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Abstract
Recent advances in whole genome sequencing have made the technology available for

routine use in microbiological laboratories. However, a major obstacle for using this technol-

ogy is the availability of simple and automatic bioinformatics tools. Based on previously pub-

lished and already available web-based tools we developed a single pipeline for batch

uploading of whole genome sequencing data from multiple bacterial isolates. The pipeline

will automatically identify the bacterial species and, if applicable, assemble the genome,

identify the multilocus sequence type, plasmids, virulence genes and antimicrobial resis-

tance genes. A short printable report for each sample will be provided and an Excel spread-

sheet containing all the metadata and a summary of the results for all submitted samples

can be downloaded. The pipeline was benchmarked using datasets previously used to test

the individual services. The reported results enable a rapid overview of the major results,

and comparing that to the previously found results showed that the platform is reliable and

able to correctly predict the species and find most of the expected genes automatically. In

conclusion, a combined bioinformatics platform was developed and made publicly avail-

able, providing easy-to-use automated analysis of bacterial whole genome sequencing

data. The platform may be of immediate relevance as a guide for investigators using whole

genome sequencing for clinical diagnostics and surveillance. The platform is freely avail-

able at: https://cge.cbs.dtu.dk/services/CGEpipeline-1.1 and it is the intention that it will con-

tinue to be expanded with new features as these become available.
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Introduction
Rapid and reliable identification, characterisation and comparison of microorganisms from
food, human, animal and environmental samples are essential to guide clinical treatment,
infectious disease control and to detect outbreaks. Today, bacterial diagnostics are typically
performed using a variety of different phenotypic and increasingly genotypic methods [1].
Recent developments in microbial whole genome sequencing (WGS) hold great promise for
enhancing diagnostics and public health microbiology [2–4]. The great value of WGS in study-
ing bacterial evolution, outbreaks and transmission has been shown in a number of recent
studies [5–8].

The next step is to translate this technology from a research tool into one with utility in rou-
tine diagnostic settings. Retrospective or real-time use of benchtop sequencing for selected iso-
lates has indicated the great potential of the technology for understanding and potentially
limiting intrahospital transmission of these selected pathogens [9–11]. Similarly, for food-
borne diseases it has been shown that it is feasible to sequence Salmonella isolates in real-time
and share the data to rapidly identify and potentially control outbreaks [12].

A major obstacle for the global implementation of WGS in routine diagnostic laboratories
worldwide is the lack of rapid, easy-to-use, reliable and harmonised bioinformatics tools for
storing, analysing and comparing data. Over the past couple of years, several online individual
typing tools have been developed amongst others as part of the Center for Genomic Epidemiol-
ogy (CGE) project for analysing relevant clinical features in WGS data. These include species
identification[13], multilocus sequence typing (MLST) [14], detection of transferrable antimi-
crobial resistance genes[15], detection of plasmids in Enterobacteriaceae[16], prediction of
pathogenicity[17], detection of virulence factors in Escherichia coli[5] and determination of
phylogeny by Single Nucleotide Polymorphisms [5,18,19].

Here, we present a new web-based platform where several of the services mentioned above
are integrated in a single, static and robust workflow. In addition, the platform contains several
important features that the users of the services have requested [20]. First of all, the platform
provides a default bacterium analysis pipeline that is executed on all uploaded samples. If
required, the pipeline performs a draft de novo assembly of the sequencing reads into contigs,
and continues to analyse the taxonomy, plasmid profile, resistance profile and virulence profile.
Secondly, the platform provides a batch upload system where users can provide metadata for
all their samples in a standardised Excel spreadsheet and upload this together with the corre-
sponding WGS files in a single process. Finally, the platform provides a user login feature,
which enables the users to store their data and rerun the provided services using their previ-
ously uploaded data. This feature grants the user full access to view and interact with their
data. To the best of our knowledge no similar platform exists to compare against, but in this
study we have benchmarked the performance of the individual services in the pipeline.

Material and Methods
Datasets from a number of previous studies [5,8,14,21] were used to benchmark the BAP. This
enabled the comparison of the results from the pipeline to those previously obtained using
individual services. The combined dataset contained samples from the following species: 50
Enterococcus faecalis fasta files, 46 Enterococcus faecium fasta files, 43 E. coli fastq files, 49 E.
coli fasta files, 4 Klebsiella pneumoniae fastq files, 50 Salmonella enterica fasta files and 93
Staphylococcus aureus fastq files. The 43 E. coli fastq files were Ion Torrent, while the remaining
fastq files were Illumina data. For the MLST benchmark data, the expected MLST was in most
cases inferred from the spa type, and thus only the clonal complex is available for these sam-
ples[21].
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Technical Machine Specs
The CGE platform is running on three machines, one web server and two compute servers
with the following specs respectively: one Intel1 Xeon1 Processor X5660 with 24 cores and
96GB RAM and two Intel1 Xeon1 Processor E5-2690 with 32 cores and 384GB RAM each.
The machines are all running Linux with openSUSE.

The Bacterium Analysis Pipeline
An automatic and robust tool for analysing bacterial genomes, the Bacterium Analysis Pipeline
(BAP), was developed to control the workflow, and to facilitate inter-program communication
and user feedback regarding the status of the submitted jobs. The BAP combines several previ-
ously created services to produce a comprehensive single bacterial isolate analysis. The BAP
(see Fig 1) starts out by assembling the submitted sequence reads using the methodology
described earlier[14] and running a k-mer-based species identification algorithm previously
shown to be highly accurate (KmerFinder [13,22]). These two services run in parallel. After the

Fig 1. Flowchart depicting the workflow of the BAP. The input from the user is assembled if needed, and
the bacterial species is identified through the KmerFinder algorithm. When ready, the assembled contigs are
submitted to the ContigAnalyzer and ResFinder for annotation of contig metrics and identification of
resistance genes. If the bacterial species is identified, the contigs are further, if applicable, submitted to
MLST, PlasmidFinder and VirulenceFinder to identify the sequence type, known plasmids (and, if applicable,
their plasmid sequence type), and known virulence genes. When all services are done, the BAP produces a
summary report of the services result (see Fig 2).

doi:10.1371/journal.pone.0157718.g001
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assembly into contigs, the BAP executes a contig analysis script and an acquired antimicrobial
resistance gene identification service (ResFinder[15]). When the identification of the bacterial
species is completed, the BAP continues to execute the remaining services: a multilocus
sequence typing service (MLST[14]), a plasmid identification service (PlasmidFinder[16]), a
plasmid sequence typing service (pMLST[16]) and a virulence gene identification service (Vir-
ulenceFinder[5]). These services, however, are only run if a relevant database exists for the
identified species, and in the case of MLST a scheme for the given bacteria. Execution of
pMLST further depends on whether a plasmid-subtyping scheme exists for the plasmid repli-
cons identified by PlasmidFinder. When the BAP terminates successfully it will produce an
interactive on-screen report summarising the major results from the executed services (see Fig
2). It is possible to receive an email upon finished analysis if the user provides an email.

The BAP Services
The BAP uses our own internal assembly pipeline. The assembly pipeline has been evaluated
using Illumina and Ion Torrent fastq files. The pipeline may handle fastq files from other
sequencing platforms, but we recommend in those cases that the user do the assembly locally
and upload the assemblies instead. Also note that our assembler only accepts DNA sequences
in fastq format, however these fastq files may be zipped or gzipped. The pipeline uses the New-
bler algorithm for Ion Torrent data, and velvet de novo for Illumina sequencing data. The
Assembler generates a fasta file containing the contigs. For more details see Larsen et al. 2012

Fig 2. Example of a BAP summary report for a S. aureus sample. The report is split in 3 parts: Contigs/assembly analysis, taxonomy
analyses and phenotypic analyses. Only the major result details are shown here, but the user is provided direct links to see the full report
from the individual services.

doi:10.1371/journal.pone.0157718.g002
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[14]. To annotate the contigs with some trivial, but useful, metrics we use a small in-house ser-
vice, ContigAnalyzer, to calculate the number of contigs, total number of bases, the N50, the
length of longest and shortest contig, and the median, mean and standard deviation of the con-
tigs length.

The BAP uses the KmerFinder algorithm to predict the species of the bacteria samples. This
algorithm uses DNA sequences provided in either fasta or fastq format. The k-mer size used by
KmerFinder for bacterial data is 16 bases. The database is constructed from a monthly updated
extraction of whole bacteria genomes from the National Center for Biotechnology Information,
and only contains genomes that have registered taxonomy associated. KmerFinder produces a
summary table of all significant hits. The pipeline only accepts the species to be the same as the
closest match if the template coverage is above 50 per cent. If not the sample is annotated as an
unknown species. More information on the KmerFinder service can be found in the original
manuscripts [11,13].

The BAP uses the ResFinder algorithm to identify acquired antimicrobial resistance genes.
The algorithm takes a fasta file containing DNA sequences as input. The algorithm uses
BLAST[23] to find DNA sequences from the input sample, which matches the known resis-
tance genes in the database. The database is manually curated and contains genes associated
with the following resistance phenotypes: Aminoglycoside, Beta-lactam, Fluoroquinolone, Fos-
fomycin, Fusidic Acid, Glycopeptide, MLS—Macrolide-Lincosamide-StreptograminB, Nitroi-
midazole, Oxazolidinone, Phenicol, Rifampicin, Sulphonamide, Tetracycline and
Trimethoprim. Note that this algorithm only finds genes contained in the database, and will as
such not identify potentially novel genes nor chromosomal mutations associated with antimi-
crobial resistance. The algorithm provides an overview table of the found matches in the data-
base, with the identity and the coverage of the hit, and the position of the gene in the input file.
For additional details see Zankari et al. 2012 [15].

To identify the multilocus sequence type for the sample, when a MLST scheme exists for the
given species, the BAP uses the MLST algorithm. Similar to ResFinder, the MLST algorithm
uses the BLAST algorithm to find DNA sequences from the input sample that match the set of
household genes found in the given MLST scheme database. If all genes have perfect matches
then the MLST algorithm is able to use the found alleles to predict the MLST type. The data-
base consists of fasta files, is updated weekly from the PubMLST.org site and currently contains
117 different MLST schemes (25 Aug, 2015). The MLST algorithm produces an overview table
of the best matches for each of the 7 genes and annotates the identity, coverage and position
similarly to ResFinder. See Larsen et al. 2012 for more information [14].

The BAP uses the PlasmidFinder algorithm to identify the plasmids contained in the input
sample. The algorithm works similarly to ResFinder and uses the same input type, but it uses a
different database containing plasmids. The database currently contains 117 replicon marker
sequences of plasmids for species belonging to Enterobacteriaceae, and is manually curated.
The algorithm provides an overview of the identified plasmids similar to ResFinder. For more
details see Carattoli et al. 2014 [16].

To identify the plasmids multilocus sequence type in the input sample, the BAP uses the
pMLST algorithm. The algorithm works similarly to MLST and uses the same input type, but it
uses a different database containing plasmid schemes. The database currently has a scheme for
plasmids belonging to IncF, IncHI1, IncHI2, IncI1 and IncN, and is manually curated. The
pMLST algorithm produces an overview table of the best matches for each of the genes in the
pMLST scheme, and annotates the identity, coverage and position similarly to MLST. For addi-
tional information see the original manuscript [16].

The BAP uses the VirulenceFinder algorithm to identify the virulence genes contained in
the input sample. The algorithm works similarly to ResFinder and uses the same input type,
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but it uses a different database containing published virulence genes. Currently the database
only has virulence genes for the species E. coli. The database is manually curated. The algo-
rithm provides an overview of the identified virulence genes similar to ResFinder. See Joensen
et al. for more details [5].

The Batch Upload System
The web interface of the Batch Upload System provides a possibility for the user to upload
WGS data from several samples in a single submission, which significantly enhances the
usability of the BAP, as most laboratories will have more than one sample to analyse at the
same time. The interface constitutes only one of the three parts of the Batch Upload System.
The other two parts are a file assembly script and a batch-processing script. The front-end
web interface is developed using HTML5 and JavaScript. It uses several standard JavaScript
libraries including AngularJS and Jquery. The two main objectives of the interface are to pro-
vide the user with an easy-to-use and intuitive interface and to break down files into frag-
ments of 1 MB or less, which can be sent over a normal HTTPS connection. The back-end
PHP script combines all the file fragments correctly and reassembles the file on the server
side.

The user is required to upload a metadata Excel spreadsheet to enable tracking of the sample
data, provide the assembler with crucial information about the input and make future sharing
of the data possible (See the metadata section). The Excel spreadsheet is read by the front-end
web interface, separated into sample entries and converted to JSON files, which are stored in
upload directories along with the corresponding sample files. The Batch Upload System then
reads the JSON file and parses the information along with the sample WGS files to the BAP.
When the metadata Excel spreadsheet has been uploaded and validated by the server and all
the WGS files specified in the spreadsheet have been successfully uploaded and assembled, the
batch dataset is submitted to the server where the batch upload system is executed. This system
handles all batch-related processes, including the execution of the BAP for each of the samples
in the batch.

The metadata
Metadata is a term that covers additional data supporting the main data, which in this case is
the WGS sequence data. This could be information about the sampling location, sample date,
etc. Proper metadata is a vital part of useful and informative data, especially for epidemiological
investigations, because it enables the primary investigator or clinical microbiologist to identify
geographical spreading patterns or clusters, leading to the detection of outbreaks.

To ensure a harmonised submission of relevant metadata, a standard template has been
developed in Excel spreadsheet format, which is a common data storage tool for users working
with WGS data (an example of the a completed metadata sheet can be found in S4 Excelsheet).
The metadata template contains 22 attributes of which seven are mandatory. Four of the man-
datory attributes are of technical nature and needed by our server for correct execution of the
BAP. The list of mandatory metadata is given in Table 1. To use the metadata template for our
services, the user has to download the template from the batch upload page, fill out the manda-
tory fields as a minimum and any optional fields if possible. When the metadata is completed
and uploaded, it will be used to ensure that all the necessary WGS files associated with the sam-
ples are uploaded before the batch is submitted. All the constrained metadata fields are also val-
idated accordingly, where possible, to ensure that the data provided by the users follow the
correct format. All errors encountered are presented to the user through the batch upload
interface.
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The User Profile System
To enable the users to access and re-analyse their WGS data, an interactive User Profile System
was constructed. New users for the platform have to create a personal profile consisting of a
username, an email and a password. No username or email address can be registered more
than once, and only one session can be active per profile at any time. In the user settings menu,
the user can change his or her personal information or completely delete the user profile and
all user-associated data including metadata and any files the user has uploaded. Data submitted
to the server is only accessible to the user account from which it was submitted, unless the data
is made publicly available.

The Sample Management System
When a user submits batch jobs to the server, the results are computed and stored on the
server. To access the result of the services, the user can use the Sample Management System
(SMS). In the SMS, the user can access information for all submitted samples by the user and
the status for all the services. Each service will provide a web link to the results of the service
for the given sample, and the sample entry also provides a link to the summary page from the
BAP. The user can also edit the metadata for a sample or delete all data for a given sample
completely. A deletion of the sample data will delete all stored files for the sample including
any service results, and any database entries associated with the sample will also be deleted. In
addition, all the service-related results can be deleted individually. The SMS gives the user full
power over his or her sample data and removes the need to upload WGS files multiple times to
run different services. Using the SMS, the user will be able to reuse his or her uploaded data for
any analysis in any available service on the platform. Additionally, the results will also be stored
for later viewing and retrieval of the result data, and all the results and metadata for all samples
can be downloaded as an Excel spreadsheet for easy downstream analysis. See Fig 3 for a snip-
pet of the result Excel spreadsheet.

The database structure
The database has two parts: a file storage and a MySQL database. In the file storage, all files
associated with a sample are stored within a single directory, and all service-run data is stored
in a service directory within the sample directory. This simple structure makes it easy to clean
up when the user requests a deletion of a sample or similar.

The MySQL database, in addition to the user login details, stores all the sample metadata
and relevant results from the BAP. The MySQL database's most important task is to keep track

Table 1. List of the sevenmandatory metadata fields from the CGEmetadata template.

Attribute Name Mandatory Description

file_names Yes Name of all files associated to this sample. Multiple filenames should be separated by a space

pre_assembled Yes Has the uploaded sample data been assembled? yes / no

sequencing_platform Conditional Choose between: LS454, Illumina, Ion Torrent or ABI SOLiD. Required if the sample is not pre_assembled.

sequencing_type Conditional Choose between: single, paired or mate-paired. Required if the sample is not pre_assembled.

country Yes The country from which the sample was collected

isolation_source Yes Choose between: human, water, food, animal, laboratory, other or unknown

collection_date Yes The date of the sample collection. Use one of the following format: YYYY-MM-DD or YYYY-MM or YYYY

This list was created to be as closely related to the minimum data required by the National Center for Biotechnology Information and the European

Nucleotide Archive as possible.

doi:10.1371/journal.pone.0157718.t001
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of files and directories, and any associations between users, samples, files etc. The database
makes it possible to quickly retrieve the user’s data so it can be presented to the user. It also
enables restriction of data access to authorised users.

Using the integrated platform
Usage of this platform requires the user to be logged in to a user account. The platform only
accepts DNA sequences as input, provided as either fasta or fastq files. The platform provides
several results in different formats. Each service creates their own output webpage, and most
services also provide files that can be downloaded. For instance, the Assembler provides the
contigs as a downloadable file. In addition to the individual service results, the platform also
provides a BAP result summary page and some Excel spreadsheets that summarise the results
from the analyses. For more details see the usage example in S1 Appendix.

Results and Discussion
The individual servers included in the pipeline have so far (checked 14 Apr 2016) been tested
by users from more than 10,600 locations (unique IP addresses), submitting more than
260,000 jobs. The integrated platform is a response to many user requests for a service that can
fulfil their high throughput needs and provide an easier and more intuitive interaction with
uploaded WGS data. The data stored on the CGE machines are backed up daily, and can be
recovered in case we experience critical server breakdowns involving data loss. The platform
has so far met most of the needs from our users, who have provided feedback on their usage of
our platform, and we will continue to develop new features and tools to provide an even more
powerful platform in the future.

Time consumption
To test the time consumption of the services in the pipeline and the pipeline it self, we sent 476
runs from the European Nucleotide Archive through the pipeline. The runs contained Illumina
paired-end fastq files. The pipeline it self took about 19–28 minutes per run on average, where
the majority of the time was spent on the assembly part. For the individual services: the Assem-
bler took around 10–20 minutes on average, but scales with the sequencing depth (~5 s/depth).
KmerFinder took 5–10 minutes on average, and also scales with sequencing depth (~2s/depth).
For the remaining services, the average time was: ResFinder 3–4 minutes, MLST 6–7 minutes,
PlasmidFinder 1–2 minutes and pMLST 1–3 minutes.

Fig 3. Snippet from the result data for the MLST dataset. The list shows a small selection of the metadata
associated with each sample. The column headers are marked in bold and the headers for the services' result
are marked with the 'r_' prefix.

doi:10.1371/journal.pone.0157718.g003
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Genome assembly quality can vary a lot depending on the species, but also on the sequenc-
ing depth. As a rule of thumb (based on N50), most cases will produce good assemblies with a
depth above 50, though for some species like Salmonella, the N50 seems to increase up to a
depth around 100 before it stagnates.

This estimation was based on the results from the above-mentioned runs, and a plot of the
data can be found in S2 Appendix.

When a user submits multiple samples in one batch, the sample analyses are executed in
serial. The total time of the whole batch analysis will thus be a cumulative sum of all the
analyses.

Platform Benchmark
The concordance to previously obtained results was very high. The Assembler was able to
assemble all samples, both Illumina and Ion Torrent fastq files, and the contigs had an average
N50 of 220,000 bases. A few samples had low N50, which in combination with a high number
of contigs, likely indicates poor sequencing quality rather than problems with the assembler
(see Table 2). Also, two of the samples (S. aureus ST20091526 and ST20101526) had to be reas-
sembled with the trimming option enabled to produce contigs. In the case of S. aureus F38, the
sample had 959 contigs and a genome size of 5,721,289 bases, which is about twice the norm
for S. aureus. Further investigation of the KmerFinder results of this sample revealed that the
sample probably was contaminated with E. faecalis (see Fig 4). Even with the contamination,

Table 2. Assembly by the internal Assembler.

Species No. Contigs No. Bases N50

Klebsiella pneumoniae Min 151 5494690 219951

Median 164 5517928 221556

Mean 175 5522553 227195

Max 219 5559664 245716

SD 30 27880 12436

Staphylococcus aureus Min 57 2234148 7764

Median 104 2760734 207528

Mean 149 2765851 216002

Max 959 5721289 685832

SD 137 342548 140720

Escherichia coli Min 52 4055781 21906

Median 247 5245766 94653

Mean 267 5158599 88163

Max 647 5523711 176604

SD 121 269720 35535

The table provides a summary of the annotation for the assemblies of the samples in the MLST and the VirulenceFinder dataset. The annotations metrics

compared in this benchmark are: Number of contigs, number of bases and the N50.

doi:10.1371/journal.pone.0157718.t002

Fig 4. KmerFinder top results for sample S. aureus F38. The result shows that there are more than just
significant hits for S. aureus. This indicates that the sample was contaminated and thus not a single isolate.

doi:10.1371/journal.pone.0157718.g004
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the platform was still able to predict the MLST of the S. aureus in the sample. Overall the
Assembler is good at assembling draft genomes for both the Illumina data in the MLST dataset
and the Ion Torrent data in the VirulenceFinder dataset.

For all 335 dataset of all six species the KmerFinder predicted the species exactly as it should
(see Table 3). The MLST previously predicted was also found in all but three samples where the
MLST could not be predicted due to problems with the assembled contigs, where one of the
genes were not assembled properly (see Table 4). The same was observed for the prediction of
resistance genes (see Table 5) and virulence genes (see Table 6). Here the pipeline found the
vast majority of the genes (93% and 98% respectively), but some were missed due to the genes
being split on two contigs. For PlasmidFinder, the benchmark only showed one plasmid dis-
agreeing with the published manuscript (see Table 7), and the pMLST benchmark shows the
exact same results as previously published (see Table 8).

For complete dataset details and results see S1 Excelsheet, S2 Excelsheet and S3 Excelsheet.

Justification of service choices
The initial selection of services integrated in the platform was chosen because they individually
have been benchmarked to have a high accuracy, and since they have a similar output format
and setup making their integration into the platform easy. Each service has its limitations and

Table 3. Species prediction by KmerFinder.

Species Concordance Discordance Unknown Total

Escherichia coli (VF) 42 0 1 43

Escherichia coli (RF) 49 0 0 49

Salmonella enterica 50 0 0 50

Enterococcus faecalis 50 0 0 50

Enterococcus faecium 45 1 0 46

Klebsiella pneumoniae 4 0 0 4

Staphylococcus aureus 93 0 0 93

Total 333 1 1 335

All species predictions are as they should be. Two samples were predicted differently than expected. The first was a sample from the ResFinder dataset

expected to be E. faecium, but predicted to be Enterococcus hirae. The sample was proven to be E. hirae in the original manuscript[8]. The second

sample was from the VirulenceFinder dataset, this sample was expected to be E. coli, but the prediction gave no significant result. This means that no

significant amount of k-mers from the sample matched anything in the KmerFinder database. The original manuscript also disproved this sample as an E.

coli[5].

doi:10.1371/journal.pone.0157718.t003

Table 4. Sequence type prediction by the MLST algorithm.

Species Concordance Discordance Unpredicted Total

Klebsiella pneumoniae 4 0 0 4

Staphylococcus aureus 90 0 3 93

Total 94 0 3 97

This table summarises the results from the MLST. There is concordance when the MLST is predicted to be the same as the expected, and discordance

when they differ. If the MLST has not been provided with the metadata, it is categorised as unknown, and if the MLST algorithm is not able to predict the

MLST, it is categorised as unpredicted. Nearly all samples are predicted correctly, only three samples' ST were not identified. By investigating their genes

independently, we find that the three S. aureus samples M-5, T5 and 7413532–2 all belongs to clonal complex 398; the missing ST was due to a single

gene being badly assembled. Similarly MLST for S. aureus 55488_TG8086 did not provide a ST due to bad assembly of a gene, but reassembly with the

trimming option, enabled MLST to identify the ST.

doi:10.1371/journal.pone.0157718.t004
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weaknesses, and as can be seen in the benchmark, our services are no different. Bad assemblies
resulting from bad sequencing will impact the performance of BLAST-based methods such as
ResFinder and VirulenceFinder, since genes might be truncated and/or divided on multiple
contigs, or missed if the genes cannot be assembled at all. As shown in the benchmark, the
MLST algorithm, which is very sensitive to bad assemblies, actually predicts nearly all MLST
types. This indicates that the Assembler used is appropriate for assembling the data tested. If
the user has special requirements for different assembly methods, the platform also allows
them to do the assembly locally previous to submission and upload the resulting genome con-
tigs to the platform.

Intended purpose and plans
The platform described here provides a single analytic framework for multiple analyses from
batch upload of entire runs with multiple single isolates, where the use of the platform does not
require the user to possess any advanced prior knowledge on bioinformatics. The BAP auto-
matically decides on the appropriate scheme for e.g. MLST typing based on the species identifi-
cation and provides a short printable report for each single entry. In addition, the SMS
provides an interface to all previously uploaded samples and can as such be used as a reposi-
tory, though we do not offer infinite storage of non-public data. The intended users would be
people performing WGS for human or veterinary diagnostics or surveillance without any
advanced knowledge of bioinformatics. The service is web-based and free of charge, and is thus
also available to the developing world.

Table 5. Resistance gene prediction by the ResFinder.

Species Published Concordance Missing Split-miss Extra 80% Vary

Escherichia coli 112 109 0 2 0 1

Enterococcus faecium 139 132 0 6 7 1

Enterococcus faecalis 221 189 1 31 14 0

Salmonella enterica 128 126 0 1 6 1

Total 600 556 1 40 27 3

This table summarises the resistance gene prediction results. The dataset used is the same as in the ResFinder manuscript. It is worth noting that

ResFinder finds 93% of the genes automatically. Of the last 7% of the genes around 6.7% are not found due to bad assemblies, where the genes are

either truncated or split on two contigs. To find these split genes, the user will have to do further investigations, as was done in the ResFinder manuscript.

3 of the 600 genes expected were predicted to be another variant of the same gene, which could be due to changes made in the ResFinder database

since the manuscript was published. Only 1 of the expected genes could not be identified even when rerunning ResFinder using a threshold of 80% and a

minimum length of 40%, though with this low threshold ResFinder also find 27 extra genes that were not published in the ResFinder manuscript.

doi:10.1371/journal.pone.0157718.t005

Table 6. Virulence gene prediction by the VirulenceFinder.

Species Published Concordance Missing Split-miss

Escherichia coli 106 104 1 1

Total 106 104 1 1

This table summarises the result from the virulence gene identification benchmark. The dataset used here is the same as in the VirulenceFinder

manuscript [5]. The table shows how many genes were observed using the platform and compares it to how many genes were found in the previous

publication. 98% of the genes are identified by the platform automatically. Of the two unidentified genes, one could not be identified even with lower

thresholds; the other however, was found by additional investigations to be split in two parts placed on separate contigs. This was also the conclusion in

the VirulenceFinder manuscript [5].

doi:10.1371/journal.pone.0157718.t006
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It is our intention to further improve the platform as other services and features become avail-
able. Examples of such services are serotyping of E. coli and Salmonella [24,25] cluster analysis
using multiple samples (e.g. phylogenetic trees based on single nucleotide polymorphisms), inte-
gration of geolocation for samples and results into the SMS in a map/list web interface and imple-
menting a sharing system so the users can select a group of other users that should have access to
subsets of the data. In addition, an optional automatic upload to the European Nucleotide
Archive (ENA) of sample metadata andWGS data will soon be implemented.

Privacy Statement
At CGE we respect user privacy, and we will as such not use any data uploaded by our users or
generated by our services for anything unless the user explicitly have marked his or her samples
as public available to all. The user can at all time delete his or her samples and all data related
them from the SMS interface.

Conclusions
A combined bioinformatics platform was developed and made publicly available, providing
batch upload, automated and simultaneous analysis for bacterial species, subtype, antimicro-
bial resistance and selected virulence genes and plasmids, the ability to reuse uploaded data,
and data safety. The platform was benchmarked and deemed to be very fast and accurate, and
may be of immediate relevance as a guide in combination with epidemiological information
and other conventional methods for investigators using WGS for clinical diagnostic, research
and surveillance.

Supporting Information
S1 Appendix. Word document containing a usage example of the CGE platform.
(DOCX)

Table 7. Plasmid prediction by the PlasmidFinder algorithm.

Species Published Concordance Missing Extra

Salmonella enterica 104 103 1 7

Total 104 103 1 7

The results from the PlasmidFinder benchmark are summarised. The dataset used here are the same as in the PlasmidFinder manuscript. The table

shows how many plasmids were observed using the platform and compares it to how many plasmids were found in the previous publication. 99% of the

published plasmids are identified by the platform automatically, but the pipeline also detected 7 plasmids that were not previously published. The extra

plasmids are found since the original study used a threshold of 90%, where as the recommended threshold from the authors and also the threshold used

in the pipeline is 80% identity.

doi:10.1371/journal.pone.0157718.t007

Table 8. Plasmid sequence type prediction by the pMLST algorithm.

Species Concordance Discordance Total

Salmonella enterica 39 1 40

Total 39 1 40

This table summarises the result from the pMLST benchmark. The dataset used here is the same as in the pMLST manuscript. The table shows how the

concordance between the predicted pMLSTs and the previously published pMLSTs. 39/40 pMLST predictions agreed with the published pMLSTs, the

discordant pMLST was caused by a later change of ST id for that gene, and the predicted pMLST alleles are actually the same as previously published.

doi:10.1371/journal.pone.0157718.t008
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S2 Appendix. Word document containing a graph showing N50 as a function of depth.
(DOCX)

S1 Excelsheet. MLST dataset: metadata and analysis results.
(XLSX)

S2 Excelsheet. ResFinder dataset: metadata and analysis results.
(XLSX)

S3 Excelsheet. VirulenceFinder dataset: metadata and analysis results.
(XLSX)

S4 Excelsheet. Example of a batch-upload prepared metadata sheet.
(XLSX)
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