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Abstract. Regulation of the host immune response serves a 
pivotal role in the persistence and progression of malignant 
glioma. To date, cytotoxic cluster of differentiation (CD)-8+ T and 
natural killer cells are considered the main cellular components 
of host tumor control. The influence of macrophages in an 
orthotropic C6 tumor implantation model was investigated and 
the aim of the present study was to characterize the effects of 
systemic macrophage-activation on glioma growth by using the 
granulocyte macrophage colony stimulating factor (rhGM-CSF). 
A total of 20 male Sprague-Dawley rats were orthotopically 
implanted with C6 glioma spheroids and treated subcutaneously 
with 10 µg/kg rhGM-CSF every other day; 9 animals served 
as controls. Serial magnetic resonance imaging was performed 
on days 7, 14, 21, 28, 32 and 42 post-implantation to monitor 
tumor volume. Histological work-up included hematoxylin and 
eosin, CD68/ED-1 macrophage, CD8 T-cell and Ki-67 MIB1 
proliferation staining in gliomas and spleen. Experimental 
C6-gliomas developed in 15/20 (75%) animals. In rhGM-CSF 
treated rats, tumors developed significantly later and reached 
a smaller size (median, 134 mm³) compared with the controls 
(median, 262 mm³). On day 14, solid tumors presented in 11/17 
(65%) rhGM-CSF-treated animals; in control animals tumor 
growth was detected in 3/9 animals on day 7 and in all animals 
on day 14. The mean survival time was 35 days in the rhGM-CSF 
group and significantly longer when compared with the control 
group (24 days). Immunohistochemistry exhibited significantly 
more macrophages in tumors, particularly in the perivascular 
zone of the rhGM-CSF group when compared with untreated 

animals; intratumoral CD8+ counts were equal in both groups. 
A systemic stimulation of macrophages by rhGM-CSF resulted 
in significantly reduced and delayed tumor growth in the rodent 
C6 glioma model. The present data suggested a significant role 
of macrophages in host control of experimental gliomas on the 
innate immune response. Until now, the role of macrophages 
may have been underestimated in host glioma control.

Introduction

Despite advances in surgical techniques, radio- and chemo-
therapy, the outcome of patients suffering from glioblastoma 
multiforme (GBM) remains poor, with a median survival 
of <15 months (1). In recent years, immunotherapeutic 
approaches to malignant glioma have advanced rapidly. This 
is based on findings revisiting the traditional concept of the 
central nervous system (CNS) as an immunoprivileged locus. 
The discovery of the meningeal lymphatic system (2) and an 
improved understanding of brain T cell trafficking into the 
brain via the leptomeninges (3) and the blood-brain-barrier (4) 
represent important communication channels between the 
CNS and the peripheral immune system.

Whereas research has focused on T-cells as the critical 
component of the specific antigen-mediated antitumor 
response in malignant glioma, there is increasing evidence 
that non‑specific local immunotherapies may aid in glioma 
defense. Clinical observations that postoperative infections 
within or close to tumor sites promote a prolonged survival 
or even complete remission in patients with GBM (5-9) 
were supported by results of two retrospective single-center 
studies (10,11) that reported an effect of non‑specific systemic 
immune responses on glioma growth and surveillance. This has 
been confirmed experimentally with a novel approach using 
the local administration of heat-inactivated staphylococci as 
potent immunomodulators in an experimental gliosarcoma 
model, which led to oncolysis and prolonged survival asso-
ciated with a distinct peri‑ and intratumoral infiltration of 
macrophages (3).

In contrast to the effects of a topical application, it is 
still debated if systemic immunostimulation exerts a signifi-
cant antitumor effect. This is the basis and potential key for 
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immunotherapies. Non‑specific local immunotherapies have 
proven to be ineffective, whereas specific local immunothera-
pies have suggested a response (12). Non‑specific systemic 
immunotherapies have not been validated in studies, but 
numerous suggestions were made regarding effects in aller-
gies and brain abscesses (13). Host factors, including the tumor 
microenvironment, considerably influence glioma growth and 
targeting angiogenetic and inflammatory properties recently 
evolved as an effective treatment strategy (14).

In 2004, spontaneous regression was observed in animal 
studies with experimental gliomas (15). Spheroids of C6 cells 
were implanted into the brain and tumor growth was measured 
by magnetic resonance imaging (MRI)-based volumetry. The 
aim of the current study was to evaluate effects of a stimulation 
of the innate immune response, particularly of macrophages, 
on the proliferation of glioblastoma. For that purpose, recombi-
nant human granulocyte macrophage colony stimulating factor 
(rhGM-CSF), which has been established in the treatment of 
neutropenia with a known safety profile, was used in this study.

Materials and methods

Tumor cell culture and generation of 3D spheroids. 
Multicellular spheroids from C6 tumor cells (CLS Cell Lines 
Service GmbH, Eppelheim, Germany) were generated by 
seeding cells in 75 cm² culture flasks filled with Dulbecco's 
modified Eagle's medium (DMEM). Flasks were base‑coated 
with 1% noble agar (Difco; BD Biosciences, Franklin Lakes, NJ, 
USA) dissolved in medium. Incubation was performed at 37˚C 
in the presence of 5% CO2 with 100% humidity. Spheroids were 
screened for signs of necrosis using inverted light microscopy. 
Following 6 days, spheroids with a diameter of 200-300 µm 
without a necrotic core were selected for implantation.

Animal preparation, operative procedure and stimula‑
tion of systemic macrophages. The animal care committee 
of the district authorities (Regierung von Unterfranken, 
Veterinärwesen, Bavaria, Germany; AZ 55.2-2531.01-65/10) 
approved the experimental procedures. The implantation 
procedure has previously been described in detail (15,16). 
For the current study, 29 male Sprague-Dawley rats (weight, 
250-300 g) were anesthetized by an intraperitoneal (i.p.) 
injection of ketamine hydrochloride (Ketavet™; Pfizer, Inc., 
New York, NY, USA) and xylazine hydrochloride (Rompun™; 
Bayer AG, Leverkusen, Germany). The animals' heads were 
fixed in a stereotactic frame using non-perforating bars, a 
midline incision of the scalp was performed and a 2 mm burr 
hole was placed 2 mm left of the bregma. Following excision of 
the dura, the cortex was incised in a semicircular fashion using 
a microscalpel. Under microscopic view, a single spheroid was 
then placed 2-3 mm subcortically. Following surgery, animals 
were housed using a 12-h dark/light cycle with free access to 
food and water and were monitored for signs of discomfort or 
neurological abnormalities daily. Of the 29 animals implanted 
with C6 glioma spheroids, 20 rats received a subcutaneous 
injections of 10 µg/kg rhGSM-CSF every other day. Nine 
animals served as a control group.

MRI and tumor volumetry. MRI exams were performed on 
postoperative days (POD) 7, 14, 21, 28, 32 and 42 with a 3 T 

clinical scanner (Magnetom Trio®; Siemens Healthineers, 
Erlangen, Germany) using a round surface coil. The following 
sequences were performed: T1 TSE cor (0.9 mm), cor T2 
TSE rs (0.7 mm) and cor T2 CISS 3D (0.3 mm). Animals 
were anesthetized using Ketavet® as described and were then 
administered 0.1 ml contrast agent i.p. 10 min prior to MRI 
examination. Tumor volumes were calculated using the T2 3D 
CISS sequences by using MRI Convert® and MIPAV® software.

Tissue preparation. Following each MRI exam, two randomly 
selected animals were sacrificed for histological examination. 
Brains and spleens were removed and immediately fixed in 
paraformaldehyde solution for 24 h and stored in cold PBS 
(pH 7.4; 4˚C) for one week prior to paraffin embedding. For 
histological studies, spleen sections and coronal brain sections 
cut into 4-µm slices.

Histological and immunohistochemical analyses. Hematoxylin 
and eosin (H&E) staining was performed for an estimation of 
the gross morphology of tumors and spleen sections.

For immunohistochemistry, sections were stained with 
Ki67 and CD8 antibodies targeting CD8+ lymphocytes (AK 
CD8α; eBioscience; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA; cat. no. 14-0084; AK CD68, Zymed; Thermo 
Fisher Scientific, Inc.; cat. no. 603‑2210; AK Ki67; Zymed; 
Thermo Fisher Scientific, Inc.; cat. no. RMPD 004). Omission 
of primary antibodies in the control experiments resulted in 
the expected absence of any cellular labeling. The extent of 
infiltration of different immune‑cell subsets was quantified by 
cell counting of five representative high‑power fields (HPF) in 
each section, including the tumor margins.

In order to estimate the putative effects of rhGM-CSF stimu-
lation, macrophages and CD8+ lymphocytes in tumor tissues 
were counted and the corresponding spleen tissue functioned as 
positive control. Sections were counted at a magnification of x100 
using a microscope. In each case, five contiguous fields of view 
were counted and the mean was determined. For brain sections, 
five visual fields were counted starting from the tumor margin. 
As ED1 stains macrophages and microglia, only cells with 
distinct phagocyte morphology were considered. In CD8+ cells, 
only cells with clear lymphocyte morphology were included.

Data analysis. Survival time is presented using box plots. Tumor 
volumes and cell counts are presented as the median ± standard 
deviation. Due of the small sample size, all analyses were of 
explorative nature. The results (survival times, tumor growth, 
cell counts) were evaluated graphically. Animals surviving 
42 days without MRI-based evidence of tumor growth were 
excluded from the analysis. Overall survival was assessed 
by Kaplan-Meier analysis and differences between survival 
curves were calculated by using Graph Pad Prism® (GraphPad 
Software, Inc, La Jolla, CA, USA). P<0.05 was considered to 
indicate a statistically significant difference. Student's t‑tests 
were used in pairwise comparisons.

Results

MRI studies
rhGM‑CSF group. On POD 7, 2/20 (10%) animals treated 
with rhGM-CSF developed a visible tumor. Two animals were 



ONCOLOGY LETTERS  17:  4843-4850,  2019 4845

sacrificed on POD 7 for analysis and further two rats were 
excluded from the trial due to anesthesia-associated complica-
tions, leaving 16 animals for evaluation on POD 14. At that 
time, solid tumors were observed in 11/16 (65%) animals and 
on POD 21, tumors were visible in 14/15 animals. A further 
animal exhibited a visible tumor on POD 28. Solid tumors 
developed in 15/20 (75%) animals. Tumor regression was 
observed in six (30%) animals. As a result of severe symptoms 
associated with tumor growth, seven (35%) animals of the 
rhGM‑CSF group were sacrificed during the trial.

An exemplary course of tumor growth is presented in Fig. 1. 
On POD 7, the first extracranial fluid accumulation caused by 
the surgical trauma was detected. On POD 14, minimal tumor 
growth with contrast uptake at the edges of the surgical cavity 
was observed. An increase in size caused peritumoral edema. 
On POD 28, a midline shift to the opposite side developed due 
to a mass effect. In addition, the central sparing of contrast 
enhancement representing necrotic changes was accompanied 
by a decrease of tumor volume. The peritumoral edema disap-
peared and midline shift was no longer visible. A small defect 
with a fading contrast enhancement remained at POD 32 and 42.

Effects of rhGM-CSF on tumor growth and survival are 
documented in Figs. 2 and 3. Until POD 20, no significant 
differences were determined. The mean survival time was 
35 days in the rhGM-CSF.

Control group. On POD 7, small tumors were visible in 3/9 
(30%) animals. On POD 14, tumor growth was observed in all 
control animals. A total of 6/9 (66%) animals were sacrificed 
due to severe symptoms of tumor growth. A total of 3 animals 
were used for histological examination. On POD 28, one 
animal remained, which was then sacrificed due to tumor mass 
and occurring symptoms. In contrast to the rhGM-CSF-group, 
none of the control animals exhibited spontaneous regression 

(Fig. 2). On POD 28, only one measurement was obtained for 
the control group and no statistical comparison was performed.

Comparison of treatment and control groups. Treatment with 
rhGM‑CSF significantly prolonged survival in the rhGM‑CSF 
group compared with the control group (35 vs. 24 days; 
P=0.0343). Tumor volume measurements suggested a delayed 
growth onset in the rhGM-CSF group compared with the 
control and a reduced median volume (134 vs. 262 mm³).

Histology. Spheroids were orthotopically implanted and in 
15/20 animals tumor growth was observed. In addition, some 
animals exhibited extracranial tumor components. H&E 
staining revealed typical growth characteristics of GBM-type 

Figure 1. Magnetic resonance imaging performed with a 3 T clinical scanner. T1 with 0.1 ml contrast medium intraperitoneal: POD 7-42 results are presented. 
POD 7, extracranial fluid accumulation; POD 14, minimal tumor growth and contrast medium uptake; POD 28, midline shift due to increasing tumor mass 
accompanied by necrotic changes; POD 32 and 42, decreasing tumor volume, disappearing peritumoral edema and midline shift. Small defects with a 
remaining fading contrast enhancement. POD, postoperative day.

Figure 2. Tumor growth in the rhGM-CSF and control groups. On postopera-
tive day 28 only one measurement of the control group was evaluated and 
no statistical comparisons were performed. rhGM-CSF, recombinant human 
granulocyte macrophage colony stimulating factor.
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neovascularity, necrosis and palisade-type arrangement of the 
tumor cells (Fig. 4).

CD8+ cells, including cytotoxic T-cells, were monitored to 
reveal potential effects on tumor growth. There was no signifi-
cant difference in CD8+ positive cells in the two groups (Fig. 5).

CD68 staining revealed brown-colored macrophages 
that were located in necrotic areas and in solid tumor tissues 
(Fig. 6). In addition, numerous macrophages were grouped 
around tumor vessels (Fig. 7).

Analyzing the time course of macrophage invasion, the 
maximum number was observed when regression started 
(Fig. 8). Decreasing tumor size led to decreasing numbers of 
macrophages. Compared with the control group, rhGM-CSF 
animals presented a significantly higher numbers of macro-
phages in brain slices (P=0.0275).

Discussion

In the current study, tumor tissues of rhGM-CSF animals 
exhibited significantly higher numbers of macrophages in 

five‑fields‑of‑view compared with the controls. In addition, 
animals of the experimental group survived significantly 
longer compared with animals of the control group. Based on 
the knowledge that macrophage invasion is correlated with 
tumor growth in glioblastoma and experimental models, the 
current data describing reduced tumor growth associated with 
increased macrophage invasion suggested that the pharma-
cological induction of macrophages may attenuate or inhibit 
tumor growth.

A rat brain tumor implantation model was established 
to investigate macrophage infiltration and tumor growth in 
rhGM-CSF-treated animals. Compared with mouse models, 
the larger size of the rat brain facilitates a more precise 
intracerebral implantation of tumor cells and better in vivo 
imaging and volumetry of the growing mass (15). Among 
the various rat brain tumor models, the C6 glioma model 
has been extensively used and is the best characterized 
experimental model to investigate a wide array of biological 
properties of glial tumors, including, their mechanisms of 
invasion and angiogenesis, intratumoral signaling pathways 

Figure 4. Hematoxylin and eosin staining. Typical growth characteristics of 
glioblastoma multiforme; neovascularity necrosis and palisade type arrange-
ment of tumor cells are presented. Scale bar, 200 µm.

Figure 6. CD68 staining of solid tumor tissues. Macrophages were presented 
with brown coloring. The arrows indicate macrophages in the solid tumor 
tissues. Scale bars, 200 µm. CD, cluster of differentiation.

Figure 5. Effects of CD8+ cells on tumor growth in the rhGM-CSF and 
control groups. No significant difference in CD8+ cells was observed 
(P>0.05). rhGM-CSF, recombinant human granulocyte macrophage colony 
stimulating factor. CD, cluster of differentiation; rhGM-CSF, recombinant 
human granulocyte macrophage colony stimulating factor.

Figure 3. Effects of rhGM-CSF on overall survival. Treatment prolonged 
survival of animals in the rhGM‑CSF group significantly compared with the 
control (35 vs. 24 days; P=0.0343). rhGM-CSF, recombinant human granulo-
cyte macrophage colony stimulating factor.
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and efficacy of novel therapeutic modalities (15,17). The C6 
glioma model was originally developed by Benda et al (18) by 
repetitive administration of methylnitrosourea to Wistar rats 
and was further successfully established in Long-Evans and 
Sprague-Dawley rats (19,20). C6 cells share certain morpho-
logic features of human glioblastoma-type pleomorphic cells, 
including nuclear polymorphism, a high mitotic index, areas 
of necrosis and invasion into the surrounding brain tissue (21). 
A limitation of the model is its immunogenicity. Several rat 
strains challenged with C6 cells develop a vigorous immune 
response. Hence, studies on immunotherapies using the C6 
model require careful interpretation (22).

In brain tumors, high numbers of macrophages are 
detected, increasing with the degree of malignancy (23,24). 
A total of 5-30% are typified as microglia/macrophages 
and account for the majority of infiltrating immune cells in 
gliomas (25). The majority of studies does not distinguish 

between microglia and systemic macrophages (CD68 and 
CD11b/c positive) (26-28). Badie et al (23) have reported that a 
differentiation of the CD11b/c positive cells is possible through 
quantification due to low expression of CD45 in microglia and 
increased expression in macrophages (1,23,29). Initially, it 
was assumed that high numbers of microglial cells indicate a 
strong antitumor response in gliomas; however, certain studies 
postulated a positive effect on tumor growth and a support 
of the immunosuppressive peritumoral region (23,30). There 
are various synergistic mechanisms between glioma cells and 
microglia/macrophages that ensure an immunosuppressant 
milieu. On the one hand, microglia express low levels of major 
histocompatibility complex class II (MHC II) in the vicinity 
of the glioma. The production of transforming growth factor 
(TGF) β by glioma cells causes downregulation of MHC class 
II expression (31). These molecules are essential in the interac-
tion of antigen-presenting cells and T-lymphocytes (32-34). On 
the other hand, glioma cells produce substances with immu-
nosuppressive effects. These substances include interleukin 
(IL) 4, IL 6, TGF β [21] and prostaglandin (PG) E2 (32).

Further studies reported a positive effect of high numbers of 
tumor-macrophages (35,36). Galarneau et al (37) analyzed the 
influence of macrophages on the growth of glioma cells using 
a transgenic mouse model. Depletion of the macrophages leads 
to an increase of tumor volume by ≤33%. It is a well‑known fact 
that macrophages are able to recruit T cells by release of tumor 
necrosis factor (TNF) (38). However, it remains to be elucidated 
whether effects on tumor growth are driven by macrophages 
alone or through TNF-mediated activation of T cells. In addi-
tion, a lower vessel density of ~12% in macrophage-depleted 
animals was observed. Thus, it is unlikely that increased tumor 
growth is associated with increased vascular supply (27). 
Furthermore, Villeneuve et al (38) struggled to determine 
whether an altered vascular supply in the tumor is caused by 
the depletion of macrophages.

To determine effects of rhGM-CSF treatment, the M1 and 
M2 status of macrophages has to be considered. Macrophages 
present in two different forms, the M1 and M2 status (32,33,39). 
The M1 status describes classically-activated macrophages 
associated with inflammation (22,29). In the presence of 
various cytokines, including rhGM-CSF and interferon γ, 
monocytes develop to macrophages with M1 status (33). 
Expression of signal transducer and activator of transcription 
(STAT) 1, M1 macrophages exhibit antimicrobial, immu-
nostimulatory and antitumor functions (40). TNF is another 
factor that contributes to the activation and recruitment of 
microglia/macrophages. Production of this proinflammatory 
cytokine contributes to recruitment (33). The M2 status arises 
from alternative activation and describes macrophages under 
normal conditions. Among other factors, this status is respon-
sible for preventing excessive immune reactions and explains 
the more immunosuppressive character of M2 (38). The 
conversion from M1 to M2 status is induced by IL 4, IL 6, IL 
10 and M-CSF. Expression of STAT3 causes M2 macrophage 
activation, including tissue repair and support of angiogenesis, 
and favors a tumor progression. This is mediated by the release 
of various compounds, including IL 10 and TGF (33,41).

During the early stages of glioma development, macro-
phages are arrested in the M1 tumor suppressive status. 
The percentage of microglia/macrophages arresting in M2 

Figure 8. Course of macrophage invasion. A maximum was reached at tumor 
regression initiation. Decreasing tumor size led to decreasing numbers of 
macrophages. Compared with the control, rhGM-CSF-treated animals 
presented a significantly higher number of macrophages in brain slices 
(P=0.0275). rhGM-CSF, recombinant human granulocyte macrophage 
colony stimulating factor.

Figure 7. CD68 staining of macrophages around tumor vessels. Macrophages 
were presented with brown coloring. The arrow indicates macrophages 
that were grouped around tumor vessels. Scale bar, 50 µm. CD, cluster of 
differentiation.
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correlates with the histological grade of malignancy in 
glioma (35,37,39). Certain mediators produced by the tumor 
induce the conversion from M1 to M2; these include IL 4, IL 10, 
TGF β and M-CSF (35,39,40,42). M-CSF produced by tumor 
cells increases M2 microglia and macrophages and promotes 
tumor growth and proliferation (40). Reduced tumor growth is 
detected when inhibiting the M2 status (42,43). Macrophage 
activation by rhGM-CSF may be a novel therapeutic approach 
in preserving the M1 status for prolonged periods, preventing a 
transition into the M2 status (43). Microglial cells treated with 
rhGM-CSF exhibit upregulated growth and form a heteroge-
neous cell population in vitro, similar to macrophages. Their 
function is strongly associated with local environmental 
factors, such as rhGM-CSF and M-CSF (30,44).

Expression of the Fas-ligand enable macrophage/microglia to 
support the immunosuppressive environment of gliomas (41,45). 
There is evidence that cancer stem cells represent the major 
cause for reprogramming microglia/macrophages to adapt 
the immunosuppressive M2 status. Tumor stem cells produce 
soluble (s) CSF, macrophage cytokine 1 (MIC1) and TGF β1. 
These substances polarize microglia/macrophages in the M2 
status, block phagocytosis and the production of immunosup-
pressive cytokines is induced, including IL 10 and TGF β1. In 
addition, inhibition of T-cell proliferation is observed (41,45,46). 
Macrophages exhibit tumor suppressive functions at later 
stages in the development of gliomas. Changes may be influ-
enced pharmacologically during this period (41,47). It has been 
postulated that the therapeutic approach using tumor-asso-
ciated macrophages is more successful with a staggered 
induction (43). Considering that different means of activation 
trigger various responses explains the comparatively late tumor 
growth observed in a number of rats of the GM-CSF group 
in the current study. A novel therapeutic approach to treating 
GBM via targeting macrophages at different states of activity 
may be considered in the future (32,39,40). Additionally, it 
has to be clarified, which type of macrophages is promoted 
by administration of rhGM-CSF that further stimulates tumor 
progression (35,48). Depletion of rhGM-CSF led to a reduced 
number of tumor-promoting macrophages and interfered 
with the development of proinvasive macrophages. In animal 
studies, rhGM-CSF-depleted animals exhibit increased overall 
survival (48). In contrast, Grabstein et al (49) described 
enhanced tumor suppressing properties of macrophages by 
stimulating with rhGM-CSF in vitro and noted that macro-
phages exhibit improved antitumor activities.

Effects of rhGM-CSF on an immune system with tumor 
control are associated with the dose (50). High systemic 
concentrations lead to recruitment of regulatory T cells, 
which contribute to the immunosuppressive environment and 
interfere with the response against the tumor exerted by the 
immune system itself. Low doses in the context of vaccina-
tions with tumor antigens lead to an immune stimulation and 
enhance antitumor activity (50,51). To reduce inter-individual 
differences, investigations were performed using genetically 
identical mice. It is postulated that rhGM-CSF at high doses 
reduces the expression of M-CSF receptor, in contrast to 
a promotion of receptor expression that is observed at low 
doses (52,53). In humans, treatment with defined amounts of 
GM-CSF lead to varying serum levels of M-CSF receptor due 
to individual variance (51).

Data presented in the current study supported the hypoth-
esis of an antitumor effect of rhGM-CSF. The number of 
macrophages counted in tumor tissues of the rhGM-CSF group 
was increased compared with the control group. An analysis 
of macrophage counts and tumor volume over time produced 
supporting results; initially an increase was observed that 
towards the end of the trial almost reached baseline levels. It 
was observed that rhGM-CSF increased macrophage accumu-
lation and exhibited a positive effect on tumor suppression.

In conclusion, a systemic stimulation of macrophages by 
rhGM‑CSF led to significantly reduced and delayed tumor 
growth in a rodent C6 glioma model. Model being aware that 
studies on immunotherapies using the C6 rat model have to be 
interpreted carefully because of its immunogenicity.

The host control of experimental gliomas by macrophages 
may be combined with other promising immune-based 
approaches, including chimeric antigen receptor T-cell 
technology or PD-1/PD-L1 checkpoint inhibitors. The role 
macrophages serve in host tumor control may have been 
underestimated in the past.
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