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ABSTRACT

Fanconi anemia (FA) is a chromosomal instability
disorder in which DNA-damage processing defects
are reported for translesion synthesis (TLS), non-
homologous end joining (NHEJ) and homologous
recombination (HR; both increased and decreased).
To reconcile these diverse findings, we compared
spontaneous mutagenesis in FA and HR mutants
of hamster CHO cells. In the fancg mutant we
find a reduced mutation rate accompanied by an
increased proportion of deletions within the hprt
gene. Moreover, in fancg cells gene amplification at
the CAD and dhfr loci is elevated, another manifes-
tation of inappropriate processing of damage during
DNA replication. In contrast, the rad51d HR mutant
has a greatly elevated rate of hprt mutations,485%
of which are deletions. Our analysis supports
the concept that HR faithfully restores broken
replication forks, whereas the FA pathway acts
more globally to ensure chromosome stability by
promoting efficient end joining of replication-
derived breaks, as well as TLS and HR.

INTRODUCTION

Fanconi anemia (FA) is a genetic disease characterized by
diverse congenital abnormalities, early predisposition to
cancer and progressive bone marrow failure due to
defective hematopoiesis (1,2). Patients have mutations in
one of at least 12 genes: FANCA, B, C, D1 (also known as
BRCA2), D2, E, F, G, I, J (BRIP1/BACH1), L, M (Hef),
and N (PALB2). Many of the FANC proteins (FANCA/
B/C/E/F/G/L/M/FAAP24/FAAP100) form a nuclear
‘core complex’ (3–7), the integrity of which is essential
for the monoubiquitination of FANCD2 in response to
DNA damage, including that from mitomycin C cross-
linking or oxidative lesions from ionizing radiation (IR).
During the cell cycle, monoubiquitinated FANCD2

appears during S phase and co-localizes at sites of putative
double-strand breaks (DSBs) with nuclear foci of BRCA1
and Rad51(8), two key proteins in the DSB repair
pathway of homologous recombination repair (HRR).
HRR uses the sister chromatid, when it is available, as a
template for error-free repair of DSBs caused by insults
such as ionizing radiation, as well as for restarting broken
replication forks during DNA synthesis (9,10). These
processes are facilitated by the Rad51 recombinase, which
requires mediator proteins including BRCA2 and five
Rad51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C,
RAD51D) (11). The identification of FANCD1 as
BRCA2 (12), and the physical associations between
other FANC and HRR proteins such as XRCC3 (13),
also suggest a role for the FANC ‘pathway’ in preventing
or repairing broken replication forks, and highlight a
potential link between the FA proteins and the better
defined HRR pathway.
Cells from FA patients typically show increased

spontaneous chromatid breaks and gaps (14), and
consistently show high sensitivity for cell killing and
chromosomal aberrations in response to DNA cross-
linking agents (2,15). Treatment of FA cells with low
doses of mitomycin C produces excessive chromosomal
interchanges due to misrepair of chromatid breaks (16,17)
(arising in S or G2 phases) by an end-joining
repair pathway, such as DNA-PK-dependent (18,19) or
PARP1-dependent (20,21) non-homologous end joining
(NHEJ). Such cellular phenotypes are reminiscent of
cells defective in HRR, including the well-studied rodent
cell lines deficient in the Rad51 paralogs (11,22,23),
which show high levels of spontaneous chromosomal
aberrations and high sensitivity to crosslinking agents,
suggesting an overlapping role for the FANC and HRR
proteins in maintaining genome integrity. HRR capacity
in FA cells, as indicated by synthetic reporter genes, is
reported to be decreased (24–26), increased (27,28) or
unaltered (29). These approaches have not helped assess
the functional overlap between the FA and HRR
pathways.
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The role of the FA pathway in DSB repair through
DNA end joining mechanisms also has not been
established. FA cells generally do not exhibit phenotypes
associated with gross NHEJ deficiency, such as high IR
sensitivity. It is not understood why various NHEJ assays
in FA cells provide conflicting results. For example,
studies based on chromosomally integrated reporter
constructs containing a I–Sce-I restriction site and PCR
analysis found no reduction in NHEJ activity in FA cells
from three complementation groups (A, D2 and G)
compared to gene-complemented control cells (26).
However, an intact FA pathway was required for the
end-joining repair of DSBs in plasmid-based assays (both
in vitro and in vivo) and for survival of cells after
electroporation with restriction enzymes was reported
(30–32).
Although chromosomal rearrangements such as those

associated with FA and HRR deficiencies are known to
play a role in carcinogenesis, single-gene mutation and
amplification, are not well characterized in FA and HHR
mutant cells. Using an isogenic CHO rad51d knockout
mutant, we recently showed that HRR deficiency causes a
substantial increase (�12-fold) in the rate of spontaneous
mutagenesis in the X-linked hprt (hypoxanthine phos-
phoribosyltransferase) gene, and in the rate of amplifica-
tion at two loci (dhfr, �10-fold; CAD, �4-fold) (23). This
mutant phenotype suggests a major role for HRR in
rescuing broken DNA replication forks (23). Mutagenesis
studies in human FA cells have given seemingly conflicting
results (33). FA lymphoblasts had a ‘reduced’ rate of
mutagenesis in the hprt gene in response to treatments
with monofunctional and bifunctional psoralens, whereas
the spontaneous mutant frequencies were markedly
‘increased’ in FA patients at two autosomal loci:
glycophorin A (GPA) in erythrocytes (34,35) and PIG-A
in lymphoblasts (36). In chicken DT40 cells a requirement
for a FANC protein (FANCC) to promote translesion
synthesis (TLS) during crosslink repair was reported (37).
Thus, the precise role of the FA proteins in mutagenesis
remains unclear, and may indeed involve multiple cellular
mechanisms of maintaining genomic integrity.
In this study, we use a model mutagenesis system of

isogenic CHO fancg (38) and rad51d (23) knockout
mutants to understand how the FA pathway influences
spontaneous mutagenesis and to distinguish the roles of
the FA and HRR pathways in mutation control. CHO
cells have been widely used to perform highly quantitative
mutagenesis studies at the hprt locus (39) and, using the
dhfr locus to analyze gene amplification, to assay a specific
type of carcinogenic mutagenesis (40). We find both a
‘reduced’ rate of occurrence of viable hprt mutants and
‘increased’ rates of gene amplification in fancg cells. In
addition, we compare the spectra of hprt mutations in the
fancg and rad51d mutant lines with those of their gene-
complemented control cells. These comparisons of muta-
tion rate and spectrum in this model genetic system reveal
fundamental differences between the contributions of the
FA and HRR pathways in preventing mutagenesis. Our
findings suggest that the FA pathway may deal with
spontaneous DNA damage by promoting efficient DNA
end joining as well as TLS and HRR.

MATERIALS AND METHODS

Cell culture

Cells lines used were the CHO parental AA8 cells (41),
the fancg knockout line (KO40), the hamster Fancg-
complemented KO40 cells (40BP6) (38), the rad51d
knockout cell line (51D1) and the hamster Rad51d-
complemented 51D1 cells (51D1.3) (23). Cells were
grown in monolayer or suspension culture in aMEM
supplemented with 10% fetal bovine serum and
antibiotics (41).

Mutation and gene amplification rates

Mutation rate was determined by fluctuation analysis (42).
For hprt mutants, replica cultures were seeded with 500
cells and grown in suspension to 1–2� 106 cells/replica,
plated and incubated under 6S-Gua selection (41). Hprt,
dhfr and CAD mutation rates were calculated using the
Poisson P0 term (42), the maximum likelihood method
(43) and the method of the mean (44). To recover cells
having amplified dhfr or CAD genes, selection was done in
300 nM methotrexate or in 360 mM N-(phosphonacetyl)-
L-aspartate (PALA) and 1 mM dipyridimole, respectively.
Verification of cad gene amplification was done using
real-time, quantitative PCR analysis. Equal numbers of
cells from 10 PALA resistant colonies, picked in fluctua-
tion tests, were pooled and genomic DNA isolated.
The comparative threshold cycle (CT) method was used
to quantify relative gene copy number between the CAD
loci in DNA of PALA-resistant cell pools and in DNA
isolated from stock populations. CT values, defined as the
cycle number at which fluorescence of the reporter dye
becomes higher than the background level, were deter-
mined for the target (CAD) and an internal reference
(APE1) in each sample. The relative gene copy number
of the CAD locus of the PALA resistant (PALA-R)
clones versus the stock cells was calculated as 2���CT,
where ��CT¼�CT

PALA-R -�CT
Stock and each

�CT¼CT
CAD

�CT
APE1. PCR reactions for both primer

sets and all DNA samples were performed in triplicate
with the DyNAmoTM SYBR� Green qPCR enzyme kit
(Finnzymes). PCR and fluorescence detection was per-
formed by the DNA Engine Opticon (MJ Research).
Fluorescence and sample comparison was done with
Opticon MONITOR analysis software.

Hprt mutation spectrum analysis

After nine days incubation, independent 6S-Gua-resistant
clones were isolated for hprt mutation analysis in a three-
step process: (i) Gene disrupting mutations of hprt were
determined by RT–PCR of the hprt gene transcript and
sequencing. After outgrowth of the 6S-Gua resistant
clones, RNA was isolated using the RNeasy Mini Kit
(Qiagen, Inc. Valencia, CA, USA), and cDNA was made
by RT–PCR using SuperScript III First-Strand Synthesis
System for RT–PCR (Invitrogen Corp. Carlsbad, CA,
USA), and subsequent amplification using the forward
primer 50 TTCCTCCTCACACCGCTCTT, located 47 bp
upstream of the hprt start codon (exon 1), and reverse
primer 50 TGCAGATTCAACTTGAACTCTC, located
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3 bp downstream of the hprt termination codon (exon 9).
PCR-amplified cDNAs were sent for sequencing (Elim
Biopharmaceuticals, Inc. Hayward, CA, USA), using the
forward and reverse primers noted above. (ii) Genomic
DNA was isolated (QiaAmp DNA Blood Mini Kit,
Qiagen, Inc.) from all clones without RT–PCR
products and tested for the presence of exons 1 and 9
(RT–PCR primer sites) by PCR amplification with
the primers: exon 1 forward: 50 CCTCACCGCTTTC
TCGTGCC (3 bp from 50 end of exon); exon 1 reverse 50

CACGACGCTGGGGCTGCGGG (last bp of 30 end of
exon 1); exon 9 forward 50 GTGAAACTGGGAA
AGCCAAA (17 bp from 50 end of exon 9); exon 9 reverse
50 TGAAAGAATCCAAGTGGGAAA (56 bp from 30

end of exon 9. (iii) Genomic DNA was isolated for all
clones missing exons from the sequence of the RT–PCR
product, and tested for the presence of the exons by PCR.
Primer pairs used to verify of the presence of the following
exons were: Exons 2 and 3, forward: 50 TGATGAAC
CAGGCTATGACC, located in exon2, and reverse:
50 AATCCAGCAGGTCAGCAAAG located in exon 3;
Exon 4, forward: 50 TGATCAGTCAACAGGGGACA,
located at the 50 end of exon 4, and reverse: 50

TTGAGAGATCATCCCCACCA, located at the 30end
of exon 4; Exons 6, 7 and 8, forward: 50 CAATGCAAAC
TCTGCTTTCC, located at the 50 end of exon 6, an
additional confirmation forward primer 50 CTGGTGAA
AAGGACCTCTCG, located at the 50 end of exon7, and
reverse: 50 TCATTATAG T CAAGGGCATATCCA,
located at the 30 end of exon 8. All primers were
synthesized by (Qiagen Inc. Valencia, CA, USA).

RESULTS

Reduced occurrence of spontaneous
hprtmutants in fancg cells

Given the finding of abnormally low frequencies of viable
hprt mutants in human FA lymphoblasts treated with
psoralens (45,46), we wished to determine whether the
spontaneous mutation rate (the calculated probability
that a mutation arises in a cell’s division cycle) is also
altered in fancg CHO cells and the relevance of any
observed changes to chromosome instability. Although
spontaneous frequencies (frequency¼ fraction of cell
population that is mutant) of viable hprt mutants were
reported to be either normal or elevated in FA cells
(34,46,47) (perhaps reflecting variation in culture history),
mutation rates have not been reported. For rate measure-
ments, small, hprt-mutant-free replicate cultures were
expanded to �106 cells, counted and then selected in
6S-Gua medium, which is toxic to cells having functional
hprt. Cells with mutations in the hprt locus formed
visible, countable colonies, from which mutation rates
were calculated by classical Luria–Delbrück fluctuation
analysis.

The mutation rate for viable mutants was reduced by
467% in fancg (KO40) cells compared to both the
parental AA8 and the Fancg-complemented cells
(40BP6), based on the average of the three statistical
methods of calculation (Table 1). This reduction is

statistically significant [P50.05 for mutation rates calcu-
lated by each method (42–44)]. Thus, the reduction in
mutation rate in fancg cells suggests that most of the
mutational events that would lead to viable hprt mutants
in wild-type cells are lethal in fancg cells due to conversion
to large deletions or rearrangements. The reduced
recovery of fancg cells is not explained by reduced plating
efficiency since the plating efficiency of KO40 is 84%
versus 90% for AA8 and 40BP6 (38). Although the high
concentration of 6S-Gua used for selection of hprt
mutants (2 mg/ml) far exceeds the levels at which cell
survival assays are done, we tested the possibility that
increased sensitivity of KO40 cells to 6S-Gua (38) might
affect the outcome of the mutation rate analyses by
measuring mutant frequencies at both 2 mg/ml (the
standard concentration) and 0.4 mg/ml 6S-Gua (the
equitoxic dose relative to AA8 cells at 2 mg/ml). There
was little difference in the frequency between the two doses
(2.2� 10�5 versus 2.7� 10�5, respectively), which implies
hprt mutant recovery is unrelated to Fancg status.
Thus, we infer that although the observed rate of

occurrence of viable mutants is reduced in fancg cells, the
true rate of gene disruption mutagenesis may be the same,
or even increased, as in the HRR-deficient CHO cells, but
with a high proportion of the events falling into a lethal
class of mutation and remaining undetected.

Increased proportion of deletions in spontaneous
hprtmutants of fancg cells

Since the spontaneous rate of forming viable hprt mutants
was decreased in the fancg CHO cells, we wished to
determine whether the spectrum of the recovered mutants
could provide insight into the particular classes of
mutation that were being converted into lethal events.
Mutations were assigned to four classes (base substitution,
deletion, insertion, splicing) based on analysis of mRNA
and, in many cases, genomic DNA. ‘Splicing’ mutations
are those with alterations of mRNA whose causation was
not identified by analysis of genomic DNA. For example,
in clones showing loss of one or more exons in the
RT–PCR product sequence, genomic-DNA PCR amplifi-
cation of the missing exon(s) was used to distinguish
deletions of the exons from other splicing errors, referred

Table 1. Rate of occurrence of viable hprt mutants in fancg (KO40)

cells versus parental (AA8) and Fancg-complemented cells (40BP6)

Cell line Mutations per cell per generation (units� 10�7)
calculated by method of:

P0 Maximum likelihood Mean

AA8 (6)a 1.0� 0.1b 1.5� 0.3 7� 1
KO40 (5) 50.4� 0.1c 50.5� 0.1 52� 0.3
40BP6 (5) 0.8� 0.1 1.3� 0.2 4� 1

aThe number in parenthesis is the number of times the experiment was
performed; each experiment had 12 replicate dishes. bSEM. cSince no
6S-Gua-resistant colonies were recovered in two of the five KO40
experiments (indicated by ‘5’), these are conservative estimates of the
rates. These values are significantly different (P50.05) from the AA8
value using a t-test.
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to as exon skips. Another form of spicing error, leading to
exon duplications in the mRNA, was also detected among
some clones. It was reported that splicing alterations,
which make up 12% of hprt mutations in a human
database, are primarily base substitution mutations (48).
However, since we are unable to classify the types of
mutations leading to most exon skips and duplications, we
consider them as a separate class of events referred to
generically as ‘splice mutants’ in our analysis. Consistent
with previous studies in FA lymphoblasts compared with
non-FA cells in response to psoralens (45,46), we found
an almost statistically significant (P¼ 0.052) increase in
the proportion of hprt mutants that were deletions in
the fancg cells (KO40; 21% base substitutions, 62%
deletions, 2% insertions and 15% splice mutants; n¼ 47,
Figure 1A) when compared to the Fancg-complemented
control cells (40BP6; 31% base substitutions, 40%
deletions, 11% insertions and 17% splice mutants;
n¼ 35, Figure1B). This trend towards deletions was
significant when compared to both complemented cell
lines combined (P¼ 0.02). Deletions in both KO40 and
40BP6 cell lines ranged in size from a few base pairs up to
potentially the entire locus (as implied by no amplification
of exon 1 and exon 9). Insertion mutations ranged in
size from 1 to 4 bp, of which all were duplications of
local sequence and did not occur in nucleotide repeats
(Supplementary Table 1).

Excessive spontaneous hprt deletions in
HRR-defective rad51d cells

Although our previous study discovered a high rate of
hprt mutagenesis in CHO rad51d cells (�12–fold elevated
parental and gene-complemented cells) (23), the spectrum
was not determined. We find that the rad51d-associated
HRR deficiency leads to a large increase in deletions

(86%, n¼ 50, Figure1C) and vast reduction in the
proportion of base substitutions and insertions
(2% each), with the remaining 10% of mutations being
splice mutants, all exon skips. This proportion of deletions
is significantly (P50.001) different from the proportion in
the Rad51d-complemented control cells (51D1.3), which
have a mutant spectrum with 36% deletions, 40% base
substitutions, 7% insertions and 25% splice mutants
(n¼ 40, Figure 1D), similar to that of the 40BP6 cells.
As seen in the fancg cells, rad51d hprt deletions ranged in
size from 1bp to deletion of the entire locus. The
description of each mutant is provided in Supplementary
Table 1. For comparison, the hprt mutation spectrum in
brca2 V79 hamster cells (defective in the one known gene
common to the FA and HRR pathways) also showed a
spectrum shift toward more deletions (49) while showing
only a moderate increase in spontaneous mutation rate
(�4–fold) (50).

Elevated gene amplification rates in fancg cells

Our inference that the fancg mutation results in aberrantly
repaired DSBs during DNA replication suggested that the
process of gene amplification, which is typically associated
with conditions that cause inappropriate rejoining of
DSBs (51,52), might be elevated in fancg cells, as seen
previously in rad51d cells (23). To test this prediction,
we measured gene amplification using the extensively
studied dhfr locus (where an increased gene-copy number
confers methotrexate resistance) and the CAD (carbamyl-
P-synthetase, aspartate transcarbamylase, dihydro-
orotase) locus where amplification confers PALA
resistance. We find that rates of spontaneous gene
amplification are substantially increased (3- to 4-fold) at
both loci in fancg cells (Figure 2), a change that is
statistically significant for both loci in comparison to wild-
type AA8 cells (P50.01 and P50.05 for the dhfr and
CAD loci, respectively) and Fancg-corrected 40BP6 cells
(P50.001 and P50.05 for the dhfr and CAD loci,
respectively). It has been shown previously that all

Figure 1. Proportion of base substitution (black), deletion (white),
insertion (light gray), and splicing mutants (exon skips, duplications,
and 17-bp deletions; dark gray) hprt mutations among clones of fancg
KO40 cells (A), Fancg gene-corrected BP6 cells (B), rad51d 51D1 (C),
and Rad51d gene-corrected 51D1.3 cells (D).
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3736 Nucleic Acids Research, 2007, Vol. 35, No. 11



PALA-resistant AA8 clones have detectable amplification
at the CAD locus (51). We also verified amplification by
measuring its ‘extent’ at the CAD locus using quantitative
PCR of genomic DNA from pools of 10 independent
PALA-resistant clones. As expected, there was an increase
in the relative number of CAD gene copies with respect to
an internal-standard reference gene (APE1 locus) when
compared to the DNA from cells in the respective stock
cultures. In wild-type cells, the fold increase normalized to
APE1 was 2.3� 0.8 (SEM), while in fancg cells we found a
2.8-fold increase. Taken together, we infer that the extent
of gene amplification was the same in those wild-type and
fancg cells that were PALA resistant. Overall, the
increased rate of mutagenesis in the form of gene
amplification in fancg is consistent with increased aberrant
repair of spontaneous DSBs, most likely during S phase.
Interestingly, these results are similar to those seen in the
rad51d CHO cells, which show even greater amplification
at both reporter loci (23).

DISCUSSION

Implications of changes in spontaneous hprtmutation
rate and spectrum in mutant lines

In the rad51d cells, the greatly increased yield of hprt
mutants suggests a prominent role for this pathway in
preventing frequent mutagenic events from occurring
during normal DNA replication in the face of sponta-
neous (oxidative) lesions (23). Indeed, HRR was shown to
act on collapsed replication forks caused by endogenous
DNA single-strand breaks (53). In our study we found
that the spectrum of mutations from rad51d cells reveals
that the mutagenic events prevented by intact HRR are
deletions, likely caused by efficient DNA end-joining
mechanisms that repair DSBs that persist when broken
replication forks are not restarted.

In the fancg CHO cells, we see a major reduction in the
yield of four classes of spontaneous hprt mutants
compared with wild-type. The reduced yield of both
base substitution and deletion/insertion events in the fancg
cells points to a role for Fancg and the FA proteins in
promoting TLS at replication-blocking lesions (the source
of base substitution mutations), as well as in coordinating
HRR to restart broken replication forks and NHEJ to
restore broken-fork-associated DSBs. The latter two
processes are necessary events for assuring either con-
servative repair or recoverable hprt deletion mutants,
respectively. There was a tendency toward more deletions
among spontaneous mutations of the CHO fancg cells. It
is interesting to note that the spectrum of spontaneous
mutations in hprt in FA lymphoblasts and T-lymphocytes
is also shifted toward more frequent deletions versus base
substitutions (45–47). In the fancg cells a high proportion
of replication fork breaks, which in normal or rad51d cells
often result in recoverable hprt mutants, must result in
lethality to account for the reduced yield of viable
mutants. The most likely source of this reduction is the
failure to rejoin the breaks due to both impaired HRR and
end joining, or by erroneous rejoining causing multigenic,

lethal deletion or translocation (as depicted by the model
in Figure 3 and discussed subsequently).

Relevance of the FA pathway of gene amplification

Gene amplification is a type of mutation often associated
with tumors and is elevated in cultured tumor cells versus
non-tumorigenic cells (54,55). Many studies have shown
the importance of DSBs in gene amplification although
the mechanisms remain incompletely understood (55–58).
Treatments with IR or H2O2, which cause lesions that
include DSBs, enhance gene amplification (52). CHO cells
defective in NHEJ due to a DNA-PKcs mutation have
greatly elevated (20- to 150-fold) amplification (51), while
the rad51d cells show 4- to 10-fold increases (23).
Our findings of 3- to 4-fold increased gene amplification

in the fancg cells support the idea that DSBs arising during
DNA replication are aberrantly repaired. The breakage–
fusion-bridge mechanism of amplification is a popular
model (59), in which the amplification process may be
initiated by a DSB that arises during replication and
persists until being removed by end joining between sister
chromatids. During the next anaphase, an asymmetrical
mechanical break in the dicentric ‘bridge’ chromosome
can then result in duplication of the target gene in one
daughter cell. This process can be repeated in subsequent
mitoses.

Model of spontaneous mutational outcomes in wild-type and
FA and HRRmutant cells

It is noteworthy that fancg CHO cells are hypersensitive to
killing by a variety of mutagens besides crosslinking
agents, i.e. g-rays, methyl methanesulfonate, methylnitro-
sourea, ethylnitrosourea and 6S-Gua (38). This finding
implies that loss of Fancg and, consequently, Fancd2
monoubiquitination, causes a defect in dealing with a
much broader class of DNA damage than simply inter-
strand crosslinking, e.g. oxidative and alkylation lesions
commonly caused by normal cellular metabolism. Induced
mutagenesis data also support a role for FA proteins in
promoting replication past a variety of DNA lesions, as
the fancg cells have decreased recovery of hprt mutants
after exposure to various DNA damaging agents,
including UV-C, g-rays and ethylnitrosourea, relative to
the parental control cells (33). The unusually high
sensitivity of fancg cells (38) (and FA cells generally) to
crosslinking agents may be explained by the unique, dual
requirement for TLS and HRR to bring about repair of
broken replication forks resulting from cross-link
processing.
In summary, our gene amplification and hprt mutation

studies emphasize both similarities and marked differences
in phenotype between the FA and HRR mutants in an
isogenic mammalian system. Our data combined with that
in the literature support a model in which FANCD2
monoubiquitination acts upstream of TLS, HRR and
NHEJ by supporting all three processes during S phase in
response to endogenous and exogenous DNA damage
(Figure 3). Although endogenous inter-strand crosslinks
may contribute to the FA phenotype, our induced
mutagenesis and survival studies argue that the FANC
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pathway is more globally important for diverse lesions
(33). We conclude that pathway coordination by FA
proteins supports a ‘Fire Captain’ model (33), in which
they act to limit the severity of mutagenesis by promoting
efficient TLS, HRR and NHEJ.
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