the target blood vessel pixels, otherwise it is FP (false positive); 
For background pixels, TN (true negative) presents the total number of predicted algorithm segmentation results identical to the 
corresponding expert manual annotation, otherwise it is FN (false negative). 

3.4. Experimental results and discussion 

Finding the pixel points in the retinal image that belong to the vessel region is the main target of vessel segmentation. To justify the 
higher efficiency of our MRANet in the segmentation of retinal vessels, we conducted experiments on datasets introduced in section 
3.1.  

1) Comparison of the results from different existing methods 

Table 2 Illustrates that MRANet’s results are compared with those of the comparison network by using the DRIVE dataset, and 
Table 3 shows these comparisons by using the CHASE_DB1 dataset. 

From Tables 2 and 3, we can glean useful information. The accuracy, sensitivity, specificity and AUC of the proposed MRANet are 
0.9698, 0.8488, 0.9907 and 0.9899, respectively, on the DRIVE dataset. And these parameters are 0.9755, 0.8533, 0.9856 and 0.9893 
on CHASE_DB1 dataset, respectively. Due to the interference of background, the MRANet network is only slightly less specific, but the 
differences are not significant. Two tables show that MRANet performs better than the existing algorithms. Overall, the proposed 
network can realize the task of vessel segmentation better, thus demonstrating the effectiveness of its ability to segment retinal vessels. 

To further highlight the reliability of MRANet, the ROC curve trend chart is given in Figure 6. The curve represent the relationship 
between sensitivity and specificity, of which the horizontal coordinate indicates the false positive rate (FPR), the true positive rate 
(TPR) indicated by the longitudinal coordinate. The higher the AUC value, the more effective the network is in segmenting the vessels. 
It can be seen that the general performance of MRANet is better. Figure 6(a) is the ROC chart of DRIVE dataset, and Figure 6(b) is that 
of the CHASE_DB1 dataset.  

2) Comparison of ablation experiments 

To testify the efficiency of the new blocks used in MRANet, the ablation experiments based on two datasets are conducted in this 
section. In this experiment, U-Net, MRNet and MRANet are compared, among which U-Net is the basic network, MRNet is the com-
bination of U-Net, attention block and MLF block, and the proposed network, MRANet, is the combination of U-Net, MLF block, 
attention block and MSR block. 

In Table 4, we can see that based on the DRIVE dataset, the accuracy, sensitivity, specificity, f1-score, MCC, Kappa and AUC values 
of U-Net are 0.9619, 0.7789, 0.9775, 0.8193, 0.7813, 0.7849 and 0.9798 respectively, all of these are lower than that of MRNet. The 
reason of the better performance of MRNet is that it adopts MLF block and attention block, which can improve its segmentation ability 
of the blood vessel edge. As for MRANet, the accuracy, Kappa, sensitivity, f1-score, specificity, MCC and AUC values are 0.9698, 
0.8102, 0.8488, 0.8231, 0.9907, 0.8059 and 0.9899, respectively, all these indicators are higher than MRNet due to the addition of 
MSR block, which has a strong ability to distinguish blood vessel details and branching structures. Based on above statements, we can 
see that MRANet performs better than others on DRIVE dataset, and same conclusion can be draw based on CHASE_DB1 dataset.  

3) p-Value analysis 

Table 2 
Results of various algorithms on DRIVE.  

Methods Year Acc Sen Spe AUC 

Shi [22] 2020 0.9676 0.8065 0.9826 - 
Tchinda [12] 2021 0.9480 0.7352 0.9775 0.9678 
Deng [16] 2022 0.9683 0.8363 0.9811 - 
Khan [6] 2022 0.9610 0.8125 0.9763 - 
Zhang [15] 2022 0.9565 0.7853 0.9818 0.9834 
Wang [24] 2022 0.9611 0.8386 0.9867 0.9829 
Dong [25] 2022 0.9586 0.7954 - 0.9830 
Xu [26] 2022 0.9630 0.8745 0.9823 0.9670 
MRANet 2022 0.9698 0.8488 0.9907 0.9899  
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The dependent t-test for paired samples is used to check if the difference between our proposed results and other approaches is 
significant. As shown in Table 5. 

Based on the p-values in Table 5, we can see the difference between our MRANet and U-Net, i.e. ours and U-Net have different levels 
of minimum significance when reject the hypothesis of no difference on metrics. In the DRIVE dataset, the hypothesis of no difference 
in accuracy, MCC and AUC are all 0.000, presenting the lowest level of significance rejected, while the hypothesis of no difference in 
specificity is 0.290, presenting the highest level of significance rejected. In CHASE_DB1 dataset, the hypothesis of no difference in 
accuracy, MCC and AUC are all 0.000, presenting the lowest level of significance rejected, and the hypothesis of no difference of 
specificity is 0.239, presenting the highest level of significance rejected. As can be seen in Table 5, when the significance level of α =
0.05, six of the seven metrics for DRIVE and CHASE_DB1 are significant. When setting a more significant level of significance of α =
0.01, DRIVE has four indicators that are highly significant and CHASE_DB1 has five indicators that are significant. When the signif-
icance level of α = 0.05, the specificity indicators in the DRIVE and CHASE_DB1 is not significant, it is because when the retinal images 
are trained, the interference of the image background makes the specificity index not change significantly during the test, so when the 

Table 3 
Results of various algorithms on CHASE_DB1.  

Methods Year Acc Sen Spe AUC 

Zhang [27] 2016 0.9452 0.7626 0.9661 0.9606 
Roychowdhury [28] 2014 0.9530 0.7201 0.9824 0.9532 
Fraz [29] 2014 0.9524 0.7259 0.9770 0.9760 
Shi [22] 2020 0.9731 0.7504 0.9889 - 
Cheng [23] 2020 0.9488 0.7672 0.9834 0.9793 
Tchinda [12] 2021 0.9452 0.7279 0.9658 0.9681 
Deng [16] 2022 0.9714 0.8541 0.9794 - 
Khan [6] 2022 0.9578 0.8012 0.9730 - 
Zhang [15] 2022 0.9667 0.8132 0.9840 0.9893 
Wang [24] 2022 0.9662 0.7958 0.9659 0.9873 
Dong [25] 2022 0.9659 0.8259 - 0.9864 
Xu [26] 2022 0.9694 0.8916 0.9794 0.9677 
MRANet 2022 0.9755 0.8533 0.9856 0.9893  

Figure 6. ROC curve chart: (a) DRIVE dataset; (b) CHASE_DB1 dataset.  

Table 4 
Comparison of ablation experiments with different datasets.  

Datasets Methods Acc Sen Spe AUC F1-score MCC Kappa 

DRIVE U-Net 0.9619 0.7789 0.9775 0.9798 0.8193 0.7813 0.7849 
MRNet 0.9648 0.8392 0.9879 0.9839 0.8124 0.7968 0.7962 
MRANet 0.9698 0.8488 0.9907 0.9899 0.8231 0.8059 0.8102 

CHASE_DB1 U-Net 0.9633 0.8457 0.9789 0.9839 0.7985 0.7814 0.7851 
MRNet 0.9692 0.8466 0.9896 0.9854 0.8114 0.7972 0.7926 
MRANet 0.9755 0.8534 0.9856 0.9893 0.8281 0.8046 0.8035  
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significance analysis is performed, the result of insignificant specificity is obtained.  

4) Comparison of segmentation experiment 

By using the datasets introduced in section 3.1, the results of the ablation experiments were compared to further demonstrate the 
advantages of our network. The details of comparison can be seen in Figures 7 and 8. 

For the DRIVE dataset of Figure 7, in the first line, compared the details of the red frames, we can see that the corresponding small 
blood vessels of Figure 7(d) and (e) are not segmented completely, while capillaries can be extracted well without loss of detailed 
feature information in Figure 7(c), which is almost the same as Figure 7(b). Similarly, in the second line, in the red frames of Figure 7 
(d) and (e), it can be observed that the developed method is incapable of detecting sufficiently blood vessels correctly. And in the third 
line, it is easy to cause small vessel incompleteness at the vessel ends of Figure 7(d) and (e), while the continuity of the blood vessels of 
Figure 7(c) can be guaranteed compared with Figure 7(b). 

For the CHASE_DB1 dataset, in the red frames of Figure 8, due to the influence of background and illumination, the contour in-
formation of Figure 8(d) is not clear. In the first line of Figure 8(d) and (e), the preservation of small vessels is not complete compared 
with Figure 8(b). In the second line, there is a phenomenon of rupture at vessel bifurcations of Figure 8(d) and (e). And in the third line, 
the blood vessels are not smooth enough, however, thick and thin blood vessels can be accurately segmented under uneven illumi-
nation in the line Figure 8(c). 

From the segmentation results it can be concluded that MRANet can more clearly distinguish the vessels from the background and 
can reduce the rate of misjudgment and missed judgments of blood vessels. Meanwhile, under the condition of low contrast and noise 
interference, MRANet not only can ensure vascular connectivity and integrity, but also have a good level at vessel bifurcation and small 
vessel connections. Therefore, it can be seen that the proposed network has a remarkable segmentation ability on the complex vascular 
morphology. 

4. Conclusion 

We propose a multi-scale residual attention network (MRANet), that is an enhanced version of the U-Net and consists of MLF blocks, 
attention blocks and MSR blocks. The advantages of the structure are as follows: (1) With the MLF block, the image details and spatial 
location information of the shallow features can be fully used in the decoding part. (2) The attention block strengthens the results of the 
network’s feature extraction of the blood vessel area. (3) The MSR block is used in the whole network to reduce the gradient disap-
pearance and learn more information. To verify the network’s effectiveness, experiments are carried out by using the datasets of DRIVE 
and CHASE_DB1. The results of the experiments shown that our network outperforms previous networks. 

Although our network achieved satisfied results in the segmentation of retinal vessel, it still has some limitations. Due to the multi- 
branch structure and the addition of operations such as concatenate and skip-connection, the network has a high memory requirement, 
which leads to a slow operation during the training process of the network. In the next stage of our work, we plan to make efforts to 
reduce the memory requirements of the network. 
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