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Colorectal cancer is one common digestive malignancy, and the most common approach
of blood metastasis of colorectal cancer is through the portal vein system to the liver. Early
detection and treatment of liver metastasis is the key to improving the prognosis of the
patients. Radiomics and radiogenomics use non-invasive methods to evaluate the
biological properties of tumors by deeply mining the texture features of images and
quantifying the heterogeneity of metastatic tumors. Radiomics and radiogenomics have
been applied widely in the detection, treatment, and prognostic evaluation of colorectal
cancer liver metastases. Based on the imaging features of the liver, this paper reviews the
current application of radiomics and radiogenomics in the diagnosis, treatment, monitor of
disease progression, and prognosis of patients with colorectal cancer liver metastases.
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1 INTRODUCTION

Colorectal cancer (CRC) is the third most prevalent malignancy and the second commonest cause of
cancer-related deaths throughout the world (1), with the incidence and mortality still on the rise in
recent years (2). Because of the hepatic unique blood circulation characteristics, the liver has become
the most common organ for blood metastasis of cancers, accounting for 25% of all cancer metastasis
(3) and approximately 35%–55% of CRC (4, 5). The liver has uniquely favorable conditions for
stagnation and growth of cancerous cells, with double blood supply from the visceral and portal
vascular systems and natural spaces among adjacent endothelial sinusoidal cells that are deficient of
a typical basement membrane for covering (3, 6, 7). Hepatic metastasis is a critical indicator of
prognosis for patients with primary cancers, and the life expectancy of patients with hepatic
metastases from gastrointestinal cancers is only 6 months without appropriate treatment (8).
Accurate prediction and differentiation of liver metastases from CRC is critical to making an
appropriate therapeutic plan and improving the prognosis of the patients. Ultrasound, computed
tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)
have been routinely applied to detect and assess liver lesions, including metastases of cancer (9, 10).
Some liver metastatic lesions from primary cancers of different systems may have common
characteristics, including hyperechoic lesions surrounded by a hypoechoic halo (targeted ring
sign) in primary gastrointestinal and vascular carcinomas on ultrasound imaging and presence of
calcification in CRC or ovarian carcinomas (7, 11, 12). Metastatic lesions with typical imaging
features may be easily identified from specific primary carcinomas; however, this kind of lesion
accounts for only a small proportion of metastatic lesions, with most of the metastatic lesions being
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atypical on imaging, whose specific origin cannot be identified
easily. Thus, thorough laboratory and physical examinations,
molecular genetic test, and tissue biopsy have been applied to
assess the primary origin of liver metastases even though these
tests and examinations are costly, invasive, or time-consuming
(13, 14).

With the development of great-volume computing capability,
it is currently feasible to quickly extract countless quantitative
characteristics from three-dimensional imaging data of MRI, CT,
ultrasound, and PET for evaluation of the nature of different
lesions, because digital medical images contain considerable
information that reflects potential pathophysiology. This
technology of transforming digital medical imaging data into
high-dimensional data for assessment and decision support is
referred to as radiomics (15). The framework of radiomics
application is shown in Figure 1. The radiomics technology
has been motivated by the notion that biomedical images
comprise information that mirrors and can be used to reveal
basic pathophysiology through quantitative analysis. It has been
applied in many conditions, but the most developed field of
application is in oncology. Quantitative features of imaging are
based on imaging shape, intensity, volume, size, and texture,
which provide detailed information on tumor microenvironment
and phenotype distinct from that offered by laboratory results,
clinical reports, and genomic or proteomic analyses. Combined
with other clinical information, these features can be used for
correlation analysis with clinical results and decision-making,
and radiomics can thus provide countless imaging biomarkers to
potentially help cancer diagnosis, detection, prognosis
evaluation, prediction of treatment response, and monitoring
of disease progression. Radiomics is a young field of study and
will undergo a slow progress because of technical complexity,
datum overfitting, deficiency of standards for outcome
validation, incomplete presentation of outcomes, and
unrecognizable confounding factors in the databases.

Radiogenomics refers to the exploring of radiomics data to
find correlations with genomic modes and has aroused
considerable interest in the research field of oncology (15).
Here, in this paper, radiogenomics only indicates the
Frontiers in Oncology | www.frontiersin.org 2
combination of genomic information and radiomic features to
enable decision support rather than whole-genome analysis to
determine the genetic causes of radiosensitive variations in the
scope of radiation oncology. Radiogenomics is important
because not all patients have had their cancerous diseases
genomically profiled even though they may undergo imaging
examinations during the course of disease. Radiogenomic data
can provide gene expression or mutation information to increase
diagnostic, predictive, and prognostic capability and to enable
precision therapy because these radiomics data are originated
from the complete tumor lesion rather than a small sample
of tissue.

In patients with CRC, one factor significantly affecting the
prognosis is the proper management of colorectal cancer liver
metastases (CRLM), and surgical treatment stands for the only
opportunity of long-term survival. The 5-year survival rate of
CRC patients with complete resection of liver metastases has
been reported to be approximately 30% higher than that without
appropriate treatment of the liver metastases (16). Therefore, one
of the keys to improving the prognosis of CRC patients is to
detect liver metastases for initiating appropriate treatment as
soon as possible. Currently, few studies have been performed on
radiomics or radiogenomics of CRLM, and this review focused
on the radiomics and radiogenomic features of CRLM, trying to
facilitate early detection and appropriate treatment of CRLM
besides evaluation of its genetic factors and response to
treatment for improving the prognosis. The flow chart of the
content of this paper is shown in Figure 2.
2 RADIOMICS PROGRESS IN THE
DIAGNOSIS AND TREATMENT OF CRLM

In recent years, the field of medical image analysis has developed
rapidly, and the development of pattern recognition tools has
promoted fast progress of quantitative feature extraction. By
extracting a great deal of quantitative features from medical
imaging data, radiomics can be used to analyze image
FIGURE 1 | Framework of radiomics application.
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information in detail. Compared with traditional approaches of
imaging diagnosis, it can significantly improve tumor diagnosis,
grading and staging, evaluation of responses to chemotherapy,
and prognosis prediction (15, 17, 18), providing professional
guidance for treatment planning.

2.1 Radiomics in the Diagnosis of CRLM
With the progress of imaging technology, conventional imaging
approaches can effectively detect large and typical CRLM.
However, due to the complexity of hepatic hemodynamics and
differences of liver parenchymal background on imaging among
patients, different imaging modalities perform differently in
diagnosis of atypical or tiny liver metastases. It is hard to
detect tiny or occult metastases by using the existing imaging
approaches; however, identification of these lesions is crucial to
early management and improved prognoses. Radiomics features,
including entropy, texture and texture ratio, uniformity, and
convolutional neural networks (CNNs), have been effectively
applied for diagnosis of CRLM. In assessing the capability of
whole-liver CT imaging texture analyses of hepatic parenchyma
in distinguishing CRC patients with simultaneous hepatic
Frontiers in Oncology | www.frontiersin.org 3
metastasis (n = 10), heterochronous hepatic metastasis within
18 months after initial staging (n = 4), or no hepatic metastasis
(n = 15), Rao et al. (19) found that the mean entropy of the whole
liver was significantly (p < 0.05) higher in patients with
synchronous metastases than those without hepatic metastases,
whereas the mean uniformity of the whole liver was significantly
(p < 0.05) lower in patients with synchronous metastases than
those without liver metastases. This study indicated that texture
evaluation of seemingly disease-free liver is promising to
distinguish CRC patients with or without hepatic metastases.
After analyzing the texture in non-enhanced CT imaging in
seemingly non-diseased regions of liver for impact of hepatic
texture by presence of malignant tumors in patients with CRC,
Ganeshan et al. (20) found that the fine to medium texture ratio
after imaging filtration was significantly (p < 0.05) different in
seemingly non-diseased hepatic areas in patients with hepatic
metastasis compared with those without liver metastasis
(entropy, p = 0.0257) or those with extra-liver disease
(uniformity, p = 0.0143). Imaging textures of entropy and
uniformity have been found to be more advantageous to other
features in the diagnosis of CRLM.
FIGURE 2 | Flow chart of this paper.
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CNNs are able to generate useful characteristics from imaging
data and have been proven to have high values in predicting
oncological outcomes (5, 21–23). Lee et al. used CNNs to
generate imaging features from the liver parenchyma in 2019
patients with stage I–III CRC for predicting metachronous liver
metastasis based on preoperative abdominal CT imaging (5).
They found that the radiomics model combining clinical
variables with the top principal components of imaging had
the greatest performance (mean AUC = 0.747) to predict 5-year
metachronous liver metastasis compared with the model using
clinical features only. Even though no hepatic metastasis was
found during the initial colectomy, the radiomics features using
the CNNs could be used to predict possible metachronous
liver metastasis.

2.2 Differentiation of Histopathological
Growth Patterns of CRLM
The heterogeneities of genetic, phenotypic, epigenetic, and
morphological features inside and outside the CRLM lesion
result in different responses to systemic treatment (24, 25). The
histopathological growth pattern (HGP) is one such
heterogeneity with corresponding microvasculatures. Based on
the interface of cancerous cells with adjacent hepatic texture,
CRLM has two primary kinds of HGPs: replacement and
desmoplastic, with other uncommon kinds of mixed and
pushing HGPs (26). The desmoplastic HGP is characterized by
separation of the cancerous cells from the hepatic texture by a
fibrous band with lymphocytic infiltration and sprouting
angiogenesis in the microvasculature. In this pattern, the
cancerous cells initiate a reaction similar to the healing of
wounds: scar tissues are created with presence of inflammation
and new blood vessels. In the replacement HGP, the cancerous
cells constitute cellular plates that are in continuity with the
hepatocytic plate, allowing the cancerous cells to displace
hepatocytes and co-opt the sinusoidal blood vessels at the
cancer–liver interface, without disturbing the hepatic stromal
architecture or inducing sprouting angiogenesis (25, 27, 28).
Desmoplastic metastases are frequently well or moderately
differentiated, whereas replacement liver metastases are of poor
differentiation, lacking immune reaction and secondary
glandular structures (27, 29). The pushing HGP is less
common with the hepatocyte plate being compressed and
pushed away by the metastatic cancer cells, with no
desmoplastic rim around the cancerous cells or direct contact
of the cancerous cells with the hepatocytes.

The HGPs of CRLM can be effectively differentiated using
multidetector CT-based radiomics and MRI-based radiomics
(multi-habitat and multi-sequence) (25, 30). After studying 126
patients with CRLM lesions who had undergone abdominal
contract-enhanced CT imaging fol lowed by partial
hepatectomy with histopathologically confirmed HGPs
including desmoplastic HGP in 68 patients and replacement
HGP in 58, Cheng et al. (30) found that the fused radiomics
signature had the best predictive performance in differentiating
replacement from desmoplastic HGPs (AUC of 0.926 and 0.939,
respectively, in the training and validating set), with good
Frontiers in Oncology | www.frontiersin.org 4
discrimination demonstrated in the clinical-radiomics
combined model (C-indices of 0.941 and 0.833, respectively, in
the training and validating set). Han et al. (25) investigated MRI
data of 182 resected CRLM lesions in chemotherapy-free patients
including desmoplastic HGPs in 59 patients and replacement
HGPs in 123, with the decision tree algorithm being used for
radiomics modeling, fused radiomics model being reconstructed
from combination of radiomics signatures of all sequences, and
clinical and combined models being constructed viamultivariate
logistic regression analysis. They found that the fused radiomics
model of tumor zone and the radiomics model of tumor–hepatic
interface zone exhibited superior performance to any single
sequence or the clinical model and that the radiomics model of
tumor–liver interface zone was better than that of the tumor
zone (AUC of 0.912 vs. 0.879). The combined model had good
discriminating capability, with the AUC of nomogram being
0.971, 0.909, and 0.905, respectively, in the training, internal
validating, and external validating set. Their study (25) revealed
that MRI-based radiomics is capable of predicting the
predominant CRLM HGPs as a potential biomarker for
therapeutic strategy. Through analysis of the above studies, it
was found that the combination model of radiomics and clinical
information can show better discrimination ability than the
single radiomics model.

2.3 Evaluation of HGPs for Treatment
Effect on CRLM
Metastases are the major death cause in most patients with solid
malignancies, and hepatic metastasis is the critical factor for
survival of patients with advanced malignant tumors (27, 28).
Histological presentations of liver metastases are heterogeneous
and reflected by different HGPs that affect clinical outcomes. The
desmoplastic HGP is a positive prognostic biomarker while the
replacement HGP is a negative one (27). A retrospective study
enrolling 732 patients found that the exclusive desmoplastic
growth serves as a positive prognostic marker for patients with
CRLM, which is not matched by any other factors evaluated (31).
In this study, 19% of patients without chemotherapy (n = 367)
had desmoplastic growth in the whole tumor–hepatic interface
and were independently associated with 50% 5-year survival rate
without progression (hazard ratio or HR: 0.54, p = 0.001) and
78% 5-year overall survival (HR: 0.39, p < 0.001). CRLM lesions
with this kind of HGP are more suitable for regional metastases-
directed treatment. On the contrary, replacement HGP is linked
to poor pathological responses, with the presence of a large
proportion of cancerous cells after chemotherapy, and bad
imaging react ion on CT in pat ients with primary
chemotherapy and anti-angiogenesis therapy before surgery for
CRLM (32). This type of HGP occurs more often in new hepatic
metastatic lesions that grow even during systemic therapy. The
replacement HGP indicates not only worse overall and
progression-free survival (31, 33, 34), but also resistance to
systemic therapy in patients with CRLM (32). A possible
reason for the resistance to systemic therapy of the
replacement type of HGP is vessel co-option, which serves as
an approach of continuous blood supply when the vascular
January 2022 | Volume 11 | Article 689509
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endothelial growth factor is inhibited by treatment (35).
Moreover, different HGPs have varied immune phenotypes
that contribute to varied responses to immune therapy.
Evidence has indicated that tumors with limited numbers of
infiltrated T cells are in essence frequently resistant to immune
therapy (36). Vascular co-opting hepatic lesions of metastasis
usually have low infiltration of immune cells or inflammatory
cells as demonstrated in lesions with the replacement type of
HGP in contrast to those with desmoplastic HGP which are
frequently surrounded by a lot of lymphocytes in the dense rime
(29, 37). Thus, the types of HGPs differentiated using the
multidetector CT-based radiomics and MRI-based radiomics
(25, 30) may indicate the prognosis of patients with relevant
types of HGP in CRLM lesions. In studying the HGP types of
CRLM using MRI-based radiomics in comparison with the
histopathological types, Han et al. (25) found that more tissue
types were presented in the desmoplastic HGP lesion of CRLM,
including inflammatory, fibrosis, tumor, and hepatic cells,
indicating greater heterogeneity than lesions of replacement
HGP. Replacement and desmoplastic HGPs may be able to
predict responses to bevacizumab and long-term prognosis.
Galjart et al. have convincingly demonstrated that patients
with CRLM and an exclusive desmoplastic HGP (100% of the
tumor–hepatic interface) undergoing partial hepatectomy have
outstandingly good outcomes (31).

2.4 Evaluation of Response to
Chemotherapy of CRLM
In CRLM patients, less than 30% were initially resectable (38). In
some patients, the metastatic foci, which could not be removed,
might disappear on imaging after appropriate therapy, but some
metastases could still be detected during radical surgery. Because
radiomics can explore subtle changes of tumor and liver texture
before and after treatment, it can be used to evaluate the response
of CRLM lesions to chemotherapy (39–48). The CRLM lesion
uniformity, entropy, homogeneity (variance and angular second
moment), gray-tone difference, matrix contrast and shape,
skewness, narrowed standard deviation, mean attenuation,
density of major hepatic lesion, and histogram parameters for
apparent diffusion coefficient maps have all be used to predict
responses to chemotherapy. Good responses have been
associated with decreased entropy, increased uniformity, higher
variance, lower angular second moment, lower baseline skewness
value, narrowed standard deviation, high mean attenuation,
mean values of histogram parameters for apparent diffusion
coefficient maps, and high baseline density of dominant
hepatic lesions.

The entropy of CRLM lesions had been reported to decrease
in patients with good responses while the uniformity increased
after chemotherapy (entropy: −5.13 in good responding patients
and +1.27 in non-responding patients, OR = 1.34; uniformity:
+30.84 vs. −0.44, respectively, OR = 0.95) (45). However, a
higher entropy had also been associated slightly with
therapeutic success (6.65 ± 0.26 in patients with good
responses vs. 6.51 ± 0.34 in non-responding patients, P = 0.08)
(41), and a low baseline uniformity was related to a good
Frontiers in Oncology | www.frontiersin.org 5
response (cutoff ≥ 0.42; OR = 20, 95%CI = 1.85–217.4) (46).
Two measures for homogeneity of lower angular second moment
and a higher variance had been demonstrated to associate with
good responding CRLM lesions rather than non-responding
lesions on T2 MRI imaging, with the variance of 446.07 ±
329.60 in patients with good responses vs. 210.23 ± 183.39 in
non-responding patients (p < 0.001) and the angular second
moment of 0.96 ± 0.02 vs. 0.98 ± 0.01, respectively (p < 0.001).

After investigating therapeutic radiomics features for predicting
tumor sensitivity in 667 patients with CRLM to 5-fluorouracil,
irinotecan, and folinic acid alone or combined with cetuximab,
Dercle et al. (42) found that the radiomics response signature
outperformed known biomarkers of the KRAS mutation status
and tumor contraction rate in the early prediction of therapeutic
sensitivity and for guiding decisions of cetuximab therapy. In
evaluating the significance of pre-treatment CT texture analyses
for predicting treatment responses in 82 patients with CRLM after
combined targeting chemotherapy, Zhang et al. (49) found
significant (p < 0.05) differences in Entropy, Energy, Variance,
Standard deviation, Quantile 95, and sumEntropy between the
response and non-response groups in pre-treatment lesions.
Lesions with higher Entropy, lower Energy, higher Variance,
higher Standard Deviation, and higher sumEntropy seemed to
indicate a better therapeutic response. Good diagnostic efficiency
was obtainedwhen sumEntropy > 0.867, with a sensitivity of 60.5%
and a specificity of 79.5%. Radiomics texture indexes originating
from basic CT imaging data of CRLM lesions had the potential
capability of imaging biomarkers for predicting cancer response to
targeted chemotherapy. By comparing the image features before
and after diagnosis and treatment, we found statistically significant
radiomics features, such as Entropy, Energy, Variance, Standard
deviation, and Quantile, which can all be used to evaluate the
remission effect of drugs on CRLM lesions. In the future, these
radiomics features can be used clinically as a relatively cheap and
noninvasive monitoring means for patients with CRLM or
other malignancies.

Most of the reported studies on radiomics are based on CT
images, and radiomics features from MRI images can also be
used to predict the treatment effect on liver metastases. In order
to determine the predictive value of pre-treated MR texture
features of CRLM lesions for therapeutic response to
chemotherapy, Zhang et al. (48) extracted five histogram
features (variance, mean, kurtosis, skewness, and entropy) and
five co-occurrence matrix features of gray level (GLCM;
entropy), angular second moment, correlation, inverse
difference moment, and contrast) from whole liver MRI T2WI
data of 26 patients with CRLM before chemotherapy. After
careful evaluation, a higher variance, contrast, entropy,
entropy, a lower angular second moment, correlation, and
inverse difference moment were revealed to significantly (p <
0.05) independently associate with good responses to
chemotherapy (AUCs 0.602–0.784). Multivariable logistic
regression demonstrated that variance (p < 0.001) and angular
second moment (p = 0.001) remained predictive parameters to
distinguish responding from non-responding tumors, with the
highest AUC of 0.814 (48).
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2.5 Prognosis Prediction of CRLM
After active surgical resection, radiofrequency, and
chemotherapeutic targeted therapy, some patients with CRLM
can achieve a high-quality survival of up to 10 years, whereas
others only obtain a short tumor-free survival. Individual
differences make the application of personalized treatment
strategy particularly important, and identifying risk factors
allows clinicians to develop surveillance strategies for patients
who are at a higher risk of recurrence. Researchers all over the
world have proposed many scoring systems for grading and
predicting prognosis of CRLM patients with different tumor
loads (17–19), but the ultimate effects on prognosis may be quite
different. The radiomics features of heterogeneity, homogeneity,
uniformity, Graytone difference matrix contrast, spatial
heterogeneity, entropy, texture, and gray level size zone matrix
have been used to evaluate the prognoses of patients with CRLM.

Radiomics features have been used to predict the survival of
patients with CRLM who have undergone chemotherapy or
hepatic surgery because radiomics can assess subtle liver
texture differences on different images (40–43, 46, 47, 50–53).
An association had been revealed between CRLM heterogeneity/
homogeneity and survival. Patients with a greater uniformity of
CRLM on CT imaging (cutoff value ≥ 0.42 with a relative risk of
6.94 for overall survival and a relative risk of 5.05 for
progression-free survival) had been reported to have poor
overall survival and progression-free survival (46). A shorter
overall survival had also been demonstrated to associate with
metastatic homogeneity on CT imaging (HR: 1.5 × 1020–1.3 ×
1049) (40). After comparing with before chemotherapy, a
radiomic signature based on two heterogeneity features,
Graytone Difference Matrix contrast and spatial heterogeneity,
had been related to overall survival (HR = 44.3 for patients with
superior image quality; HR = 6.5 for patients with conventional
image quality) (42), with the radiomic signature having a better
value in predicting survival than the 8-week tumor shrinkage or
KRAS-mutational status assessed in accordance with the RECIST
criteria (AUC 0.80 vs. 0.67 for KRAS and 0.75 for RECIST, p <
0.001) in the validation setting. The CRLM heterogeneity at 18F-
FDG PET/CT was also confirmed to be a predictor of shorter
overall survival (HR 4.29) at multivariant analysis (51), and a
model constructed with numbers of metastases, histogram
uniformity, and metabolic cancer volume was constructed to
predict shorter event-free survival (HR 3.20, p < 0.001) (51).

Entropy of the metastatic lesions had been associated with the
prognosis of patients with CRLM (40, 41, 50). It had been
reported that the overall survival was in a positive correlation
with the entropy of CRLM [HR: 0.16–0.63 (40), and HR = 0.65,
95% CI = 0.44–0.95 (50)]. The value of entropy ratio between
CRLM and liver texture had also been demonstrated to relate to
the prognosis, with a negative correlation between the value and
overall survival (HR 1.9) (41). After studying the tumor and liver
texture on CT portal venous-phase images in 230 patients with
CRLM (120 in the training and 110 in the validation group)
before and 2 months after chemotherapy, Dohan et al. (43)
established a predictive model of efficacy after 6 months of
chemotherapy, which is as effective as the RECIST1.1
Frontiers in Oncology | www.frontiersin.org 6
evaluation criteria for solid tumors. The radiomic signature
with the combination of decreases in sum of target liver
lesions, density, and texture analyses of dominant liver lesion
at baseline and 2-month CT imaging data could predict the
overall survival and detect tumors with good responses better
than the RECIST1.1 criteria for CRLM treated by bevacizumab
and FOLFIRI as first-line medicines.

Other radiomics features have also been related to the
survival. The combination of CRLM correlation and contrast
into a single texture parameter had been reported to associate
with overall survival (HR 2.35) (53). One texture analysis score
combining three features of high baseline density of dominant
hepatic lesion, reduction in kurtosis, and decrease in the sum of
target hepatic lesions assessed 2 months after chemotherapy had
been demonstrated to strongly associate with overall survival
(SPECTRA score >0.02 vs. ≤0.02, with the HR of 2.82 in the
training set and 2.07 in the validating set) (43). Radiomic
evaluation score 2 months later had the same prediction value
of prognosis as the RECIST criteria following chemotherapy for
6 months. In the gray level size zone matrix, the small area
emphasis (positive parameter of prognosis, HR 0.62) and the
minimal pixel value (negative parameter, HR 1.66) had been
revealed to be related to progression-free survival (52).

In addition to the above mentioned radiomics features,
CRLM density on CT imaging (46), ShapeSI4 (in a radiomic
signature) (42), standard deviation (40), future hepatic residual
energy and entropy combined as a single linear predictor (53),
and AUC of volume histograms at PET-CT (47) have also been
reported to associate with the overall survival.
3 RADIOGENOMICS IN DIAGNOSIS AND
TREATMENT OF CRLM

Radiogenomics can be used to discover the radiomics features
that reflect gene expression or polymorphism for further
understanding the occurrence and development of diseases
(54). Radiogenomics promises to understand gene expression
of diseases through noninvasive and conventional imaging
methods. With continuous progress of the technology,
radiogenomics has been widely studied in systemic diseases in
recent years. Many scholars have reported a correlation between
radiomics features and EGFR (epidermal growth factor receptor)
mutation (55–57) or ALK (anaplastic lymphoma kinase)
rearrangement of lung cancer (58, 59). In detection and
management of breast cancers, many researchers have found
that breast cancer is associated with radiomics features at the
gene sequence level (60), gene expression level (61), and
molecular subtype level (62). Marigliano et al. (63) analyzed
multiphase CT images (arterial phase, portal-venous phase, and
urinary tract phase) of 20 patients with clear cell renal cancer and
found that the radiogenomics data derived from these images
were well correlated with expressions of some microRNAs (miR-
185-5p, miR-21-5p, miR-210-3p, miR-221-3p, and miR-145-5p),
especially between entropy and miR-21-5p. Similarly, progress
has also been made in radiogenomics for prostate cancer (64).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Radiomics of Colorectal Liver Metastasis
Currently, there are only limited studies on radiogenomics of
tumors involving the liver. Segal et al. were the first in 2007 to
explore the correlation of gene expression pattern of a
hepatocellular carcinoma with the imaging features, identifying
32 image characteristics from enhanced CT imaging of three
phases to be correlated to the expression degrees of 116 genetic
biomarkers among 6,732 genes confirmed by microarray analysis
(65). However, only three imaging features on average were
required to catch expression variations of any genetic marker,
and the use of 28 image features combined could explain
variations of all 116 genetic markers (65). Moreover, it was
found that the genes in some particular molecular profiles had
common physiological function, including cellular proliferation
and hepatic enzyme syntheses, which could correlate to specific
imaging characteristics. Thus, two image features, presence of
arteries and absence of low-density halos, were found to correlate
with “venous invasion signatures”, which are image patterns to
predict microscopic venous invasion and OS (65). Kuo et al. (66)
also conducted radiogenomic analysis to identify imaging traits
in hepatocellular carcinomas, which were related to a genetic
expression profile of 61 genes to detect tumor responses to
doxorubicin. The enhanced CT imaging data of 30
hepatocellular carcinomas had been studied for six image
features, which were found to correlate with the microarray of
18,000 genes.

CRC is a heterogeneous tumor, and its occurrence and
development are affected by a variety of factors. Lifestyle habits
such as high-fat diet are important risk factors to increase the
incidence of CRC (67). Besides external factors, intrinsic genetic
factors also affect the occurrence and development of CRC (68).
Knowing the status of gene mutation in CRC can effectively
provide guidelines for clinical treatment and prognosis
evaluation, thus formulating a recurrence surveillance strategy
for patients (69).

3.1 Radiogenomics of KRAS/NRAS/BRAF
Mutations in CRLM
3.1.1 Clinical Significance of KRAS/NRAS/BRAF
Mutation in CRLM
The RAS/RAF/MEK/extracellular signal-regulated kinase
signaling cascade is referred to as the pathway of mitogen-
activated protein kinase (MAPK), which controls cellular
differentiation, proliferation, angiogenesis, migration, and
survival. Dysregulation of the pathway constitutes the bases for
tumorigenesis (70). This pathway consists of RAS small
guanidine triphosphatases (GTPase) and can activate the
family proteins of RAF (ARAF, CRAF, and BRAF). Abnormal
activation or signaling of the MAPK pathway had been
demonstrated in many tumors, including CRC, through some
distinctive mechanisms, like mutations in BRAF and RAS (70),
which most frequently occur in human neoplasms.

KRAS, NRAS, and HRAS are the RAS oncogenes to encode a
family of GTP-adjusted switches and can repeatedly mutate in
human cancers (71). Once activated, these genes will cause
pleiotropic effects in cells, leading to cellular differentiation,
proliferation, and survival. KRAS mutations take up
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approximately 85% of mutations in the RAS gene in human
malignancies, NRAS accounts for approximately 15%, and
HRAS accounts for below 1% (72). In CRC, RAS mutations
primarily take place in the KRAS gene, and approximately 45%
of metastatic CRCs contain activated KRAS mutations (73).
NRAS mutation happens in 2%–7% patients with metastatic
CRC (71). KRAS gene mutations are related to right-sided
colonic cancers, but NRAS gene mutation is related to left-
sided primary malignancies and female gender, indicating
distinctive biology for NRAS and KRAS mutant molecule
subsets of metastatic CRC (74).

KRAS gene is related to the pathogenesis and progression of
CRC, and mutation of this gene may cause resistance to EGFR
inhibitors and poor tumor response to molecular targeted drugs
(75, 76). De Macedo et al. (77) studied the DNA of primary
tumor and metastatic tissue in 102 cases of CRLM and found that
the KRAS gene was highly homogeneous across the primary
CRC cancer areas and consistent in the original cancer lesion
with the metastatic tissues in the same person. KRAS mutation is
an independent risk factor for the prognosis of patients with
CRC (78). Therefore, understanding the KRAS mutation rate in
patients with CRC will help treatment planning and
prognosis evaluation.

NRAS defines a group of molecules with different clinical
features from KRAS-mutant and wild-type metastatic CRC (71).
NRAS genemutation can cause disorderedmalignant proliferation
and promote metastasis (71), thus associating with worse survival
and outcomes than KRAS-mutant or wild-type metastatic CRC.
Activating mutations in NRAS take place in 30% of cases with skin
melanoma, and BRAF mutation happens at a high incidence in
thesemalignancies (74). BRAForNRAS genemutation is related to
poor survival of metastatic melanoma patients. However, BRAF
mutation is reciprocally exclusive with melanoma NRASmutation
and with CRC KRAS mutation.

BRAF mutations take place in 7% of cancers, and
approximately 8%–12% of metastatic CRC cases contain BRAF
mutations (79). BRAF gene mutation can cause poor drug effect
and worse prognosis, and reduce the effect of cancer cell
apoptosis, thus aggravating the condition of patients with
cancers. Some studies (80) found that the mutation rate of the
BRAF gene is higher in patients with lower tumor differentiation.

3.1.2 Radiogenomics of KRAS/NRAS/BRAF
Mutations in CRLM
Yang et al. (81) studied 346 radiomic features extracted from
portal venous-phase CT imaging data of primary tumors and
KRAS/NRAS/BRAF gene mutation in 117 patients with CRC,
including 61 cases in the training and 56 in the verification group
before treatment. The support vector machine methods and
RELIEFF were constructed to choose important features and
establish the radiomic features. It was found that the radiomic
signature was significantly associated with the KRAS/NRAS/
BRAF mutation (p < 0.001), with the AUC, sensitivity, and
specificity for predicting KRAS/NRAS/BRAF mutation as 0.869,
0.757, and 0.833 in the primary group, and 0.829, 0.686, and
0.857 in the validation group, respectively.
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Lubner et al. (50) investigated tumor texture analysis on single
CRLM lesion on contrast-enhanced CT imaging in 77 patients
before treatment. It was found that entropy (spatial scaling factor
or SSF 4, p = 0.007), mean positive pixels (SSF 3, p = 0.002), and
standard deviation (SSF 3, p = 0.004) of medium filtration were
significantly associated with the tumor stage. Skewness was found
to negatively associate with KRAS mutations (p = 0.02), whereas
the coarse filtration entropy was significantly (p = 0.03) associated
with survival (HR for death 0.65). Therefore, radiogenomics is
expected to understand the gene expression profile of the disease
through noninvasive and routine imaging examination and may
be a breakthrough in the diagnosis, treatment, disease monitor,
and prognosis evaluation of CRC and CRLM.

3.2 Radiogenomics of Microsatellite
Instability in CRLM
3.2.1 Clinical Significance of Microsatellite
Instability of CRLM
Some kinds of genomic instability are able to drive the initiation
and development of CRC. The most common type is
chromosomal instability, which is found in 85% of CRC, and
another is microsatellite instability (MSI) which occurs in 15%
patients with CRC. MSI tumors are a subset of CRC
characterized by malfunction of mismatch repair genes
(MMR), which can cause failure to repair errors in short
tandem repetitive DNA sequences known as microsatellites
(82, 83). In the microsatellite sequences, the DNA replication
stability is poor and is prone to mismatches. MSI is caused by
lack of DNA mismatch repair (MMR) system, arising from
germline mutations in the MMR gene, which is prone to the
Lynch syndrome, or from epigenetic inactivation of MLH1 in
sporadic malignancies. Approximately 5% metastatic CRCs
showed MSI or deficient MMR, and sporadic CRC patients
with MSI were often related to BRAFV600E mutation via its
association with CpG methylator phenotype (84).

High-frequency MSI (MSI-H) refers to the occurrence of MSI
at two or more sites; low-frequency MSI (MSI-L) is MSI
occurring only at one site; microsatellite stability (MSS)
indicates MSI, which does not occur at any site (85, 86). MSI
has a guiding role in predicting the malignant degree and
pathogenesis of tumor, and can also provide direction for
clinical selection of treatment plan and prognosis evaluation.
Studies have shown that MSI-H can be used as a biomarker to
guide clinical immunotherapy for CRLM patients (83, 84, 87).
Through transformation therapy of immune drugs, it is possible
to remove the metastatic foci so as to further improve survival
and quality of life for cancer patients.

3.2.2 Radiomics Combined With MSI in CRLM
Understanding the MSI status is necessary because CRC tissues
with MSI have specific biological behavior and may indicate
better prognoses and benefit from immunotherapy or resistance
to fluorouracil treatment (88). However, the approaches for
evaluating MSI status using polymerase chain reaction and
immunohistochemistry are performed on pathological tissues
from invasive biopsies or surgeries and have not been extensively
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applied. It is therefore necessary to develop non-invasive and
cost-effective methods to predict the MSI status and guide
further therapeutic strategies. By extracting 254 radiomics
features of intensity from CT imaging of the CRC cancer
region in combination with clinical features in 198 patients
including 134 patients with microsatellite stable tumors and
64with MSI tumors, Golia Pernicka et al. (89) were able to
develop three prediction models with clinical features only,
radiomic features only, and combination of radiomic and
clinical features. The combined radiomics model outperformed
the other two models in predicting MSI, with the AUC of 0.80
and 0.79 for the training and testing set, respectively (specificity
96.8% and 92.5%, respectively).

Fan et al. studied 119 patients with stage II CRC confirmed
pathologically, known MSI status, and preoperative enhanced CT
images for extracting radiomics features (90). In their study, the
radiomics features were obtained from the portal-vein phase CT
imaging data of segmented tissues of each complete primary
cancer lesion with the Matrix Laboratory software while the
radiomic signatures were constructed using the selection
operator logistic regression and least absolute shrinkage model.
Six radiomics and 11 clinical features were chosen for predicting
the MSI status. The model combining both radiomic and clinical
features achieved the overall best performance in predicting the
MSI status than either the radiomics or clinical feature model
alone, yielding the AUC, sensitivity, and specificity of 0.752, 0.663,
and 0.841 for the combined model, 0.598, 0.371, and 0.825 for
clinical model alone, and 0.688, 0.517, and 0.858 for radiomics
model alone, respectively. Combined analyses of radiomic and
clinical features improved the predictive efficacy and helped
selecting appropriate patients for personalized therapy.

In exploring the value of radiomics analysis derived from
dual-energy CT imaging to preoperatively evaluate the MSI
status in CRC, Wu et al. (88) investigated 102 CRC patients
with pathologically confirmed MSI status and selected nine top
features to constitute the radiomic model. They found that
radiomic analyses of iodine-based material decomposition
imaging data with dual-energy CT has a great capability to
predict the MSI status in patients with CRC, with the AUC,
accuracy, sensitivity, and specificity of 0.961, 0.875, 1.000, and
0.812 in the training set, and 0.875, 0.788, 0.909, and 0.727 in the
testing set, respectively. Good clinical application and calibration
were demonstrated with the decision curve and calibration
analyses, respectively.

Although there is consistency between CRC MSI status and
liver metastasis, there were currently no correlation studies
between MSI status and radiomics of liver metastasis.
4 SUMMARY

In the diagnosis, treatment, monitor of disease progression, and
prognosis of CRLM, thousands of radiomics features can be
extracted, such as image intensity features, high-order features,
texture features, and shape features. Due to the lack of unified
standards at present, different research teams choose different
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radiomics features in the selection of features. Through review of
published studies in the literature, it is found that the most
widely used radiomics features include entropy, uniformity,
variance, and skewness. At present, the unity of the results is
relatively poor, but all these results show the feasibility and
significance of the application of radiomics and radiogenomics in
the diagnosis, treatment, monitor of disease progression, and
prognosis of CRLM.

Radiomics and radiogenomics can be widely used in clinical
medicine research with noninvasiveness and low cost. However,
as a new field, it is still in its infancy, with many limitations. For
example, the research data for radiomics mostly come from small
samples and single centers, whereas some big data from
multicenters are different because of use of different scanning
equipment and scanning conditions. Moreover, imaging
delineation segmentation approaches may also differ from
center to center or from study to study. Future development
and research in radiomics and radiogenomics will have to solve
these issues for better outcomes.

As an innovative arena in medical imaging, radiomics and
radiogenomics can be used to identify pathological process,
reveal the underlying pathophysiological mechanisms through
medical imaging and clinical data, and identify hidden imaging
patterns that can be used to predict tumor biological behavior
and patients’ prognoses, providing efficient prediction of
Frontiers in Oncology | www.frontiersin.org 9
responses to chemotherapy and survival in addition to accurate
and early prediction compared to standard biomarkers.
Continuous surveillance of the radiomics and radiogenomics
biomarkers will provide adequate information to monitor cancer
recurrence and individualized treatment to the constantly
changing genome of cancer. The current research results in
radiomics and radiogenomics of CRLM warrant further
exploration into wider application in other fields.
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