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Abstract: In this paper, a low cost 28 GHz Antenna-in-Package (AIP) for a 5G communication
system is designed and investigated. The antenna is implemented on a low-cost FR4 substrate
with a phase shift control integrated circuit, AnokiWave phasor integrated circuit (IC). The unit cell
where the array antenna and IC are integrated in the same plate constructs a flexible phase array
system. Using the AIP unit cell, the desired antenna array can be created, such as 2 × 8, 8 × 8 or
2 × 64 arrays. The study design proposed in this study is a 2 × 2 unit cell structure with dimensions
of 18 mm × 14 mm × 0.71 mm. The return loss at a 10 dB bandwidth is 26.5–29.5 GHz while the peak
gain of the unit cell achieved 14.4 dBi at 28 GHz.

Keywords: phase array antenna; antenna in package; 28 GHz antenna

1. Introduction

Antenna technology is the latest breakthrough in design to accelerate cellular networks that aims
to optimize the communication system in terms of smoothness and cost of the communications itself.
Along with the development of the cellular network, currently the newest generation technology of the
networks has arrived at the fifth generation (5G) network. The success of the 5G network paved its way
to research for the newest technology product and to provide the best communication platform [1,2].
The 5G internet has become the center of research on how to improve its capabilities and novelty of the
technology itself. The design of the Antenna in Package (AIP) is one field of research of 5G technology
that can be improved to maximize the capabilities and functionalities of the technology [3].

The proposed research aims to optimize the bandwidth capabilities of the 5G technology by
designing the AIP with models that exhibit low-cost array antenna design. The recent research on
this field performed optimization of the 5G technology through space-frequency index modulation,
spectral, energy, and economic fields [4,5]. On the other hand, many research also explored optimizing
the scalability of the bandwidth of the 5G communication network. The first research was from K.
Kibaroglu et al. [6] that has successfully designed a simple model 32-element (4 × 8) working at 28 GHz
on the phased-array transceiver for 5G communication technology based on a 2 × 2 beamformer core
chips. The research has achieved an effective isotropic radiated power (EIRP) of 43 dBm at P1dB,
and the final state-of-art data rate was achieved in 1.0–1.6 Gb/s in a single beam using 16-QAM.
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Similar research on improving the 5G technology network in a different area is conducted by
J. Park et al. They improved the concept of the 5G technology through the use of the invisible
Antenna-on-Display (AoD) that has been successful in the millimeter-wave for the cellular network.
The invisible concept was designed and fabricated in a 1 × 8 optically invisible array that exhibits
a 66.6 dBi boresight gain that operate at 28 GHz, which is still capable of maintaining 88% of the
optical transparency. On the other side, A. M. Pawan Kumar et al. designed a quad-port wide-band
multiple-input-multiple-output (MIMO) that integrated the wide Axial-ratio concept. This was
successfully designed in a FR-4 dielectric substrate with size 45 × 45 × 1.6 mm3. Moreover, the design of
the proposed MIMO concept showed a 3-dB ARBW of 52% (3.8–6.5 GHz) and an impedance bandwidth
(S11 ≤ −10 dB) of 144% (2.2–13.5 GHz) [7,8].

G. F. Hamberger et al. proposed an antenna array with a planar dual-polarized microstrip
1-D-Beamforming for the 24 GHz band. Simulation results showed that it could operate in a frequency
of over 500 MHz. Similar work proposed a power-efficient multiband planar USB dongle antenna for a
wireless sensors network. A USB dongle antenna was designed to work with three frequencies bands
namely, 2.30–2.69 GHz, 3.40–3.70 GHz, and 5.15–5.85 GHz. At the end of the research, the efficiency of
power consumption in the looping process has significantly improved [9–11].

The spread of virus and influenza in recent years required the monitoring of physiological
signals without contact to the subjects, which is of the utmost priority. The wireless body sensor
networks (WBSNs) [12,13] overcome the difficulties of high risk infecting. Furthermore, C.A. Chen et
al. provided a low power [14] and efficient compression algorithm [15] to increase the effectiveness of
communication data without any loss. Body signals with noise are easy to confuse the diagnosis and
misjudge the symptom is another challenge. A filter with a reconfigurable clock [16] was designed
for WBSNs with better noise filtering therefore acquiring smooth signals. With the advancement of
both medical imaging and compressors, S.H. Chen et al. [17,18] used fuzzy decision and resolution to
improve the rate of image compression. Moreover, a central control unit and cost-efficient WBSNs
systems were required in a micro control unit implementation [19]. Moreover, the modularized
device brings a lot of convenience on combining the system and can simplify the design of many
other functional devices, like the wireless transmission of medical data by a wearable device [20].
These previous works contributed to the efficiency of the designs and real-time data implementations
to wireless communication devices.

This paper expands and continues previous studies and proposes an improvement in the
design of the AIP that is a low-cost 28 GHz AIP for the 5G communication system that is based on
2 × 2 beamformer core chips. The next sections present the phased-array architecture of the unit cells,
the analysis system for the elements array, and circuit blocks. Section 4 presents and discusses the
results and performance of the proposed design. In this study, the frequency band of the antenna
focuses on the n257 band (26.5–29.5 GHz) [21].

2. Patch Antenna Design

In this study, the micro strip patch antennas constructed the array system. The patch antenna is a
kind of a resonant antenna that is like a resonant cavity. One important parameter of a resonant cavity
is its quality factor (Q0), which is defined as shown in Equation (1) [22].

Q0 ≡ ω
2We

Pl
(1)

whereω is the frequency, We is the stored energy in the resonant cavity, and Pl is the power loss of the
resonant cavity. There are three kinds of losses in the resonant antenna namely radiation loss (Prad),
dielectric loss (Pd), and conducted loss (Pc). The formula is shown in Equation (2).

1
Q0

=
Prad

2ωWe
+

Pd
2ωWe

+
Pc

2ωWe
=

1
Qrad

+
1

Qd
+

1
Qc

(2)
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The antenna efficiency can be enhanced when the dielectric loss is reduced. This is due to the antenna
efficiency (ξ), as shown in Equation (3) that is proportional to Q0 when the conducted loss is fixed in
the critical coupled condition.

ξ =
Prad
Pl
∝

Q0

Qrad
(3)

This study used an air-filled cavity structure to design the patch antenna on a standard FR4
substrate [23]. This design constructed a metal patch that was located on the FR4 substrate with the
open air cavity. The reference ground used the copper layer on the carrier board as illustrated in
Figure 1. This design can reduce the dielectric loss and enhance the patch antenna performance with
better radiation efficiency. The dielectric constant of air was 1.0006 and the loss tangent of air was 0,
which can enhance the patch antenna performance with better radiation efficiency. The top and cross
section views are shown in Figure 2.
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Figure 2. (a) Top view and (b) cross section view of the patch antenna.

The return loss and radiation efficiency of the patch antenna are presented in Figure 3. Figure 3a
illustrates that the return loss of the patch antenna with air cavity is better than 10 dB at 26.5–29.5 GHz.
Figure 3b presents the radiation efficiency of the two types of antenna where the radiation efficiency of
the patch antenna with air cavity was 92% while the radiation efficiency of patch antenna without
air cavity was 66.25% at 28 GHz. The radiation efficiency was enhanced by 25.75% at 28 GHz.
The maximum radiation efficiency of the patch antenna with air cavity was 93.28% while the maximum
radiation efficiency of patch antenna without air cavity was 77.25%. The radiation efficiency was
enhanced by 16.03%.
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Figure 3. (a) The return loss and (b) the radiation efficiency of the patch antenna.

3. Array Antenna Design

The operation frequency band of the 5G system achieves the Ka-band. A small wavelength,
small beam width, and high atmospheric attenuation are the shortcomings of this frequency band while
its great advantages are its larger bandwidth and higher data rate. The multiple antenna techniques
(MTA) is the solution that can solve wave shadowing of millimeter wave propagation [24]. The array
antenna is an important development. The array antenna is composed of antennas that are arranged
periodically as illustrated in Figure 4. The beam main lobe can be tilted by changing the phase of the
antennas, which is called the beam steering technique.
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Figure 4. Beam steering/scanning antenna array [24].

In this study, the four patch antennas constituted a 2 × 2 array antenna as shown in Figure 5.
An AnokiWave phasor IC was set at the same side with the patch antennas. Such an arrangement makes
the array antenna become a complete system. This modular system is more flexible and expandable,
which is widely known as the Antenna-in-Package (AIP).
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The antenna spacing d is an important parameter in the design of the array antenna. In Figure 6,
the ideal maximum array directivity (D) of a 2 × 2 array antenna is 6 dBi [25]. Basically, the single
antenna gain (G) as shown in Equation (4) is proportional to the directivity of a single antenna. In fact,
the antenna efficiency of each element does not need to be considered when taking into account the
array gain. The array gain is equal to the array directivity. In this study, the estimated array gain is
5–6 dBi. Otherwise, the maximum scan angle must satisfy the condition in Equation (5). The θmax is
the maximum angle to which the array can be steered. The steering can be reckoned by Equation (5).
The maximum angle is listed in Table 1 with an operating frequency of 28 GHz.

Gsingle antnna = ξ·Dsingle antenna (4)

d
λ
≤

1
1 + |sinθmax|

(5)
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Figure 6. Directivity as a function of antenna spacing for a broadside array of isotropic elements [25].

The ideally maximum steering of the array antenna was ±90◦. With that the antenna spacing was
half the wavelength. In this study, the minimum spacing was 9.4 mm since the phasor IC was set
at the center of the proposed array antenna. The maximum steering of the proposed array antenna
approached ±10◦.

Table 1. Maximum scan angle with different antenna spacing.

Maximum Angle θmax (degree) Wavelength λ at 28 GHz (mm) Antenna Spacing d (mm)

10 10.71 9.13
20 10.71 7.98
30 10.71 7.14
40 10.71 6.52
50 10.71 6.07
60 10.71 5.74
70 10.71 5.52
80 10.71 5.40

The measured return loss of the simulated 2 × 2 array antenna of each port was better than 10 dB
at an operating frequency of 26.5–29.5 GHz as shown Figure 7. The simulation results of each port were
highly consistent, which is due to the structure of the array antenna that is in symmetry. The antenna
peak gain was 14.4 dBi as shown through m1 in Figures 8 and 9. The 3 dB beam width that is shown
through m2 and m3 on Figures 8 and 9, respectively, was 26◦. The comparison of the simulation
results of the single antenna and the array antenna is shown in Figure 10. The array gain was 5.78 dB,
which was consistent with the estimative value.
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The filed pattern of beam steering can be simulated by changing the phase of the four patch
antennas. The simulation results of the beam steering tilted angle at 28 GHz are shown in Figures 11
and 12. The maximum gain was 14.4 dBi for both X cut and Y cut. The beam steering tilted angle was
±34◦ in the X cut while the beam steering tilted angle was ±26◦ in the Y cut.
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Figure 12. Simulation results of the beam steering pattern at 28 GHz (Y-cut).

4. Antenna Manufacturing and Experimental Measurement

Progressive and lower loss materials were used to design a millimeter-wave antenna, such as
Rogers (RO 4003C or RO 4350B), low temperature co-fired ceramics (LTCC), PTFE, and liquid crystal
polymer (LCP). The manufacturing process of these novel kinds of materials is complex and their
manufacturing costs are very expensive. The FR4 substrate has a lower cost compared to the other
kinds of materials. The material cost of a Rogers material is three to five times more expensive than
that of an FR4 material. Furthermore, the choice of the manufacturer, manufacturing quantity, design
metal layers, and ordering options also affect the overall cost of the whole process. On the other hand,
a low loss material process is 100 times more expensive than the manufacturing cost of a traditional
FR4 PCB. However, the loss tangent of the low cost FR4 material is 0.01–0.04 at a frequency band of
26.5–29.5GHz, which restricts the performance of the antenna. The gain of the antenna that is designed
on an FR4 substrate is approximately 4.5 dBi. The performance of the antenna that is designed on an
FR4 substrate can be enhanced by using the air-filled cavity structure.

The antenna module proposed in this study was designed with a stack of three substrates and
four metal layers (M1, M2, M3, and M4) as illustrated in Figure 13. The production process started
by completing the circuit etching of the middle layer (M2 and M3) followed by the addition of two
layers of PP (PP_1 and PP_2) on top and below the middle layer. During this step, the upper and lower
materials of M2 (PP_1 and FR4_2) were laser precut as shown in the figure. The purpose of the laser
precut is to leave a cutting path that will be used as a guide for the removal of the center substrate
area later in the process. The next step was the lamination of M1 and M4, and the circuit etching for
both metal layers. This was followed by creating laser holes from M1 to M2 and M3 to M4, and finally
from M1 to M4. The final step involved mechanical drilling at the M4 surface towards the laser precut.
Once the holes from the M4 surface to the laser precut were properly drilled and aligned, the center
substrate could be removed therefore exposing the area of the entire air cavity. The key point of the
process technology is on the air-filled cavity structure. The tolerance of each air-filled cavity must
be made as small as possible. If the tolerance turned out to be significantly large, it will lead to a
significant difference in the gain of each patch antenna. In turn, the performance of the array will be
affected. In addition, the reserved M1 layer and its supporting material FR4_1 must be designed to be
thin in order to have a lossless air-filled cavity. Moreover, if the air-filled cavity is too large in terms of
area, it will have an impact on the antenna gain due to the changed distance of the patch relative to
the ground.
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Figure 13. Manufacturing process of the antenna with an air-filled cavity.

The proposed array antenna was manufactured on an FR4 substrate. Figure 14 shows a photograph
of the array antenna assembly. The measured results of the return loss for each port were better
than 10 dB at an operating frequency band of 26.5–29.5 GHz. The comparison of the simulation and
empirical results are presented in Figure 15. The empirical results are shown to satisfy the requirement
of a 5G system millimeter wave band.
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Figure 15. Comparison of the simulation and empirical results of the return loss of each patch, (a) return
loss of Patch1; (b) return loss of Patch2; (c) return loss of Patch3; (d) return loss of Patch4.

Figure 16 shows an NSI-700S-360 antenna chamber [26]. Its measurement coordinates are shown
in Figure 17. The gain measurement results of each patch antenna are shown in Figure 18 (X-cut) and
Figure 19 (Y-cut). The maximum gains were 8.58 dBi for Patch 1, 8.47 dBi for Patch 2, 8.49 dBi for Patch
3, and 8.64 dBi for Patch 4 in the X-cut. The maximum gain was 8.5 dBi for each Patch antenna in
the Y-cut.
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Figure 16. NSI-700S-360 antenna chamber, (a) instrument diagram; (b) equipment setup [26].
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Figure 18. Single patch antenna gain (X-cut).
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Figure 19. Single patch antenna gain (Y-cut).

The gain measurement results of the array antenna are shown in Figures 20 and 21. The maximum
gain was 14.4 dBi for the two cuts. The operated conditions of the phase for each patch antenna were
Patch 1: 0 degree, Patch 2: 180 degree, Patch 3: 180 degree, and Patch 4: 0 degree. These results
conform to the principle presented in Section 2. The 3D normalized radiation pattern is shown in
Figure 22b, which shows similar 3D radiation patterns to the simulation results shown in Figure 22a.
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Figure 20. Array antenna (2 × 2) gain measurement results (phase 0/180/180/0, X-cut).
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Figure 21. Array antenna (2 × 2) gain measurement results (phase 0/180/180/0, Y-cut).
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Figure 22. 3D radiation pattern of the array antenna at 28 GHz: (a) simulation result and (b) measurement
result (normalized).

5. Conclusions

The design and simulation of a 2 × 2 low cost phase array antenna module for 5G applications
operating at 28 GHz with 14.4 dBi antenna gain was proposed in this paper. The air-filled cavity used
for patch antenna structure was with a FR4 PCB material for cost reduction instead of using a Roger
or M6 material PCB. Moreover, it improved the antenna radiation efficiency by reducing the loss of
the material. Furthermore, the designed array unit could be used and combined for a higher order
array along two dimensions with a suitable surface mount technology (SMT) gap. It helps to easily
and reliably implement a high order array. Therefore, the proposed array antenna is a promising
candidate for the mm-wave 5G small cell applications. Table 2 summarizes the performance of this
work and compares it with state-of-the-art mm-wave phased-array antennas [27–38]. The proposed
patch shows around an 8.5 dBi antenna gain, which is better than [31,35,37,38], at a similar frequency.
It describes that the air-filled cavity as a patch gap between the ground increased the antenna efficiency
effectively instead of a lossy FR4 PCB material. The measured results of the single array unit show that
the maximum radiation direction can be steered from –34 to +34◦ continuously in the X-cut and –26 to
+26◦ continuously in the Y-cut at 28 GHz. The total dimension of the resulting design package was 18
mm × 14 mm × 0.71 mm. The gain of the array antenna achieved 14.4 dBi and the reflection coefficient
of the array antenna was less than −10 dB from 26.5 to 29.5 GHz.
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Table 2. Comparisons of antenna performance.

References
The Unit

Cells
Structure

The
Bandwidth
of Return

Loss

The Peak
Gain of the

Array

Evaluated
Peak Gain
of the Unit

Cell

The
Dimensions of

the Antenna
Module

Material

[27] 2 × 2 9.2–10.8 GHz 7.5 dB
10.8–14 GHz 2.5dBi 112 mm × 112

mm
Rogers

RT4735LZ

[28] 2 × 2 238.4–309.5
GHz

10.1 dB at
71.1 GHz 8 dBi 3 × 1.5 mm2 silicon

[29] 4 × 4 57.2–64.5
GHz

6.9 dBi at 62
GHz 7.5 dBi 14 mm × 14 mm

× 0.925 mm Rogers 5880

[30] 4 × 4 12 GHz 8.9 dBi at 12
GHz 10.1 dBi N/A RO3003

[31] 1 × 8 27.2–29.2
GHz

10.33 dBi at
29.2 GHz 6 dBi 130 mm × 42

mm × 0.127 mm
Taconic
RF-35

[32] 4 × 4 0.8 GHz 3.8 dBi at
30.5 GHz 6 dBi 6.85 × 6.85 cm2 organic

[33] 2 × 2 N/A 4.5 dBi at 60
GHz −1.5 dBi 4.5 mm × 3 mm RO4003C

[34] 1 × 2 9.39–10.26
GHz N/A 4.8 dBi

(Simulated) 15 × 1 5 mm2 RO4003

[35]

2 × 32
2 × 2

beamformer
chips

23.5–30.5
GHz EIRP 46 dBm 2~3 dBi

32 elements
(5.3 mm)

2 × 2
beamformer

(0.5 mm)

Megtron-6

[36] 2 × 2 N/A 15 dBi at 20
GHz 9 dBi

2 × 2
Quad-Mode

Antenna Array
(QMA)

N/A

[37] Yagi–Uda
antenna

26.86–28.87
GHz

6.03 dB at
26.86 GHz 6.03 dBi 25 mm × 15 mm Rogers 5880

[38] 2 × 2 × 14 28–30 GHz EIRP 54dBm 3~4 dBi 70 mm × 70 mm N/A

This study 2 × 2 26.5~29.5
GHz

14.4 dB at 28
GHz 10.6 dBi 18 mm × 14 mm

× 0.71 mm FR4
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