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Abstract
PI3K/AKT/mTOR pathway plays important roles in cancer development, and the negative role of PTEN in the PI3K/
AKT/mTOR pathway is well known, but whether PTEN can be inversely regulated by PI3K/AKT/mTOR has rarely
been reported. Here we aim to investigate the potential regulatory relationship between PTEN and Akt/mTOR
inhibition inMEFs. AKT1E17K and TSC2–/– MEFs were treated with the AKT inhibitor MK2206 and themTOR inhibitors
rapamycin and Torin2. Our results reveal that inhibition of AKT or mTOR suppresses PTEN expression in AKT1E17K

and TSC2–/– MEFs, but the transcription, subcellular localization, eIF4E-dependent translational initiation or lyso-
some- and proteasome-mediated degradation of PTEN change little, as shown by the real time PCR, nucleus
cytoplasm separation assay and immunofluorescence analysis. Moreover, mTOR suppression leads to augmen-
tation of mouse PTEN-3′UTR-binding miRNAs, including miR-23a-3p, miR-23b-3p, miR-25-3p and miR-26a-5p, as
shown by the dual luciferase reporter assay and miRNA array analysis, and miRNA inhibitors collaborately rescue
the decline of PTEN level. Collectively, our findings confirm that inhibition of mTOR suppresses PTEN expression by
upregulating miRNAs, provide a novel explanation for the limited efficacy of mTOR inhibitors in the treatment of
mTOR activation-related tumors, and indicate that dual inhibition of mTOR and miRNA is a promising therapeutic
strategy to overcome the resistance of mTOR-related cancer treatment.
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Introduction
Phosphatase and tensin homologue (PTEN) is a classical tumor
suppressor that has been identified to be frequently disrupted in
human sporadic tumors. In addition to inducing tumorigenesis after
loss-of-function mutation, PTEN also governs a series of cellular
processes under physiological conditions, including cell survival,
proliferation, senescence, motility and polarity [1]. Phosphoinosi-
tide 3-kinase (PI3K) promotes the phosphorylation of phosphatidy-
linositol 4,5-bisphosphate (PI(4,5)P2) into phosphatidylinositol
3,4,5-trisphosphate (PI(3,4,5)P3), which activates the downstream
AKT pathway. PTEN antagonizes the function of PI3K by depho-
sphorylating PIP3 back to PIP2, hence inactivating AKT [2]. PTEN

carries out most of its biological functions by intervening in the
PI3K/AKT pathway as a lipid phosphatase. As the downstream
molecule of PI3K, AKT directly phosphorylates tuberous sclerosis
protein 2 (TSC2) and then disrupts the TSC1/2 complex, which
inhibits the activity of RAS-related small GTPase-activating protein
enriched in the brain (Rheb) [3,4]. Mammalian target protein of
rapamycin (mTOR), a serine/threonine kinase, has been demon-
strated to participate in many biological processes, such as nutrient
metabolism, cell cycle progression and autophagy [5,6]. Consistent
with TSC2 deficiency, both PTEN deficiency and AKT activating-
mutation (AKT1E17K) lead to mTOR consecutive activation via
negative regulation of Rheb [7,8]. However, the roles they play on
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AKT are different: PTEN deletion and AKT1E17K mutation lead to
phosphorylation of AKT1 on Ser473, whereas TSC2 knockout
results in inhibition of AKT1 phosphorylation.
Given the important role played by PTEN under physiological

conditions, the expression and activity of PTEN are tightly regulated
through several mechanisms, including epigenetic silencing,
transcriptional repression, posttranscriptional regulation by non-
coding RNAs, inhibition of translation initiation [9], posttransla-
tional modifications [10] and aberrant subcellular localization [11].
Furthermore, the interaction between PTEN and other cellular
proteins may also affect its function, activity and abundance, either
positively or negatively [12]. Although the regulation of PTEN has
been investigated widely and the inhibitory activity of PTEN on the
PI3K/AKT/mTOR pathway is well established, whether PTEN can
be inversely regulated by PI3K/AKT/mTOR has rarely been
reported.
In this study, to gain more insight into the regulatory relationship

between PTEN and the PI3K/AKT/mTOR signaling pathway, PTEN
protein levels were examined in AKT1E17K and TSC2–/– mouse
embryonic fibroblasts (MEFs) after treatment with AKT or mTOR
inhibitors. The results confirmed that the regulatory role of the
PI3K/AKT/mTOR pathway on PTEN is dependent on mTOR, and
inhibition of either AKT or mTOR effectively suppresses PTEN
expression.

Materials and Methods
Cell culture and transfection
AKT1E17K, TSC2–/– and control MEFs were isolated from the
pregnant mice by the collagen digestion method and preserved in
our lab. All cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM; Gibco, Carlsbad, USA) containing 10% fetal
bovine serum (FBS; Gibco) and 1% penicillin/streptomycin
(Thermo Fisher Scientific, Waltham, USA) at 37°C, 5% CO2, and
95% humidity in 12-well plates (Corning, New York, USA), untile
the cell confluence reached 70%–80%. Before transfection, the
supernatant was removed, and the MEFs were washed with
phosphate-buffered saline (PBS) and cultured in fresh serum-free
DMEM without antibiotics. After dilution, the complex of the
plasmids and Lipofectamine 3000 (Thermo Fisher Scientific) was
gently added into the well, and then the transfection mixture was
discarded and replaced by fresh full DMEM 4–6 h later. The
transfected cells were cultured in an incubator for another 24-48 h
before further assays.

Western blot analysis
Cells were harvested and lysed for protein expression analysis.
Equal amounts of total protein from each group were isolated by
12.5% SDS-PAGE and transferred to nitrocellulose filter (NC)
membranes (Millipore, Billerica, USA). After being blocked with
5% nonfat milk (BD, Franklin Lakes, USA) for 1 h at room
temperature, the membranes were incubated with a specific
primary antibody overnight at 4°C. After three times wash with
TBST, the blots were incubated with IRDye 680RD goat anti-mouse
or IRDye 800RD goat anti-rabbit secondary antibodies (LI-COR,
Nebraska, USA) for 1 h at room temperature. Then, the fluorescence
on the membrane was detected with the ODYSSEY Clx Capture
system (LI-COR) and imaged. Finally, the band intensity was
analysed with ImageJ software. The details of the primary
antibodies were as follows: PTEN (9559, 1:1000; CST, Shanghai,

China), 4E-BP1 (9644, 1:1000; CST), P-4E-BP1T37/46 (2855, 1:1000;
CST), S6 (2217, 1:1000; CST), P-S6Ser235/236 (4858, 1:1000; CST),
AKT1 (2938, 1:1000; CST), P-AKT1S473 (9018, 1:1000), TSC2 (4308,
1:1000; CST), Lamin A/C (4777, 1:1000; CST), GAPDH (97166,
1:1000; CST), eIF4E (2067, 1:1000; CST), P62 (8025, 1:1000; CST),
β-catenin (9587S, 1:1000; CST), and β-actin (SC-47778, 1:3000;
Santa Cruz, Shanghai, China).

miRNA and mRNA microarray data analysis
Total small RNA samples of TSC2–/– MEFs after treatment with 10
nM rapamycin (Sigma, St. Louis, USA) were prepared and analysed
with a microarray (02_M12.0_090121; PTM BIO, Beijng, China).
The normalized microarray data were processed with ArrayPro
(Array Nonlinear Dynamics). Moreover, total mRNA samples of
TSC2+/+, TSC2–/– and TSC2–/– MEFs treated with rapamycin were
prepared and measured using an Affymetrix mouse genome 4302.0
array (Affymetrix, PTM BIO, Beijng, China). A fold change greater
than 2.0 and a P value less than 0.05 were considered statistically
significant.

Total RNA isolation, miRNA isolation and expression
analysis
Total RNA was extracted after AKT1E17K, TSC2–/– and control MEFs
were treated with 5 μM MK2206 (Selleck, Houston, USA), 10 nM
rapamycin and 50 nM Torin2 (MedChemExpress, Princeton, USA),
respectively, using the TRIzol reagent (Invitrogen, Carlsbad, USA).
The concentration and purity of total RNA were measured using a
Nanodrop spectrophotometer (Thermo Fisher Scientific). Then,
1 μg total RNA was reverse transcribed to cDNA using the first
strand cDNA synthesis kit (11141; Yi Sheng, Beijing, China). Total
small RNA was obtained with a miRNA isolation kit (AM1561,
Invitrogen) according to the manufacturer’s instructions. Moreover,
a miRNA first strand cDNA synthesis kit (B532451; Sangon Biotech,
Shanghai, China) was used to reverse transcribe miRNA into cDNA.
Real-time polymerase chain reaction (PCR) was conducted using
2× qPCR Master Mix (Abm, Richmond, Canada) following the
manufacturer’s protocol. The PCR conditions were: 95°C for 20 s,
followed by 40 cycle of amplification at 95°C for 1 s, 60°C for 10 s,
and 72°C for 30 s. Actin and U6 were used as normalized controls
for detecting mRNA and miRNA expression, respectively. The
relative expression level was calculated by the 2–∆∆Ct method. The
primers used for PCR are listed in Table 1.

RNA transfection
The siRNAs of mouse 4E-BP1 were designed and synthesized by
TsingKe Biotechnology (Beijing, China). The shRNA sequences of
mouse Eif4e are as follows: Sh-1, 5′-CCGGCCTTCGATTGATCTC
TAAGTTCTCGAGAACTTAGAGATCAATCGAAGGTTTTTG-3′; Sh-
2, 5′-CCGGCCGAAGATAGTGATTGGTTATCTCGAGATAACCAAT
CACTATCTTCGGTTTTTG-3′; Sh-3, 5′-CCGGGCAAGCAAACCTTC
GATTGATCTCGAGATCAATCGAAGGTTTGCTTGCTTTTTG-3′.
The siRNAs were transfected into AKT1E17K or TSC2–/– MEFs to
knockdown 4E-BP1 with LipofectamineTM RNAiMAX (Invitrogen)
transfection reagent according to the manufacture instructions. The
Eif4e shRNA were synthesized, annealed and inserted into the
PLKO.1 vector to construct lentivirus plasmids and then transfected
into AKT1E17K or TSC2–/– MEFs to knockdown eIF4E according to
the protocol of LipofectamineTM 3000 Reagent (Invitrogen). Mimics
of NC (miR1N0000001-1-5), miR-23a-3p (miR10000532-1-5), miR-
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23b-3p (miR10000125-1-5), miR-25-3p (miR10000652-1-5), miR-
26a-5p (miR10000533-1-5), and inhibitors of NC (miR2N0000001-1-
5), miR-23a-3p (miR20000532-1-5), miR-23b-3p (miR20000125-1-
5), miR-25-3p (miR20000652-1-5), miR-26a-5p (miR20000533-1-5)
were purchased from RiboBio (Guangzhou, China) and transfected
into AKT1E17K or TSC2–/– MEFs with LipofectamineTM RNAiMAX
transfection reagent respectively.

Nucleus and cytoplasm separation
Nuclear protein and cytoplasmic protein were separated using a
nucleus-cytoplasm separation kit (sc-003; Invent, Beijing, China)
after AKT1E17K and TSC2–/– MEFs were treated with 10 nM
rapamycin for 24 h.

Immunofluorescence microscopy
After treatment with 10 nM rapamycin for 24 h, AKT1E17K and
TSC2–/– MEFs grown on slides (Corning, New York, USA) were
washed with PBS and then fixed with 4% paraformaldehyde
(Servicebio, Wuhan, China) for 30 min at room temperature. After
incubation with 0.1% Triton X-100 (Solarbio, Beijing, China), the
cells were blocked with 3% BSA (Thermo Fisher Scientific) and
further incubated with a rabbit monoclonal anti-PTEN antibody
(9559, 1:500; CST) in 3% BSA blocking buffer overnight at 4°C. The
slides were then incubated with a Cy3-conjugated goat anti-rabbit
secondary antibody (1:300; Servicebio) for 1 h at room temperature.
Finally, the cell nuclei were stained with DAPI-anti-fluorescence
quenching-fluoromount (ab104139; Abcam, Cambridge, England),
and the fluorescence images were examined and captured under a

confocal microscope (Leica, Weztlar, Germany).

Dual-luciferase reporter assay
The 3′-untranslated region (3′UTR) of mouse PTEN was amplified
from C57B6 L mouse genome DNA, and the whole fragment was
divided into four segments since it was too long. The four separate
fragments were cloned into the pmirGLO dual-luciferase reporter
plasmid (Promega, Madison, USA) to construct four plasmids
named pmirGLO-PTEN-3′UTR-F1, F2, F3, and F4 using primers
shown in Table 2. The dual-luciferase reporter plasmids and
pmirGLO control plasmid were transfected into TSC2–/– MEFs using
Lipofectamine 3000 transfection reagent, respectively. The transfec-
tion mixture was removed and replaced by fresh full DMEM
containing 10 nM rapamycin after 4-6 h of transfection. Then, the
cells were harvested and lysed 24 h later. The lysates were added to
black 96-well plates to measure Renilla luciferase activity using the
Dual Luciferase Reporter Gene Assay Kit (11402ES60; Yisheng,
Beijing, China). Renilla luciferase activity was regarded as a
normalized control, and all data are shown with the luciferase/
Renilla ratio.

Statistical analysis
All data are presented as the mean±standard deviation from at least
three independent experiments. One-tailed Student’s t test or
analysis of variance (ANOVA) was performed with GraphPad Prism
8.0 Software (GraphPad, La Jolla, USA). P values less than 0.05
were considered statistically significant.

Results
Inhibition of AKT or mTOR reduces PTEN expression
in AKT1E17K MEFs
mTOR is the downstream molecule of AKT, and consecutively
activated AKT leads to hyperactive mTOR. To investigate the effect
of aberrant AKT activation on PTEN protein level, western blot
analysis was performed to examine PTEN and key signalingmolecules
of the Akt/mTOR pathway in AKT1E17K MEFs. Consecutive mTOR
activation upon AKT1 E17K mutation was confirmed by increased
phosphorylation of 4E-BP1 and S6, as previously described [13].
However, PTEN protein level was not affected by aberrant AKT
activation (Figure 1A). To further ascertain whether inhibition of
AKT or mTOR affects PTEN expression, western blot analysis was
performed after AKT1E17K MEFs were treated with 5 μM Akt
inhibitor MK2206, 50 nM mTOR inhibitor Torin2 and 10 nM mTOR
inhibitor rapamycin for 24 h respectively. The results showed that
PTEN expression was markedly reduced upon treatment with Akt or
mTOR inhibitors in AKT1E17K MEFs (Figure 1B‒D). Intriguingly, the

Table 1. The sequences of primers used for real time PCR in this study

Primer Sequence

PTEN-F 5′-TGGATTCGACTTAGACTTGACCT-3′

PTEN-R 5′-GCGGTGTCATAATGTCTCTCAG-3′
Actin-F 5′-AGAGGGAAATCGTGCGTGAC-3′

Actin-R 5′-CAATAGTGATGACCTGGCCGT-3′

mmu-miR-26b-5p-F 5′-TTCAAGTAATTCAGGATAGGT-3′

mmu-miR-721-F 5′-CAGTGCAATTAAAAGGGGGAA-3′
mmu-miR-301a-3p-F 5′-CAGTGCAATAGTATTGTCAAAGC-3′

mmu-miR-301b-3p-F 5′-CAGTGCAATGGTATTGTCAAAGC-3′

mmu-miR-130a-3p-F 5′-CAGTGCAATGTTAAAAGGGCAT-3′

mmu-miR-130b-3p-F 5′-CAGTGCAATGATGAAAGGGCAT-3′
mmu-miR-130c-F 5′-CAGTGCAATGTTCCAAGGTGTG-3′

mmu-miR-6341-F 5′-CAGUGCAAUGAUAUUGUCACUAU-3′

mmu-miR-6389-F 5′-CAGUGCAAUGUUAAACUUUGC-3′
mmu-miR-132-3p-F 5′-TAACAGTCTACAGCCATGGTCG-3′

mmu-miR-212-3p-F 5′-TAACAGTCTCCAGTCACGGCCA-3′

mmu-miR-17-5p-F 5′-CAAAGTGCTTACAGTGCAGGTAG-3′

mmu-miR-26a-5p-F 5′-TCGGCAGGTTCAAGTAATCCAG-3′
mmu-miR-23a-3p-F 5′-TCGGCAGGATCACATTGCCAG-3′

mmu-miR-23b-3p-F 5′-TCGGCAGGATCACATTGCCAG-3′

mmu-miR-25-3p-F 5′-TCGGCAGGCATTGCACTTGTCT-3′
U6-F 5′-ctcgcttcggcagcaca-3′

U6-R 5′-aacgcttcacgaatttgcgt-3′

The common reverse primer for miR is provided by the first strand cDNA synthesis kit.

Table 2. The primers of PTEN-3’UTR construction

Primer Sequence

F1 5′-tgCTCGAGtgacaccactgactctgatccag-3′

R1 5′-ggGTCGACCGATAGTAGTTGTACTCTTGC-3′

F2 5′-tgCTCGAGgtggtagagttgggattagggc-3′

R2 5′-gaGTCGACGAGGCATTATCCTGTACACGTC-3′
F3 5′-tgCTCGAGaccccgattcagcctcttcaga-3′

R3 5′-tgGTCGACCCCCAAGGACATGAGAATTGTG-3′

F4 5′-gaCTCGAGgtgaagatggcaggatagtgtc-3′
R4 5′-gtGTCGACCTAGTCTTATGTCCATTGGTAGCC-3′
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PTENprotein level remained almost the same inWTMEFs treatedwith
MK2206 or rapamycin but was downregulated by Torin2 treatment.
These data indicated that inhibition of AKT or mTOR reduces the
expression of PTEN in MEFs with aberrant AKT1 activation.

Inhibition of mTOR downregulates PTEN level
in TSC2–/– MEFs
Similar to the AKT1E17K mutation, TSC2 knockout also leads to
consecutive mTOR activation. Thus, whether PTEN expression
changes after TSC2 knockout was also investigated. Western blot
analysis results revealed that TSC2 knockout did not affect the
expression of PTEN (Figure 2A). Consistent with AKT1E17K MEFs,
the PTEN protein level was reduced in TSC2–/– MEFs after treatment
with rapamycin or Torin2 (Figure 2B,C). Due to the inhibited AKT
phosphorylation under the condition of TSC2 knockout, MK2206
was not used to treat TSC2–/– MEFs.
In summary, inhibition of AKT or mTOR remarkably suppresses

PTEN expression in mTOR-activated MEFs, and this finding
suggests the potential feedback regulation of PTEN expression by
the Akt/mTOR pathway.

Inhibition of AKT or mTOR does not alter the mRNA
level of PTEN
To explore the potential regulatory relationship between AKT/
mTOR inhibition and PTEN expression, real-time PCR was

performed to analyse PTEN mRNA level. Upon AKT or mTOR
inhibition, the mRNA level of PTEN only changed slightly (Figure
2E,F). Furthermore, the transcription factors (TFs) that are able to
bind with the mouse PTEN promoter were predicted online (http://
jaspar.genereg.net/), and the expression level of the identified TFs
was examined according to the mRNA microarray data of TSC2–/–

MEFs. The results showed that their expressions were not altered
with statistical significances (Table 3). Taken together, suppression
of PTEN upon AKT or mTOR inhibition was not achieved through
transcriptional regulation.

Inhibition of AKT or mTOR does not affect the
subcellular localization of PTEN
PTEN localizes to the cytoplasm and nucleus, and increasing
evidence suggests the importance of nuclear PTEN in controlling
chromosome stability and cell cycle progression [14,15]. Extra
stimulation, which mediates neddylation or phosphorylation of
PTEN, has been proposed to promote PTEN translocation between
the cytoplasm and nucleus [11,16]. Furthermore, the degradation
approach of nuclear PTEN and cytoplasmic PTEN is not totally the
same. To elucidate whether the downregulated PTEN level is
related to the alteration of PTEN subcellular localization, nucleus
cytoplasm separation assay was performed after AKT1E17K and
TSC2–/– MEFs were treated with rapamycin. The results showed that
PTEN expression was decreased in both the cytoplasm and nucleus

Figure 1. Inhibition of AKT or mTOR downregulates PTEN expression in AKT1E17K MEFs (A) The protein level of PTEN in AKT1E17K and control
MEFs. (B) The PTEN level in AKT1E17K MEFs after treatment with 5 μMMK2206 for 24 h. (C) The PTEN level in AKT1E17K MEFs after treatment with 10
nM rapamycin for 24 h. DMSO was used as a vehicle control. (D) The PTEN level in AKT1E17K MEFs after treatment with 50 nM Torin2 for 24 h. (E)
Quantification of the relative protein level of PTEN. Data are expressed as the mean±SD (n=3). *P<0.05, ***P<0.001. ns, not significant.
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upon rapamycin treatment (Figure 3A,B). To further confirm the
accurate subcellular localization alteration of PTEN, immunofluor-
escence microscopy was performed, and the results showed that
PTEN can be clearly seen in the cell-cell junctions, cytoplasm and
nucleus of AKT1E17K and TSC2–/– MEFs, but the fluorescence
intensity became weaker in both the cytoplasm and nucleus after
rapamycin or Torin2 treatment (Figure 3C‒E). Collectively, inhibi-
tion of mTOR decreased the abundance of PTEN in both the
cytoplasm and nucleus, but the subcellular localizations of PTEN

were not altered.

Intervening with eIF4E-dependent translational
initiation is not able to rescue the decrease in PTEN
level caused by mTOR inhibition
Since transcriptional regulation cannot explain the decreased PTEN
level, more efforts should be made to search for other mechanisms,
such as translational regulation. Among the initiation, elongation,
termination, and ribosome recycling of eukaryotic translation

Figure 2. Inhibition of mTOR reduces PTEN levels in TSC2−/−MEFs (A) The protein level of PTEN in TSC2−/− and TSC2+/+ MEFs. (B) The protein
level of PTEN in TSC2−/− MEFs after treatment with 10 nM rapamycin for 24 h. (C) The protein level of PTEN in TSC2−/− MEFs after treatment with
50 nM Torin2 for 24 h. (D) Quantification of the relative protein level of PTEN. Data are expressed as the mean±SD (n=3). (E) Relative mRNA levels
of PTEN in AKT1E17K and control MEFs after treatment with 5 μMMK2206, 10 nM rapamycin and 50 nM Torin2 for 24 h. (F) Relative mRNA level of
PTEN in TSC2−/− and TSC2+/+MEFs after treatment with 10 nM rapamycin and 50 nM Torin2 for 24 h, respectively. ***P<0.001. ns, not significant.

Table 3. The mRNA level of predicted transcription factors of PTEN

Gene Tsc2–/– vs Tsc2+/+ Tsc2–/–R vs Tsc2–/–

Fold change Description Fold change Description

C/EBPβ 1.61277 Up −1.02346 Down

YY1 −1.15627 Down 1.09839 Up

C/EBPα −1.00968 Down −1.25871 Down

myogenin −1.00658 Down 1.06402 Up

HOXA5 −1.09352 Down 1.06891 Up

Jun D −1.02044 Down 1.2457 Up

SP1 1.04168 Up 1.01331 Up

RelA −1.05628 Down −1.04292 Down

Hes1 1.25847 Up −1.45703 Down

The mRNA abundance of transcription factors that predicted to regulate PTEN in Tsc2+/+ MEFs, Tsc2–/– MEFs, and Tsc2–/– MEFs treated with rapamycin (R) was measured
using Affymetrix mouse genome 4302.0 array.
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processes, most regulation is exerted at the initiation stage [17].
Eukaryotic translation initiation factor 4E (eIF4E) is a subunit of the
eIF4F translation initiation complex, which plays a complicated role
in the translational initiation of eukaryotes. 4E-BP1, a member of
the eIF4E-binding proteins (4E-BPs), is a substrate of mTORC1 and
can be phosphorylated upon mTOR activation [18]. The phosphor-
ylation state of 4E-BP1 determines its interaction with eIF4E. Hypo-
phosphorylated 4E-BP1 strongly binds with eIF4E to prevent eIF4F
complex assembly, while hyperphosphorylated 4E-BP1 stimulates
its release from the eIF4E/4E-BP complex and allows eIF4E to
constitute the translation initiation complex with eIF4G, thereby
increasing the translation initiation rates [19]. 4E-BP1 in AKT1E17K

and TSC2–/– MEFs was hyperphosphorylated, while inhibition of
mTOR suppressed 4E-BP1 phosphorylation (Figures 1 and 2).
To determine whether inhibition of mTOR reduces PTEN protein

synthesis by interfering with 4E-BP1/eIF4E-dependent translational
initiation, siRNA was applied to knockdown 4E-BP1 or eIF4E in
AKT1E17K and TSC2–/– MEFs, and PTEN protein level was subse-
quently detected after the siRNA-transfected MEFs were treated
with rapamycin. The results showed that knockdown of 4E-BP1 or
eIF4E could not rescue the decreased PTEN level under mTOR
inhibition (Figure 4A‒D). These data indicated that inhibition of
mTOR reduces PTEN expression not through interfering with

4E-BP1/eIF4E-dependent protein synthesis.

Reduced PTEN expression upon mTOR inhibition is
not caused by proteasome- or lysosome-mediated
degradation
Post-translation modifications, including phosphorylation, acetyla-
tion, oxidation and ubiquitylation, also play indispensable roles in
regulating the function and expression of PTEN. The former three
modifications principally regulate the activity of PTEN, while
ubiquitylation mainly modulates protein abundance. Since we have
excluded the possible involvement of transcriptional regulation and
translational initiation in decreased PTEN level upon mTOR
inhibition, other mechanisms that mediate the abundance changes
in proteins, such as degradation, should be taken into considera-
tion. Ubiquitinated degradation of PTEN has been reported in
numerous human cancers [20,21]. In addition to ubiquitylation
mediating proteasome degradation, the lysosome degradation
mechanism should also be considered. Our results showed that
the protein abundance of PTEN changed little after AKT1E17K and
TSC2–/– MEFs were treated with rapamycin or Torin2 combined
with proteasome inhibitor MG132 or lysosome degradation in-
hibitor chloroquine and NH4Cl, respectively (Figure 5A‒D). In
addition, to exclude the off-target effects of MG132, chloroquine and

Figure 3. Inhibition of mTOR does not affect the subcellular localization of PTEN (A) The protein level of PTEN in the cytoplasm and nucleus of
AKT1E17K MEFs after treatment with 10 nM rapamycin for 24 h. (B) The protein level of PTEN in the cytoplasm and nucleus of TSC2−/− MEFs after
treatment with 10 nM rapamycin for 24 h. Lamin A/C and GAPDH are markers of nuclear and cytoplasmic proteins, respectively. (C)
Immunofluorescence microscopy was used to visualize the subcellular localization of PTEN in AKT1E17K and TSC2−/− MEFs after treatment with 10
nM rapamycin or 50 nM Torin2 for 24 h. Cy3-labelled PTEN and DAPI were used to stain the nuclei. (D) Quantification of the fluorescence intensity
in the cytoplasm. (E) Quantification of the fluorescence intensity in the nucleus. ***P<0.001.
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Figure 4. Intervening with 4E-BP1/eIF4E-dependent translation initiation is not able to rescue the decreased PTEN mediated by mTOR
inhibition (A,C) The protein level of PTEN in AKT1E17K and TSC2−/− MEFs after treatment with 10 nM rapamycin for 24 h after 4E-BP1 knockdown.
(B,D) The protein level of PTEN in AKT1E17K and TSC2−/− MEFs after treatment with 10 nM rapamycin for 24 h after eIF4E knockdown.

Figure 5. Suppression of proteasome or lysosome degradation cannot rescue the downregulated PTEN level (A,C) The protein level of PTEN in
AKT1E17K and TSC2−/− MEFs after treatment with 10 nM rapamycin combined with 10 μM chloroquine (CQ), 5 mM NH4Cl and 5 μMMG132 for 24 h.
P62 was used as a positive control. (B,D) The protein level of PTEN in AKT1E17K and TSC2−/−MEFs after treatment with 50 nM Torin2 combined with
10 μMCQ, 5 mMNH4Cl and 5 μMMG132 for 24 h. (E,G) The protein level of PTEN in AKT1E17K and TSC2−/−MEFs pretreated with 100 μg/mL CHX for
different time and then incubated with 10 nM rapamycin for 24 h. β-Catenin was used as a positive control. (F,H) The protein level of PTEN in
AKT1E17K and TSC2−/− MEFs pretreated with 100 μg/mL CHX for different time and then incubated with 50 nM Torin2 for 24 h. ***P<0.001. ns, not
significant.
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NH4Cl, cycloheximide (CHX)-pretreated AKT1E17K and TSC2–/–

MEFs were incubated with mTOR inhibitors to determine the
stability of PTEN. The results showed that mTOR inhibitors did not
promote PTEN degradation (Figure 5E‒H).
Ubiquitination and deubiquitination are dynamically balanced

under physiological conditions. Accumulating evidence has re-
vealed that disruption of this balance is involved in numerous
human diseases [22]. To further evaluate the expression of E3
ubiquitin ligase and deubiquitinase (DUB), which have been
reported to regulate PTEN polyubiquitylation degradation [20,21,
23–26], mRNA microarray data were analysed. The results showed
that the expressions of the E3 ligases and DUB (Table 4) were only
slightly altered with no statistical significances. These data suggest
that rapamycin or Torin2 decreases PTEN protein level not through
regulating protein degradation.

miRNAs play an indispensable role in PTEN expression
under mTOR inhibition
MicroRNAs (miRNAs) are a class of endogenous single-stranded
small noncoding RNAs that negatively modulate the expression of
target genes through binding with the seeding sequence on the 3′
UTR [27]. As one of the most crucial post-transcription regulators,
miRNAs have been demonstrated to play important roles in various
physiological and pathological processes. Numerous miRNAs have
been reported to downregulate PTEN expression to promote
tumorigenesis or other disorders [28]. Additionally, Ogórek et al.
[29] proposed that TSC2 regulates microRNA biogenesis via
mTORC1.
To confirm whether the inhibition of mTOR-decreased PTEN

level is related to miRNAs, four mouse PTEN-3′UTR dual-luciferase
reporter plasmids were transfected into TSC2–/– MEFs, and a dual-
luciferase reporter assay was performed. The luciferase activities of
PTEN-3′UTR-F1 and F2 were decreased after rapamycin treatment,
while the luciferase activities of PTEN-3′UTR-F3 and F4 changed
little (Figure 6A,B). In addition, the online software TargetScan
(http://www.targetscan.org) was used to predict the potential
miRNA-binding sites on the mouse PTEN-3′UTR, and the predicted
binding sites mainly locate on the F1 and F2 regions. And then,
microRNA array was performed to verify the prediction after
TSC2–/– MEFs were treated with rapamycin. Among 56 differential
miRNAs, 4 predicted miRNAs that have the potential to bind with
PTEN-3′UTR-F1 and F2 regions were found to be upregulated

(Figure 6C). Next, real-time PCR was performed to confirm the
expressions of miRNAs predicted to be able to bind with PTEN-
3’UTR-F1 and F2. The results showed that among the 16 detected
miRNAs, only miR-23a-3p, miR-23b-3p, miR-25-3p and miR-26a-5p
were obviously upregulated (Figure 6D,E). Surprisingly, similar
results were also obtained in AKT1E17K MEFs (Figure 6F). To
demonstrate the direct negative role of the 4 miRNAs in regulating
PTEN expression, miRNA mimics were cotransfected with PTEN-
3’UTR-F1 and F2 dual-luciferase reporter plasmids into TSC2–/–

MEFs. The results showed that luciferase activity was decreased
(Figure 7A,B). In addition, the PTEN protein level was also found to
be decreased after miRNAmimics were transfected into AKT1E17K or
TSC2–/– MEFs (Figure 7C,D). To further verify that inhibition of
mTOR suppresses PTEN expression by upregulating these 4
miRNAs, the miR-23a-3p, miR-23b-3p, miR-25-3p and miR-26a-5p
inhibitors were transfected into rapamycin-treated AKT1E17K or
TSC2–/– MEFs. The results showed that each miRNA inhibitor
partially rescued the decreased PTEN level in both AKT1E17K and
TSC2–/– MEFs (Figure 7E,F). In addition, cotransfection with all
these 4 inhibitors seemed more effective than cotransfection with
each inhibitor alone (Figure 7G,H). These data indicated that
inhibition of mTOR suppresses PTEN expression through upregu-
lating the levels of miRNAs.

Discussion
Our current findings demonstrated that MK2206 not only inhibited
the phosphorylation of AKT1 at Ser473 but also inhibited mTOR
phosphorylation and PTEN expression in AKT1E17K MEFs. Both the
mTOR allosteric inhibitor rapamycin and the kinase inhibitor Torin2
effectively decreased PTEN level in AKT1E17K and TSC2–/– MEFs.
Additionally, the reduced PTEN level was also observed in control
MEFs treated with Torin2 (Figures 1D and 2C), although the degree
of reduction in control MEFs was relatively low compared with that
in AKT1E17K and TSC2–/– MEFs. Overall, inhibition of mTOR
suppresses PTEN expression. However, the phenomenon was not
clearly observed in control MEFs after MK2206 or rapamycin
treatment. Torin2 inhibits mTOR by competitively binding to the
ATP-binding sites of mTOR and completely blocks mTOR kinase
activity, whereas rapamycin inhibits mTOR via allosteric regulation
and only blocks certain mTOR activities [30,31]. Similar to
rapamycin, MK2206 is a selective allosteric inhibitor of AKT which
acts through binding to the pleckstrin homology domain to lock

Table 4. The mRNA level of reported E3ubiquitin ligases and deubiquitinase of PTEN

Type Gene Tsc2–/– vs Tsc2+/+ Tsc2–/–R vs Tsc2+/+

Fold change Description Fold change Description

E3 ligase Nedd4-1 −1.41008 Down 1.37135 Up

WWP1 1.01048 Up 1.03184 Up

WWP2 1.27317 Up −1.15902 Down

FBXO22 1.11451 Up −1.14743 Down

XIAP −1.11014 Down −1.00557 Down

TRIM27 1.18987 Up −1.29726 Down

RNF146 1.08809 Up −1.04308 Down

DUB OTUD3 1.04892 Up −1.34057 Down

USP13 1.67728 Up −1.47363 Down

The mRNA abundance of E3ubiquitin ligases and deubiquitinase once reported to regulate PTEN in Tsc2+/+, Tsc2–/– MEFs, and Tsc2–/– MEFs treated with rapamycin (R) was
measured using Affymetrix mouse genome 4302.0 array.
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AKT in an inactive conformation [32]. The different mechanism of
action could potentially explain the difference in PTEN protein
expression in WT MEFs upon treatment with different inhibitors.
mTOR forms two distinct signaling complexes with different

subunits, mTOR complex 1 (mTORC1) and mTOR complex 2
(mTORC2) [33]. mTORC1 integrates nutrients and the microenvir-
onment to promote anabolic metabolism and inhibit catabolic
metabolism through downstream S6K and 4E-BP1 [13], while
mTORC2 phosphorylates Ser-473 on AKT to regulate cytoskeletal
rearrangements and cellular survival [34]. Intriguingly, inhibition of
mTOR increased the phosphorylation level of AKT1 in TSC2–/–

MEFs in our study. Given the positive role of mTORC2 on Akt Ser-
473, Akt1 phosphorylation should theoretically be decreased after
mTOR inhibition. However, considering that PTEN negatively
regulates Akt phosphorylation, the increased Akt phosphorylation
could be explained by the reduction in PTEN protein expression.
Unfortunately, the severely attenuated phosphorylation of AKT1 on
Ser473 in TSC2-knockout MEFs has been a challenge for decades,
and our present discovery still cannot explain the phenomenon.
Furthermore, it is still not clear why PTEN expression is not
correspondingly increased upon mTOR activation but decreased
upon mTOR inhibition. Given the role of AKT/mTOR signaling in
cell survival and nutrient metabolism under physiological condi-
tions [35], the homeostatic regulation of cells to prevent damage or
death led by mTOR pathway overinhibition might explain the

downregulation of PTEN expression upon mTOR inhibition. Similar
to the activation of PI3K/AKT/mTOR signaling is also attenuated by
feedback inhibition through a series of AKT- or mTOR-dependent
mechanisms [36,37].
Our results demonstrated that inhibition of mTOR does not

regulate PTEN expression at the transcription level, but whether
epigenetic modifications, such as aberrant promoter methylation
and histone acetylation, are involved in this process synergistically
is still unknown. Surprisingly, in contrast to previous findings [9],
our data suggested that mTOR inhibition has little influence on
eIF4E/4E-BP1-mediated translation initiation of PTEN. However,
whether mTOR inhibition decreases PTEN expression through other
stages of PTEN translation requires further investigation. A possible
explanation for the discrepancy between our results and previous
findings [9] could be that our experiments were performed in MEFs
with a simple genetic background, whereas their experiments were
conducted in cancer cells with numerous genetic alterations that
could potentially affect the results. In addition, even though our
results confirmed that mTOR inhibition-mediated PTEN down-
regulation is not achieved through proteasome or lysosome
degradation approaches, other degradation mechanisms for PTEN
expression cannot be totally ruled out, since the cellular regulatory
network is intricate. Finally, four miRNAs were found to be
remarkably upregulated in TSC2–/– and AKT1E17K MEFs after
rapamycin treatment, and the miRNA inhibitors rescued the

Figure 6. Inhibition of mTOR upregulates the expressions of miR-23a-3p, miR-23b-3p, miR-25-3p and miR-26a-5p (A) Construction of four mouse
PTEN-3′UTR dual-luciferase reporter plasmids. (B) A dual-luciferase reporter assay confirmed the potential miRNA binding sites in the mouse
PTEN-3′UTR. (C) Heatmap of differentially expressed miRNAs in TSC2−/− MEFs after treatment with 10 nM rapamycin. Red triangles indicate
upregulated miR-23a-3p, miR-23b-3p, miR-25-3p and miR-26a-5p. (D,E) Real-time PCR analysis of miRNA expression in TSC2−/− MEFs after
treatment with 10 nM rapamycin for 24 h. (F) Real-time PCR confirmed the 4 upregulated miRNAs in AKT1E17K MEFs after rapamycin treatment.
*P<0.05, **P<0.01, ***P<0.001. ns, not significant.
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decreased PTEN level synergistically. These findings provide some
creative guides for PTEN regulation, but how mTOR inhibition
upregulates the four miRNAs is still unknown. Collectively,
although our present discovery sheds new light on the relationship
between AKT/mTOR and PTEN, the existing limitations of our
project should not be ignored.
Given the importance of PI3K/AKT/mTOR in numerous biological

processes, the dysregulation of the pathway is closely related to
many diseases, such as metabolic syndrome and cancers. Emerging
evidence has revealed that mTOR is abnormally activated in a
plethora of human cancers [38,39]. Thus, tumor therapy targeting
mTOR seems promising and has attracted the attention of numerous
scholars. For instance, the mTOR allosteric inhibitors rapamycin,
everolimus and temsirolimus have been approved by the FDA for
the treatment of breast cancer [40], kidney renal cell carcinoma [41]
and endometrial cancer [42], respectively. Although mTOR
inhibitors have been applied for clinical therapy for decades, the
therapeutic efficacy was not confirmed in all patients [43]. For
instance, Kwiatkowski et al. [44] recently declared the failure of a
phase II clinical trial of everolimus in pan-cancer patients with
mTOR pathway alterations. The decreased PTEN level in AKT1E17K

and TSC2–/– MEFs after treatment with rapamycin or Torin2 from
our data may provide a rational explanation for mTOR activation-
related tumors resistant to mTOR inhibitors to a certain degree.
In summary, this study confirmed the regulatory role of the AKT/

mTOR pathway on PTEN and demonstrated the nonnegligible role
of miRNAs in regulating PTEN expression. Taking the PTEN level
into consideration may provide a theoretical basis and research
value for identifying potential therapeutic targets for PI3K/AKT/
mTOR pathway activation-related tumors. Because of the popular
investigation of noncoding RNAs in cancers, mTOR/miRNA dual
inhibition may be a novel strategy to overcome therapeutic

resistance in the future.
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