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Tuberculosis (TB) is one of deadly transmissible disease that causes death worldwide; 
however, only 10% of people infected with Mycobacterium tuberculosis develop disease, 
indicating that host genetic factors may play key role in determining susceptibility to TB 
disease. In this way, the analysis of gene expression profiling of TB infected individuals can 
give us a snapshot of actively expressed genes and transcripts under various conditions. 
In the present study, we have analyzed microarray data set and compared the gene 
expression profiles of patients with different datasets of healthy control, latent infection, 
and active TB. We observed the transition of genes from normal condition to different 
stages of the TB and identified and annotated those genes/pathways/processes that 
have important roles in TB disease during its cyclic interventions in the human body. 
We identified 488 genes that were differentially expressed at various stages of TB and 
allocated to pathways and gene set enrichment analysis. These pathways as well as 
GSEA’s importance were evaluated according to the number of DEGs presents in both. 
In addition, we studied the gene regulatory networks that may help to further understand 
the molecular mechanism of immune response against the TB infection and provide us 
a new angle for future biomarker and therapeutic targets. In this study, we identified 26 
leading hubs which are deeply rooted from top to bottom in the gene regulatory network 
and work as the backbone of the network. These leading hubs contains 31 key regulator 
genes, of which 14 genes were up-regulated and 17 genes were down-regulated. 
The proposed approach is based on gene-expression profiling, and network analysis 
approaches predict some unknown TB-associated genes, which can be considered (or 
can be tested) as reliable candidates for further (in vivo/in vitro) studies.
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INTRODUCTION

Tuberculosis (TB) is a communicable disease generally caused by 
the bacterium Mycobacterium tuberculosis (MTB). The bacteria 
typically affects the lungs (pulmonary TB), but other body parts 
can  be also affected (extra pulmonary TB) (Ahmad, 2011). The 
disease is communicable and spread through the air by expelling 
out the active MTB while coughing and sneezing (Schnappinger 
et al., 2003). In 2016, 10.4 million individuals were infected with TB, 
and 1.7 million died from the disease (including 0.4 million among 
people with HIV i.e., 40% of HIV deaths were due to TB). TB kills 
more adults in India than any other infectious disease (In 2016, an 
estimated 28 lakh cases occurred, and 4.5 lakh people died due to 
TB). India has the highest burden of both TB and advanced TB (like 
MDR TB) and second highest of HIV-associated TB. In India, the 
major challenge to curb the TB is poor primary healthcare system 
in rural areas due to deregulation of private health care leading 
to indiscriminate use of first- and second-line TB drugs, poverty, 
spreading HIV infection, and lack of administrative coordination 
among government functionary bodies. In our current study, we 
used meta-analysis of individual raw microarray data (GSE series) 
deposited in the GEO database which are obtained from various 
blood cell types (macrophages, monocytes, and CD4+) and cell 
lines (THP1) of individuals with different datasets (e.g., controls vs. 
TB disease, control vs. latent TB, latent TB vs. TB disease). We have 
performed gene-transition study of differentially expressed genes 
(DEGs) data and text mining between different stages of TB and 
classified the DEGs in stage-specific manner like normal to latent 
TB infections, normal to active TB, and latent infection to active 
TB. It is widely thought that, to know that function of a gene, it must 
be analyzed in the context of gene interaction network, because 
gene networks are commonly interpreted as encoding functional 
information in their connections. So, our study usually focused 
on the “guilt-by-association (GBA)” presumption which state that 
physically and functionally linked genes are possibly participating 
in the same biological pathways having comparable effects on the 
phenotypes (Lee et al., 2011). The concept of network theory is 
an imperative method to know the topological properties and the 
complex-system dynamics that correspond to their functional 
modules. The complex networks may be classified into four types 
of networks: (a) scale-free network, (b) small-world network, (c) 
random network, and (d) hierarchical network. For the biologist, 
hierarchical network has special interest because it incorporates 
the mien of modules, and distributed hubs (sparsely) regulate the 
network. So, we constructed the gene regulatory network and then 
analyzed its topological properties, because it helps to understand 
the structure of a network which facilitates in understanding the 
hidden mechanisms. Further, we identified important network 

modules which contain fundamental key regulators that have a 
fundamental importance.

MATERIAL AND METHOD

Inclusion Criteria for Differentially 
Expressed Genes
A set of 11 microarray data sets were selected from the NCBI GEO 
repository database (http://www.ncbi.nlm.nih.gov/geo/). The 
datasets include GSE54992 (Cai et al., 2014), GSE52819 (Verway 
et al., 2013), GSE64335 (Bouttier et al., 2016), GSE11199 (Thuong 
et al., 2008), GSE98750 (Lavalett et al., 2017), GSE78233 (Cheng 
et al., 2017), GSE57736 (Guerra-Laso et  al., 2015), GSE16250 
(Reyes et al., 2015), GSE27882 (Liu et  al., 2012), GSE57028 
(Salamon et al., 2014), and GSE83456 (Blankley et al., 2016). 
The background data correction and data normalization were 
done by the robust multiarray average (RMA) in R affy and lumi 
packages to ensure unbiased and dysregulated gene expression 
data. The RMA method, which performs quantile normalization, 
was used to minimize inconsistencies due to normalization of 
the each Affymetrix GSE series. The RMA method was chosen 
over others due to its fine differential change detection and stable 
variance on a log scale and minimizes the false positive results. 
The specificity and sensitivity of RMA method are good during 
fold-change calculation to identify DEGs. Similarly, we have 
used lumi pipeline (Bioconductor package) which is exclusively 
developed to analyze Illumina data (BeadChip). It checks the 
data quality and data normalization and stabilizes the data 
variance. The gene expression data (GSE57736 and GSE27882) 
which is generated by Agilent platforms were already present 
as normalized data. In the present study, we used linear model 
for microarray analysis (LIMMA) package which is a highly 
recommended method to measure the differential expression 
of genes. It not only calculates simple t-test but also calculates 
moderate t-test and f-test by applying the Empirical Bayes 
approach and reducing the standard errors and gives us steady 
and reproducible outcomes even with a less quantity of arrays. 
So, limma package (Smyth, 2004) was used to identify the DEGs 
among the healthy control, latent TB, and active TB. We set the 
criteria to select significant differentially expressed genes i.e., the 
adjusted p-value was <0.05, and the fold change was >1.5. We 
have used the BRCW [Bioinformatics & Research Computing 
website (http://jura.wi.mit.edu/bioc/tools/compare.php)] to 
select the DEGs which is common in at least two datasets of gene 
expression profile. Doing this, we became more specific in the 
selection of DEGs and the chances of biased data compilation 
became negligible. According to the corresponding correlation 
between the probe and gene from the data, the probe numbers 
of the expression profile were changed into the corresponding 
gene symbols using the Synergizer database (Huang et al., 2009).

Gene Classification, Ontology, and 
Pathway Analysis of Degs
To know the significance of the identified DEGs, we have categorized 
them by GO-molecular function, GO-biological process, and 

Abbreviations: MTB, Mycobacterium tuberculosis; DEGS, Differentially expressed 
genes; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; 
LCP, Local–community–paradigm; MDR, Multidrug-resistance TB; GBA, Guilt 
by association; MF, Molecular function; BP, Biological process; PC, Protein class; 
NC, Normal control; LI, Latent infection; ATB, Active TB; FKR, Fundamental key 
regulators; LAGO, Logically accelerated GO; GEO, Gene Expression Omnibus; 
GSE, GEO series; RMA, Robust multiarray average; LIMMA, Linear model for 
microarray analysis; CN, Common neighbors; HE, Hamiltonian energy; CPM, 
Constant Potts model; LCP-DP, LCP-decomposition-plot.
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protein class using the Protein ANalysis THrough Evolutionary 
Relationships (PANTHER v.13.0) Classification System and 
analysis tools and DAVID database (https://david.ncifcrf.gov/) 
to enrich the given set of DEGs to possible GO terms (Mi et al., 
2013) (Huang et al., 2009). The PANTHER overrepresentation 
study (Fisher’s exact with FDR multiple test correction) was used 
to search the data against the PANTHER, and GO databases and 
p-values were set according to Bonferroni correction.

The GO analysis (gene ontology) is the useful method for 
annotation of genes and its products and characterization 
of biological attributes for high-throughput genome or 
transcriptome data (Ashburner et al., 2000). The differentially 
expressed genes among “active-TB” and “latent TB” on compared 
with “normal condition” were over-represented in various GO 
classes. The gene ontology provides and visualizes us the basic 
terms subdivided into three important categories, namely, BP 
(Biological process), MF (molecular functions), and biological 
pathways among these groups.

Gene Transition Among Different Stages 
of TB
In order to get the behavior of normal gene expression 
perturbation, we tried a normal way for finding the associated 
genes while moving from one stage to another. In all the transitions 
that we took into consideration have been provided by a list of 
up- and down-regulated genes. These gene(s) in both the cases 
(i.e., stage from which is transferred to the targeted stage) have its 
own meaning. This meaning to a gene(s) regulation gives us an 
opportunity to say something about the ongoing mechanobiology 
inside the cell. So, to observe these transitions, we framed our 
study in such a way (based on the data we’ve got) which considers 
every possible transition in view. These transitions are discussed 
in brief as follows. In this study, we made comparison of the gene-
expression profiles among individuals with normal conditions, 
latent infection, and active TB. Thus, we observed the expression 
of genes from normal to different stages of the TB and try to arrest 
those genes which play a key role in susceptibility to TB.

• Normal to Latent Infections: In this section, we have taken 
those DEGs which are involved in between normal and 
latent TB conditions. In LTBI, the bacteria remain in inactive 
form for many years (years to decades) before transforming 
into TB disease. In this study, we have studied several BPs 
and important pathways that lead to the latent infection for 
identification of latently infected individuals.

• Normal to Active TB: In this section, we have taken those 
DEGs which are differentially expressed in TB disease condition 
as compared to healthy control and recognized those immune 
process and pathways which are prominent in TB disease.

• Latent Infection to Active TB: In this section, we have taken 
those DEGs which are involved in between latent TB and active 
TB diseases. The individual with LTBI eventually reactivates 
and becomes infectious, seriously influencing epidemiological 
situation. Mechanisms of MTB transition to dormancy and TB 
reactivation are inadequately understood, and biomarkers of 
latency remain largely mysterious (Kondratieva et al., 2014).

Topological Characterization of Networks
The classified genes of various stages of TB were used to 
construct their regulatory networks. The networks were built by 
STRING database (https://string-db.org/) and then visualized 
in Cytoscape v3.4 (Shannon et al., 2003). As the network was 
built, the first and foremost basic analysis are its topological 
properties. Topological analysis helps to understand the structure 
of a network which facilitates in understanding the hidden 
mechanisms. The following networks properties were analyzed 
to seek the important behaviors of the network:

• Degree distribution: The degree (k) of a node (gene) in a 
biological network is the number of links with other nodes, 
the probability distribution of these degrees called degree 
distribution (P[k]).

 
P k n

N
k( ) =  (1)

where nk =no. of nodes with degree k.
N= the total number of nodes in the network.

• Neighborhood connectivity: A node (gene) has number of 
neighbors and is considered as a connectivity of node. So, 
neighborhood connectivity (CN [K]) is:

 
C k qP q
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q
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where P q
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  = the conditional probability.

• Clustering co-efficient: The ratio of number of edges (ei) 
between the node’s neighbor or maximum numbers of edges 
that could possibly exist between the nodes. So, the total 
network cluster coefficient is the average of cluster coefficient 
of all nodes (ith ) in the network.
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• Betweenness centrality: In the complex network, a node’s 
betweenness centrality (CB) represents the prominence of 
information flow through one node to another via shortest 
path (Brandes, 2001) (Mason and Verwoerd, 2007). From 
node (i) to node (j), the geodesic paths are shown by “dij(v)” 
passing via node “v” and “dij.”
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• Closeness centrality: In the network, how quick info is 
circulated from one node (i) to another (j) is measured by 
closeness centrality (CC). Closeness centrality is given by:

 

C i n
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C

j
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• Eigenvector centrality: In the network, eigenvector centrality 
of a node “i (CE[i])” is proportionate to the total of i’s neighbor 
centralities (Bonacich, 1987).

 
C i vE j

j nn i
( ) =

= ( )∑1
λλ  (6)

where nn(i) = closest neighbors of nodes (“i”).
λ = eigenvalue of the eigenvector.
vi = “Avi=λvi” where “A” (adjacency matrix). 

Community Analysis: Leading Eigenvector 
Method
In hierarchical network, to distinguish the nature of modular and 
its properties is important to explain the activities of network at 
various levels of hierarchy. In our study, the leading eigenvector 
method (LEV) (Newman, 2006a; Newman, 2006b) was used 
to detect the communities in R from package “igraph” (Gabor 
and Nepusz, 2006) (the community detection script is given 
Supplementary Data 3). 

• Modularity: Modularity determines to measure the strength of 
division of a network into clusters or communities (Newman 
and Girvan, 2004).

 
Q

m
A
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m

C Cij
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j
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2 2i
δ ,  (7)

where m = Total no. of edges.
Aij = adjacency matrix of size “i × j.”
k = degrees.
δ = function yields 1 if nodes “i” and “j” are in the same 

community.

Genes Tracing
To access the regulation of network, we first tried to find 
out the most influential nodes (genes) within the network. 
The gene tracing (up to motif level) was done purely on the 
appearance of the respective genes in various submodules 
obtained from the clustering. Then, these genes were used 
to get the picture of changes in the network organization in 
their absence.

Hub Gene Knockout
To know the changes of organization within the complex 
network in the absence of most influencing gene (node), we must 
remove constructed leading hubs (rich clubs) in the networks. 
We consecutively eliminated all the important hubs (one by one) 
from each network and measured the topological properties of 
this reorganized network to observe the regulating abilities of 
these hubs by calculating the degree of structural change due to 
their absence. 

LCP-DP Approach to Estimate the 
Network Compactness
The LCP-decomposition-plot (LCP-DP) provides a way to 
characterize the topological properties of the network in 2D 
space of common neighbors (CN) index of connecting nodes 
and local community links (LCL) of each pair of interacting 
nodes in the network (Cannistraci et al., 2013). The LCP 
correlation defined by:

 
LCP corr withCN

cov CN LCL

CN LCL
− = >

( ),
σσ σ

1  (8)

where cov(CN, LCL) = the covariance among LCL and CN.
σLCL and σCN = standard deviations.
(Note: MATLAB script is given in Supplementary Data 2).

Hamiltonian Energy Estimation: Energy 
Distribution in the Network
The HE is used to organize a network at a certain level by 
following the formalism of constant Potts model (Traag et al., 
2011; Traag, 2013). The energy distribution at the global and 
modular levels of the network is given by HE. HE of a network 
can be measured by:

 
H e nc

c
c

  = − −∑ [ ] γγ c
2  (9)

where ec = no. of edges.
 nc = no. nodes.
 “c” and “γ” = the resolution parameter

RESULTS

Differentially Expressed Genes (DEGs) 
Classification and Overrepresentation 
Analysis
A total of 5, 680 differentially expressed genes (DEGs) were 
identified after the extensive analysis of all the 11 GSE series, of 
which 2,660 were up-regulated, and 3,020 were down-regulated 
genes. These differentially expressed genes were clustered according 
to “GO-MF (molecular function),” “GO-BP (biological process),” 
and “PANTHER protein class” shown in Figure 1. All these 
predictive DEGs showed a broad range of protein classes which 
involved in various processes. The helicases and nucleases were 
found within the “nucleic acid binding” protein class. The “enzyme 
modulator” category features kinase, G-protein, phosphatase, and 
protease modulators. The structural motif and nuclear hormone 
receptors are part of the “transcription factor” protein class. The 
“hydrolases” is a sub-category of proteases and phosphatases. The 
“receptor” protein class includes cytokine receptors, protein-kinase 
receptors, ligand-gated ion channels, nuclear-hormone receptors, 
and G-protein-coupled receptors. Besides of these above protein 
classes, signaling molecules, transferase, oxidoreductase, and 
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FIGURE 1 | Functional Classification of Differentially expressed genes from various GSE series associated with TB disease according to (A) Molecular functions 
(Transporter activity [(U188,D286), Translation regulator activity(U03,D09), Catalytic activity(U978,D807), Channel regulator activity(U03,D13) Receptor activity(U219,D295), 
Signal transducer activity(U127,D144), Antioxidant activity(U08,D12), Structural molecule activity(U96,D101), Binding(U957,D1150) and unclassified(U53,D25)], (B) Biological 
processes [(cellular component organization or biogenesis(U108,D134), cellular process(U709,D790), localization(U198,D207), reproduction(U19,D23), biological 
regulation(U310,D383), response to stimulus(U267,D299), developmental process(U172,D213), rhythmic process(U01,D00), multicellular organismal process (U124,D129), 
locomotion(U48,D57), biological adhesion(U44,D34), metabolic process(U456,D471), growth(U10,D04), immune system process(U47,D48), cell killing (U00,D07) and 
unclassified(U119,D43)] and (C) Protein classes [(extracellular matrix protein(U52,D34), cytoskeletal protein(U101,D139), transporter(U126,D142), transmembrane 
receptor regulatory/adaptor protein(U11,D09), transferase(U226,D227), oxidoreductase(U132,D77), lyase(U21,D28), cell adhesion molecule(U76,D74), ligase(U63,D48), 
nucleic acid binding(U250,D318), signaling molecule(U205,D352), enzyme modulator(U267,D304),calcium-binding protein(U69,D63), defense/immunity protein(U58,D74), 
hydrolase(U363,D304), transfer/carrier protein(U50,D31), membrane traffic protein(U52,D60), transcription factor(U200,D222), chaperone(U19,D23), cell junction protein(U24,D28), 
surfactant(U03,D00), structural protein(U27,D20), storage protein(U03,D03), isomerase(U18,D11), receptor(U216,D241)]. (U, Up-regulated; D, Down-regulated).
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transporter are also most abundant protein classes. The two most 
abundant GO-biological process groups—“metabolic process” 
and “cellular process” which are not astonishing as these processes 
carry those genes which involved in the most basic life processes. 
The “cellular process” includes cell cycle, cell–cell signaling, 
cell component movement, cytokinesis, and proliferation. The 
“metabolic process” section includes metabolism of lipid, protein, 
carbohydrate, cellular amino acid, and nucleobase-containing 
compound metabolism. The “biological regulation” includes 
metabolism, cell cycle, the regulation of apoptosis, catalytic 
activity, translation, and homeostasis. Further, these biological 
process responses to stimulus, localization, and developmental 
process also represent the significant number of proteins; the 
complete categories details are given in Supplementary Data 1. 
To know the probability of largely occupied protein classes and 
GO categories among the differentially expressed genes, we used 
PANTHER’s overrepresentation analysis. When we compared with 
the reference genome, we found that any of the richest classes are 
overrepresented in the data (Table 1). The most abundant protein 
classes “chemokine,” “cytokine,” “hydrolase,” “ribosomal protein,” 
and “RNA-binding protein” were enriched along with the classes 
“signaling molecule” and “cell adhesion molecule.” The highly 
populated GO-biological processes were enriched in “cytokine-
mediated signaling pathway,” “response to external stimulus,” 
“immune response,” “locomotion,” “signal transduction,” “cell 
communication,” “developmental process,” “cellular process,” and 
“MAPK cascade.” Similarly, the most abundant GO-molecular 
functions were enriched in “chemokine activity,” “cytokine 
activity,” “cytokine receptor binding,” “oxidoreductase activity,” 
and “receptor binding.”

Gene-Transition and GO Enrichment 
Analysis
All the 5,680 differentially expressed genes (DEGs) were divided 
into three different groups, normal vs. latent infection, normal vs. 
active TB, and latent infection vs. active TB. We filtered out a total 
number of 488 DEGs which are listed in (Table 2), and then, we also 
identified few genes which are commonly differentially expressed 
among various stages of TB (including NC vs. LI, NC vs. ATB, and 
LI vs. ATB) shown in Figure 2. Further, we isolated up- and down-
regulated genes from each stage and performed GO-enrichment 
analysis using DAVID tool (v6.7). It is well preferred annotation 
database which used novel algorithms to extract biological 
information from large gene lists. The DEGs are enriched with a 
certain biological process or molecular function that are given in 
Table 3. Further, the most enriched pathways associated with these 
differentially expressed genes were identified, given in Table 4.

• Normal to Latent infections: In the early infection (latent 
infection), we have identified 28 genes which are differentially 
expressed in the host system, of which 12 genes (IER5L, 
MS4A6A, DOK2, FZD2, NCKI-ASI, SNHG12, NLRC4, XPO7, 
SMA4, CD36, AFFI, and NDUFS8) were up-regulated, and 
16 genes (IL1A, IL6, ACOD1, IL1B, ELOVL7, PTGS2, EREG, 
F3, IFIT1, TNF, KANK1, CCL4, CXCL11, PTX3, IRAK2, and 
AREG) were down-regulated. The GO analysis of these DEGs 

TABLE 1 | Overrepresented PANTHER protein class and GO ontology categories 
of all differentially expressed genes.

PANTHER Protein Classes P-value FDR

Chemokine 2.14E−08 2.29E−06
Cytokine 6.71E−08 4.79E−06
Hydrolase 5.82E−06 3.11E−04
Ribosomal protein 1.44E−05 6.15E−04
RNA-binding protein 2.36E−05 8.42E−04
Signaling molecule 1.46E−04 4.45E−03
Cell adhesion molecule 2.97E−04 7.95E−03
Protease 4.81E−04 1.14E−02
Receptor 1.52E−03 3.25E−02
GO-Molecular Functions
Chemokine activity 1.19E−06 7.52E−05
Cytokine activity 1.18E−06 1.12E−04
Cytokine receptor binding 5.29E−05 1.67E−03
Oxidoreductase activity 4.85E−04 1.02E−02
Receptor binding 5.61E−04 1.07E−02
Hydrolase activity 3.87E−06 1.84E−04
Catalytic activity 9.50E−08 1.81E−05
Protein binding 1.20E−04 3.25E−03
Structural constituent of ribosome 1.66E−04 3.95E−03
GO-Biological Processes
Cytokine-mediated signaling pathway 3.45E−08 4.21E−06
Response to external stimulus 3.75E−08 3.05E−06
Response to interferon gamma 1.65E−07 1.01E−05
Immune response 2.10E−07 1.02E−05
Sensory perception of chemical stimulus 2.15E−07 8.72E−06
Locomotion 3.38E−07 1.03E−05
Signal transduction 5.32E−07 1.44E−05
Immune system process 3.39E−06 8.27E−05
Cell communication 5.35E−06 1.19E−04
Cell proliferation 1.09E−05 2.23E−04
Response to biotic stimulus 1.59E−05 2.99E−04
Intracellular signal transduction 1.74E−05 3.03E−04
Death 4.17E−05 6.79E−04
Cell death 4.17E−05 6.36E−04
Cellular component movement 4.60E−05 6.61E−04
Developmental process 5.75E−05 7.80E−04
Apoptotic process 6.05E−05 7.77E−04
Cellular process 9.43E−05 1.15E−03
Sensory perception 9.74E−05 1.13E−03
Response to stress 1.04E−04 1.15E−03
RNA metabolic process 1.93E−04 2.04E−03
MAPK cascade 2.01E−04 2.05E−03
Response to stimulus 2.05E−04 2.00E−03
Cellular defense response 2.12E−04 1.99E−03
Endocytosis 3.17E−04 2.86E−03
Receptor-mediated endocytosis 7.23E−04 6.30E−03
Lipid metabolic process 9.30E−04 7.82E−03
Negative regulation of apoptotic process 1.01E−03 8.21E−03
Behavior 1.04E−03 8.15E−03
Localization 1.17E−03 8.90E−03
Regulation of catalytic activity 2.04E−03 1.51E−02
Sulfur compound metabolic process 2.06E−03 1.48E−02
Cell adhesion 2.78E−03 1.94E−02
Biological adhesion 2.78E−03 1.89E−02
Cell surface receptor signaling pathway 3.44E−03 2.27E−02
Cellular component biogenesis 3.88E−03 2.49E−02
Cell–cell adhesion 5.00E−03 3.13E−02
Cellular amino acid catabolic process 6.59E−03 4.02E−02
Regulation of molecular function 6.62E−03 3.94E−02
GO-Cellular Components
Extracellular region 6.21E−05 1.96E−03
Extracellular space 5.48E−04 1.15E−02

(Continued)
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are enriched in “immune response,” “inflammatory response,” 
“chemokine activity,” “cellular process,” “biological regulation,” 
“regulation of metabolic process,” “protein binding,” “catalytic 
activity,” “bindings” etc. On the pathway analysis, most of the 
DEGs were found to be down-regulated (beneficial to pathogen) 
and enriched in very important pathways like toll-like receptors, 

NF-kappaB signaling, cytokine–cytokine receptor interaction, 
MAPK signaling pathway, TB, and TNF signaling.

• Normal to Active TB diseases: A total of 266 differentially 
expressed genes (DEGs) were identified, of which 149 were 
up-regulated, and 117 were down-regulated among the various 
cases. In this condition, the DEGs were enriched in “inflammatory 
response,” “immune response,” “signal transduction,” “response 
to stimulus,” “apoptotic process,” “cellular process,” “metabolic 
process,” “binding,” “catalytic activity,” “receptor activity” 
etc. For the up-regulated genes, the most abundant pathways 
were “cytokine–cytokine receptor interaction,” “chemokine 
signaling,” “toll-like receptor signaling pathway,” “NF-kappa B 
signaling pathway,” “transcriptional misregulation in cancer,” 
and “pathways in cancer.” Similarly, for down-regulated genes, 
the most enriched pathways were “cell cycle,” “chemokine 
signaling pathway,” “NF-kappa B signaling pathway,” “TNF 

TABLE 1 | Continued

GO-Cellular Components P-value FDR

Nucleus 2.01E−03 3.17E−02
Ribonucleoprotein complex 8.32E−06 5.24E−04
Nucleolus 3.28E−03 4.13E−02

Overrepresentation was determined by calculating the probability that the number of 
differentially expressed genes belonging to a category is larger or smaller than what 
would be expected based on a reference human genome. P-values are adjusted using 
a Bonferroni correction.

TABLE 2 | The total number of DEGs from various GSE series associated with TB disease.

Normal to Latent Infection

Up-regulated Down-regulated

IER5L, MS4A6A, DOK2, FZD2, NCKI-ASI, SNHG12, NLRC4, XPO7, SMA4, 
CD36, AFFI, NDUFS8

IL1A, IL6, ACOD1, IL1B, ELOVL7, PTGS2, EREG, F3, IFIT1, TNF, KANK1, CCL4, 
CXCL11, PTX3, IRAK2, AREG

Normal to Active TB

Up-regulated Down-regulated

GBP5, ISG15, SAMD9L, SERPING1, ANKRD22, ETV7, EPSTI1, GBP4, RSAD2, 
AIM2, IFI44, IFIT3, FGL2, FYB, MNDA, PAX5, OAS3, OAS1, IFI6, TNFSF10, 
UBE2L6, XAF1, STAT1, BST2, IFI35, STAT2, IFI44L, TRIM22, IFIH1, IFITM1, ATF3, 
BATF2, IFITM3, GBP1P1, RTP4, FCGR1B, C1QB, CEACAM1, FBXO6, SAMD4A, 
FRMD3, CMPK2, SELL, CFH, TLR8, LGALS3BP, SRGAP2, SECTM1, NCF1, 
SIGLEC1, APOL1, TRIM14, MB21D1, CARD16, FGD2, RNF213, CD163, PML, 
OAS2, OR52K3P, LY6E, RABGAP1L, P2RX7, NRG1, FBXO32, TYMP, PSMB9, 
NCF1C, PNPT1, CXCL13, GMPR, LAMP3, HESX1, C3AR1, STAT4, CXCL11, 
IFIT2, STAP1, ZC3H12A, RCAN1, HERC6, CCL20, CD83, CRIM1, GCH1, OASL, 
DLL4, MX2, EIF2AK2, EBI3, AXL, MGLL, CD80, IFIT5, IFIT1, CCL8, NFE2L3, 
PLSCR1, ICAM1, CXCL9, SLAMF7, CXCL10, HERC5, VCAM1, DDX58, NFKB1, 
SAMD9, IGFBP3, CCL3, CD274, BIRC3, IRF1, TAP1, PARP14, TMEM140, 
WARS, CASP1, GBP2, PSTPIP2, PARP9, RNASE6, FAM129C, FZD2, CD36, 
LRRK2, MS4A6A, CCR2, NAIP, FCRL2, P2RY13, CLEC7A, PCDH9, CD300LF, 
CLEC4A, C10orf54, BAIAP2-AS1, C1orf162, SORT1, JAK2, VAMP5, SCO2, 
ODF3B, PSME2, LOC101930164, P2RY14, GBP1, GBP6, CARD17, FCGR1A

RNF141, SLC25A37, ID3, EMP2, SKP2, SLC2A3, SUN1, KIT, OLR1, FLNB, 
CCDC14, GAPT, DHRS9, IQGAP3, SESN3, GINS4, HIST1H4C, CD44, KANK1, 
KCNJ2, TNIP3, MIR146A, CXCL3, LOC644090, MSC, SOD2, NLRP3, SERPINB9, 
TNFRSF9, ARL5B, IL24, ADORA2A, PHLDA1, MYO10, CXCL8, DNAAF1, 
MIR3945HG, NR3C1, TNFAIP6, SERPINB2, TNF, MAP3K8, IL1A, AGO2, CSF3, 
SPAG9, KYNU, LOC440934, WNT5A, DENND4A, ACOD1, PTGS2, OSM, 
CCL4, PFKFB3, EREG, ITGB8, PTX3, IL36G, G0S2, SLC7A11, ZC3H12C, 
TNFAIP3, IL6, CCRL2, FERMT2, SLCO4A1, SGPP2, FOSL2, CCL23, FLT1, 
SERPINB8, NUP98, SLC35F5, MN1, DDIT4, NAMPT, IRAK2, IL10, SLC7A5, 
AK4, CXCL2, UPB1, CEMIP, ADGRG2, FEZ1, THBS1, LACC1, CXCL1, TRAF1, 
PHLDA2, HEY1, LRP12, UBTD2, SLC39A8, PLPP3, SLC7A1, ATXN1, KMO, 
FNDC3B, IL1B, C11orf96, F3, PSEN1, BCAT1, GEM, TFPI2, PLAUR, MAFF, 
TRIM36, ZNF697, INSIG1, DPYSL3, ATP2B1, NCR3LG1, MAMLD1, ZNF540 

Latent infection to Infection to Active TB

Up-regulated Down-regulated

CLEC12B, CD36, CORO1B, SIGLEC16, LINC00484, AK5, MS4A6A, GPBAR1, 
RTN1, CREB5, DPYD, LDB2, FCN1, LRRK2, RASSF4, ANXA4, LPCAT2, SKAP2, 
CPPED1, RNASE2, PLSCR3, CLEC12A, BST1, FGD2, RAB3D, FGL2, PYCARD, 
CEBPA, MNDA, CD33, PRAM1, LILRA1, SLC39A11, TNFSF13, SAMHD1, 
DIAPH2, FAR2, MSRB1, TBCK, FARS2, C14orf159, MSRB2, ATG16L2, DPYSL2, 
AIF1, HK3, SIGLEC7, FYB, RPS6KA4, TBC1D5, C10orf11, AGTRAP, PYGL, 
CARD9, NAGA, SLC9A9, C1RL, STX8, MTHFD1, KCTD12, CBR1, ASCL2, 
CPNE8, MBNL3, ANXA6, CALML4, HSDL2, SLC22A18, KDM1B, IDH1, DNAJC10, 
TBXAS1, SCLT1, HSD17B4, MGST2, NAIP, JAML, ENTPD1, ASGR1, BLVRB, 
AOAH, NIPAL2, NAAA, RAB24, TST, COMT, COMMD10, CYFIP1, TALDO1, ULK2, 
HDAC9, RBCK1, CEACAM4, OBFC1, FUCA2, NREP, STX10, AKR7A2, PLOD1, 
TRIOBP, QDPR, FAM172A, CDK19, DPAGT1, PARVG, CLEC4A, SSBP4, PNKP, 
FBXL5, ASRGL1, CARS2, ATP11A, PLXNC1, TSPO, ARHGEF6, AGPAT3, HEXDC, 
PDSS2, PGM2, PRKCB, H2AFY, S100A9, SNX15, NINJ2, MAP4, PSTPIP1, GSTK1

IL1A, ITGB8, TFPI2, COL1A1, MET, SERPINB2, GPRC5A, SLC7A11, CYP1A1, 
RAB7B, B3GALT2, DUSP4, CXCL1, MMP19, THBS1, HEY1, PPP1R10, 
ADAMDEC1, PDE4DIP, CCRL2, LMNA, ZC3H12C, RGS13, CXCL5, PMEPA1, 
SKIL, LACC1, DPYSL4, ABCG1, AHRR, MIR155, EPHA4, CD109, MIR3945HG, 
NCR3LG1, WHRN, FAM177A1, SLC39A8, HEY2, C11orf96, KMO, CYP1B1, 
DUSP16, NFKB1, LZTS3, CXCR3, PLIN2, BIRC3, DOCK4, EPB41L3, MYO5C, 
ZHX2, CD58, P2RY10, CD82, MAPK8, PARD6G, NAB1, ABCB4, AMPD3, 
STK38L, SPECC1L, IL10RB-AS1, BANP, ETV6, PDCD4, MPZL3, CASC7, GGA2

These genes are classified into various categories of TB like normal to latent infections that contain 28 genes, normal to active TB diseases that contain 265 genes, and latent 
infection to active TB that contains 195 genes in this category.
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signaling pathway,” “PI3K-Akt signaling pathway,” “metabolic 
pathways,” and “MAPK signaling pathway.”

• Latent infection to Active TB Disease:: A total of 127 
differentially expressed genes (DEGs) were found to be 
up-regulated, and 69 were down-regulated. These differentially 
expressed genes were enriched in “binding,” “catalytic 
activity,” “receptor activity,” “transporter activity,” “cellular 
and metabolic process,” “biological regulation,” “immune 
response,” and “oxidoreductase activity” including others. 
The most abundant enriched pathway for up-regulated genes 
belonged to “metabolic pathway,” “NOD-like receptor signaling 
pathway,” “regulation of actin cytoskeleton,” “biosynthesis of 

antibiotics,” “metabolism of xenobiotics by cytochrome p450,” 
“thyroid hormone synthesis,” “regulation of autophagy,” and 
“peroxisome,” and for down-regulated genes, the enriched 
pathways were “chemokine signaling pathway,” “TNF signaling 
pathway,” “RAP1 signaling pathway,” “PI3K_AKT signaling,” 
“metabolic process,” “apoptotic,” “focal adhesion,” “MAPK 
signaling pathway,” “microRNAs in cancer,” and “amoebiases.”

Gene Interaction: Hierarchical Scale-Free 
Network
The classified genes of various stages of TB (Table 2) were used to 
construct their regulatory network. We constructed six networks 
for Up and Down-regulated genes separately. The topological 
parameters of the networks obey power law distributions. The 
probability of clustering co-efficient C(k), degree distributions 
P(k), and neighborhood connectivity CN(k) exhibits fractal 
nature as shown in Figure 3. The results for all the networks are 
summarized as follows:
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FIGURE 2 | Venn diagram showing the number of common genes (in intersect region) which are differentially expressed among the normal vs. latent infection, 
normal vs. active TB, and latent infection vs. active TB.

TABLE 3 | Gene set enrichment analysis of differentially expressed genes (DEGs) 
among active TB, LTBI, and normal condition.

Normal to Latent 
Infection

Normal to Active TB Latent Infection to 
Active TB

Immune response Inflammatory response Response to stimulus
Inflammatory response Immune response Biological regulation
Transcription factor activity Signal transduction Localization
Transferase Apoptotic process Cell adhesion
Transporter GTPase activity Protein phosphorylation
MAPK cascade Biological regulation Immune response
Chemokine activity Localization Oxidoreductase activity
Cellular process Angiogenesis Hydrolase activity
Biological regulation Cell adhesion DNA-templated
Response to stimulus Cellular process Angiogenesis
Metabolic process Response to stimulus Binding
Protein binding Metabolic process Catalytic activity
Catalytic activity Binding Receptor activity
Bindings Catalytic activity Transporter activity
Signaling molecule Receptor activity Structural molecular 

activity
Signal transduction
Cellular process
Metabolic process
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Our network behavior indicates hierarchical scale free network 
(Barabási and Oltvai, 2004) (Pastor-Satorras et al., 2001) (Ravasz 
and Barabási, 2003). The power law fits on the data points of 
the network’s topological parameters were done and confirmed 
by following the standard statistical fitting method given by 

Clauset et al. (Clauset et al., 2009). The p values for all data sets 
were calculated (against 2,500 random samplings) and found 
to be greater than 0.1, and data fitting goodness was less than 
0.1. The values of P(k) and C(k) were negative, which implies 
that the network follows a hierarchical pattern, and CN(k) was 

TABLE 4 | Pathways enriched by differentially expressed genes (DEGs) among TB, LTBI, and healthy control (HC).

Normal to Latent Infection

Up-regulated Down-regulated

Transcriptional misregulation in cancer AFF1 Toll-like receptor CCL4, CXCL11, IL1B, IRAK2, IL6, TNF
Phagosome,
AMPK signaling pathway,
ECM-receptor interaction,
Hematopoietic cell lineage, PPAR 
signaling pathway, Adipocytokine 
signaling pathway

CD36 NF-Kappa B signaling pathway CCL4, IL1B, PTGS2, TNF
Cytokin–cytokin receptor interaction CCL4, IL1A, IL1B, IL6, PTGS2
MAPK signaling pathway IL1A, IL1B, TNF
Tuberculosis IL1A, IL1B, IRAK2, IL6, TNF

Oxidative phosphorylation, non-alcoholic 
fatty liver disease (NAFLD, neurotrophin 
signaling pathway, Alzheimer’s disease

NDUFS8 TNF signaling IL1B, IL6, PTGS2, TNF

NOD-like receptor signaling pathway NLRC4
Wnt signaling pathway FZD2

Normal to Active TB

Up-regulated Down-regulated

Cytokine–cytokine receptor interaction CCL3, CCL8, CCR2, CXCL10, 
CXCL11, CXCL13, CXCL9, TNFSF10, 
TNF

Cell cycle SKP2, IQGAP3, BCAT1, ID3, IL10, 
MAPK3K8, PHLDA1, PTGS2, THBS1, 
TRIM36

Chemokine signaling pathway CCL3, CCL8, CCR2, CXCL10, 
CXCL11, CXCL13, CXCL9, JAK2, 
NCF1, NFKB1, STAT1, TLR8, TNF

Chemokine signaling pathway CCL20, CCL23, CCL4, CXCL1, 
CXCL2, CXCL3, CXCL8

Toll-like receptor signaling pathway CCL3, CXCL10, CXCL11, CXCL9, 
CD80, BIRC3, ITF1, IRAK2, NFKB1, 
STAT1, TLR8, TNF

NF-kappa B signaling pathway CCL4, CXCL8, TNFAIP3, TRAF1, IL1B, 
PTGS2

NF-kappa B signaling pathway DDX58, BIRC3, ICAM1, NFKB1, TNF, 
VCAM1

TNF signaling pathway CCL20, CXCL1, CXCL2, CXCL3, 
TNFAIP3, IL1B, IL6, MAP3K8, PTGS2

Transcriptional misregulation in cancer ETV7, FCGR1A, IGFBP3, NFKB1, 
PAX5, PML

PI3K-Akt signaling pathway DDIT4, KIT, CSF3, FLT1, ITGB8, IL6, 
OSM, THBS1

Pathways in cancer BIRC3, FZD2, NFKB1, PML, STAT1 Metabolic pathways AK4, UPB1, BCAT1, DHRS9, KYNU, 
KMO, NAMP, PLPP3, PTGS2

MAPK signaling pathway FLNB, IL1A, IL1B, MAP3K8

Latent Infection to Active TB

Up-regulated Down-regulated

Metabolic pathway AGPAT3, AK5, BST1, CBR1, COMPT, 
DPYD, DPAGT1, HK3, HSD17B4, 
IDH1, LPCAT2, MTHFD1, PGM2, 
PYGL, QDPR, TST, TBXAS1, TALDO1 Chemokine signaling pathway CXCL1, CXCK5, CXCR3, NFKB1

NOD-like receptor signaling pathway NAIP, PYCARD, CARD9, PSTPIP1 TNF signaling pathway CXCL1, BIRC3, MAPK8, NFKB1
Regulation of actin cytoskeleton ARHGEF6, TRIOBP, CYFIP1, DIAPH2 RAP1 signaling pathway MET, DOCK4, PARD6G, THBS1
Biosynthesis of antibiotics AK5, HK3, IDH1, PGM2, TALDO1 PI3K_AKT signaling MET, COL1A1, ITGB8, NFKB1, THBS1
Metabolism of xenobiotics by 
cytochrome p450

AKR7A2, CBR1, GSTK1, MGST2 Metabolic process AMPD3, B3GALT2, CYP1A1, KMO

Thyroid hormone synthesis ASGR1, CREB5, PRKCB Apoptotic CXCR3, ETV6, SKIL, BIRC3, CYP1B1, 
EPB41L3, HEY2, IL1A, LMNA, MAPK8, 
NFKB1, PDCD4, SERPINB2, THBS1

Regulation of autophagy PYCARD, TBC1D5, ATG16L2, 
LRRK2, ULK2

Focal adhesion MET, BIRCC3, COL1A1, ITGB8, 
MAPK8, THBS1

Peroxisome FAR2, GSTK1, HSD17B4, IDH1 MAPK signaling pathway DUSPI6, DUSP4, IL1A, MAPK8, NFKB1

MicroRNAs in cancer
MET, CYP1B1, MIT155, NFKB1, 
PDCD4, THBS1

Amoebiases RAB7B, COL1A1, NFKB1, SERDINB2
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positive, which means that the network follows the assortativity 
that identifies a huge cluster of degree-nodes (rich club), which 
regulates the network. The centrality parameters: betweenness 
(CB), closeness (CC), and eigenvector (CE) centralities of the 
network also showed fractal behavior, and good connectivity of 
nodes in a network is distinguished by eigenvector or centrality 
CE(k). It calculates the effectiveness of the spreading (receiving) 
power of data of nodes from the network. These properties follow 
the power law behaviors as follows: -
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Identification of Key Regulators 
and Properties
Since the popularity of leading hubs gets changed according to the 
gene activities and its regulation, we can’t say that all the predictive 
leading hubs are key regulators for disease progression, but some 
of these hubs can play a significant role, which we called them 
as fundamental key regulators (FKR). The structure of modular 
and its arrangement have been performed through Newman and 
Girvan’s standard community finding algorithm at various levels 
of the organization. Using this community finding algorithm, 
we found that our six networks are hierarchically organized at 
various levels (Supplementary Data 2). The Hamiltonian energy 
(HE) and corresponding modularity (QN) are reduced as one 
goes from top to down organization of network (Figure 4).

We have calculated the probability to know the regulating 
ability of our 31 key regulators:

 
P y y

E

l

lx
l[ ]

[ ]

[ ]( ) =
 

where,
x = no. of edges (y[l])
(E[l]) = Total no. of edges of the network (modules and 

sub-modules).
The measured probability Px(yl) of all the KR showed an 

increase in Px as the level the increases from top to bottom 

FIGURE 3 | Topological properties of all the six networks. The behaviors of degree distributions (P[k]), clustering co-efficient (C[k]), neighborhood connectivity (CN[k]), 
betweenness (CB[k]), closeness (CC[k]), and eigenvector (CE[k]) measurements as a function of degree k. The lines are fitted lines with power laws in the data sets.
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direction. At deeper level of the organization, regulation of FKR 
increases, and their activities become more prominent. Thus, 
these FKR becomes backbone of the network organization, 
stabilization, and active workers at grassroot level. The FKR are 
shown in Figures 5 and 6.

As the results, we identified a total of 31 FKR genes from 
various stages of TB. In normal to latent infections, we identified 
eight genes, of which three genes (FZD2, NDUFS8, NLRC4) 
were up-regulated, and another five genes (CCL4, IL1B, IL1A, 
TNF, AREG) were down-regulated. While in normal to active 
TB, we found 15 genes out of which eight genes (EIF2AK2, 
SAMD9L, IFI44L, DDX58, IFI44, HERC5, NFE2L3, LRRK2) 
were up-regulated, and seven genes (CSF3, MAP3K8, IRAK2, 
TNFAIP3, TRAF1, PLAUR, and CD44) were down-regulated, 
and similarly, for latent to active TB diseases, three genes (TST, 
MTHFD1, CARS2) were up-regulated, and five genes (ETV6, 
NFKB1, MET, DOCK4, PARD6G) were down-regulated. The 
functional interpretations of these 31 key regulators were 
annotated by GO-TermFinder (LAGO) (Boyle et al., 2004) using 
biological process terms at P-value 0.01; the results are interpreted 
in Figure 7. The gene specific pathways were identified by KEGG 
pathway database (Kanehisa et al., 2016), and the results are 
shown in Figure 8.

Local Perturbations of Network 
The gene knockout experiment of all the hubs/motif from the 
parent networks may able to highlight the local perturbations 
driven by these individual hub or motif, and their effect on 
global network properties. It has been revealed that the network 
is tolerant to hub’s deletion which implies that the important 
network elements are still remains after elimination of hubs 

at level 0 (parent network). One of main causes is that the P-P 
interactions networks are too dense to be broken into fragments 
by only removing hubs. However, the elimination of these 
hubs/motif from the complete network does cause significant 
variations in the network properties, where P(k) and C(k) 
change significantly in complete network level, whereas CN(k) 
changes slightly. Likewise, the variations in the exponents of 
centrality measurements have also showed significant changes, 
as shown in Figure 9. Since, it is clear from the differences in the 
exponents of topological parameters that network perturbation 
increases when it goes to deeper level (top to down direction). In 
our case, most of the perturbation increases after the 3rd level; 
at this level elimination of key regulator from network almost 
breaks down the submodules existing in the deeper levels; such 
type of behavior shows that local perturbation of network is 
highest at deeper levels.

The Local-Community-Paradigm: 
Evidence of Self-Organization
The LCP architecture supports the quick transfer of data across 
several network modules and through local processing too. We 
have analyzed all the six networks to check self-organization 
behavior at different levels using LCP method. For different 
level, the calculated LCP-corr of all the modules or sub-modules 
are shown in Figures 10 and 11. The average values of LCP-
corr (we ignored modules which having zero LCP-corr) were 
greater than 0.853 at each level. This shows that the network 
maintains compactness and self-organization and has efficient 
data processing. It characterizes robust LCP networks that are 
dynamic in nature and heterogeneous, which help in network 
re-organization and evolution.

FIGURE 4 | Energy and modularity distribution in all networks quantified by Hamiltonian (HE) and modularity calculation as a function of network levels.
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FIGURE 5 | This figure shown the fundamental key regulator from various stage of TB obtained from main networks to motif/hub level through various modules/sub-
modules at various level of organization. The probability distribution of the 14 up-regulated key genes as a function of level of organization.
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DISCUSSION

TB disease remains to be one of the most significant infectious 
diseases and a leading cause of death worldwide. Currently, the 
main challenge is to develop a delicate and effective method to 
identify the latent TB infection (LTBI) because 90% of cases of 
latent infection with MTB do not show any symptoms/signs but 
have a 10% lifetime possibility of transforming into active TB. As 
we know, many events have happened in response to TB infection 
cycle. According to the cycle of infection by Young et al., 2008, 
the exposure of microorganism up to its development to latent 
stage, there are stringent amount of processes that have appeared 
in the host cell. The long fight of MTB to establish its generation 
by stabilizing its environment for metabolism has evolved with an 
ability to overcome immunity. In this scenario of transferring from 
initial infection stage to latent stage has a profound increase in the 
overall immune response outside the host cell and an increased 
intensity of basic cellular machine establishment process for the 
pathogen cell. In case, the elimination eliminates the eliminator 
even after the induction of T-cell but able to suppress the effect; 

pathogen cells (Pcells) have two choices, either develop army 
or attack the adaption of immunity. In order to decide to enter 
the resting phase (i.e., latent), MTB’s survival instincts allow it 
to develop its metabolic environment by downregulating antigen 
presentation and the release of cytokines too (like IFNγ). On the 
other hand, if adaptive immunity has taken its chance, then MTB 
takes the defensive mode by subverting various normal cell cycle 
functioning inside the macrophages thus making a halt on the 
maturation of phagosomes. 

To stop the disease epidemic, early diagnostic method 
or techniques are required. In this way, the gene expression 
profiling has uncovered the differences in the transcriptome 
among normal condition, latent infection, and active TB. 
These results not only revealed significant genetic biomarkers 
indicative of LTBI, TB-disease conditions but also recognized 
transcriptionally regulated genes that vary in biological 
functions. In the current study, we have identified differentially 
expressed genes (DEGs) from various stages of disease and 
found that most of the DEGs relative to normal vs. TB disease 
condition (including latent infection) are enriched in important 

FIGURE 6 | This figure shown the fundamental key regulator from various stage of TB obtained from main networks to motif/hub level through various modules/sub-
modules at various level of organization. The probability distribution of the 15 down-regulated key genes as a function of level of organization.
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FIGURE 7 | This heatmap shows the 31 hub genes with their involvement in various biological processes.

FIGURE 8 | The molecular pathways associated with our key regulators were identified by KEGG pathway database. Out of the 31 key regulators, we did not find 
any pathways information of five genes namely: SAMD9L, IFI44L, IFI44, HERC5, and NF2L3.
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pathway like-toll like receptor, NOD-like receptor signaling 
pathway, MAPK signaling pathway, TNF signaling, chemokine 
signaling pathway, PI3K-Akt signaling pathway, apoptosis etc. 
In fact, pathogen is identified by the receptors on the surface of 
immune cells, and toll-like receptors (TLRs) are one of them. 
Different TLRs including TLR2, 4, 9, and 8 play an important 
roles in TB infection (Faridgohar and Nikoueinejad, 2017). These 
receptors (toll-like, NOD-like etc.) are expressed irrespective of 
whether they participate in immune signaling or immunity. The 
interaction of MTB with these receptors (like TLRs) initiates 
an intercellular signaling cascade that culminates in a pro-
inflammatory response (cytokines and chemokines that serve as 
a signal for infection). As we know that MAPK signaling pathway 
is important for transcription and non-transcription responses 
of the immune system, most of the pathogens during infection 
hijack the immune system by targeting the MAPK signaling 
pathway (Soares-Silva et al., 2016). The TNF signaling pathway 
is involved in the regulation of immune cells, and it can regulate 
immune responses (Kim, 2018). However, pathogen can target 
the TNF signaling pathway for its survival in the host cell. The 
PI3K-Akt signaling pathway plays an important role in apoptosis, 
autophagy, metabolism, cell growth, and differentiation. The 
expression of FoxP3 by inhibiting the activation of transcription 
factor Forkhead-O3a (Foxo1-3a) is negatively regulated by this 
pathway (Zhang et al., 2017). The FoxP3+Treg cell activation 
which will assist to set up a new target for the involvement of 
TB immunotherapy molecules as part of the immune-escape 
mechanism to provide a theoretical basis is inhibited by M. 
tuberculosis (Scott-Browne et al., 2007). On comparing between 
latent infection and TB disease, few additional pathways 

are involved, like regulation of actin cytoskeleton during 
MTB infection; to maintain the stability of the cytoskeleton, 
macrophages cells themselves are also trying to regulate 
cytoskeletal-associated proteins (Wang et al., 2015b). Thyroid 
hormones (hormones, T4 and T3) are produced by thyroid 
gland, which is essential for the regulation of metabolic processes 
throughout the body. The regulation of autophagy is important 
for host in response to invading mycobacteria; the host defense 
mechanism identifies pathogen motifs through innate receptors 
but also releases appropriate cytokines. The autophagic pathways 
are regulated by these innate signals by regulation of genes of this 
pathway during infection (Jo, 2013). Recently, a study reports that 
the enzyme Msm_ACTase (from bacteria) helps in scavenging 
increased amount of H2O2 due to upregulation of genes involved 
in peroxisome pathway which gives an insight into a new idea 
as to how the MTB bacteria surpasses the host defense in MTB 
infection (Ganguli, 2015). Moreover, macrophages are the main 
effector cells responsible for killing pathogen (MTB) via different 
mechanisms, including apoptosis. But important genes in this 
pathway were down-regulated by MTB that slow down or stop 
the apoptotic process for its survival in host system (Behler et al., 
2015). Most of the microRNAs that were found deregulated in 
cancer were affected by MTB in a similar way as its infestations, 
like deletion, mutation, and epigenetic silencing (Garzon et al., 
2009). The apoptotic pathways are important to kill the infected 
macrophage. During MTB infection, the pathogen try to control 
the timing and mode of host cell death for its persistence and 
replication (Schaaf et al., 2017)

In addition, we have built the networks which emphasize on 
genes that were regulated by network. The constructed network 

FIGURE 9 | The changes in the exponents of the three important topological parameters (P[k]), C(k), and CN[k]) due to hub genes knock-out experiment from parent network.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Network Meta-Analysis to Identify the Key SignaturesAlam et al.

16 November 2019 | Volume 10 | Article 932Frontiers in Genetics | www.frontiersin.org

of classified genes from various stages of TB showed hierarchical 
nature, which indicated that the networks have system level 
organization including modules/sub-modules which are 
interconnected. Since the network’s nature is hierarchical, 
its synchronization confirms several important functional 
regulations of the network, but individual gene activities are 
not so important. In our networks (including up- and down-
regulated genes), a total of 31 key regulators were identified by 
affecting motifs and module regulation, showing their biological 
importance and serve as the foundation of network activities and 
their regulations, and could be the most probable target gene for 
disease control. We performed extensive analysis of all the key 
regulators (31 genes) to find evidence of their association with 
TB or which are directly or indirectly involved in host immune 
response and confirmed by manually searching for evidence in 
the literatures as presented:

• Down-regulated genes: We found that TNF and IL1 (A 
and B) are key mediators present in severe inflammatory 
diseases. However, both IL-1 and TNF receptor pathways 
are important for the control of MTB infection, and it is 
critical to assess the respective role of IL1A, IL1B, and 
TNF (Bourigault et al., 2013) (Cavalcanti et al., 2012). The 
expression of CCL4 is high in the late phase of the active TB 
disease, but there are low levels of expression during early 

infection (Rangel-Santiago et al., 2016). It has been currently 
reported that AREG plays an important role in orchestrating 
both host resistance and tolerance mechanisms. Although 
AREG is known as epithelial cell-derived factor, the recent 
studies showed that AREG can be expressed by multiple 
populations of activated immune cells in inflammatory 
conditions (Zaiss et al., 2015). The NFKB1 activates the 
immune cells by up-regulating the expression of various 
cytokines in the host immune system (Ghosh et al., 1998). 
The gene CD44 plays an important role in innate and adaptive 
immune responses, in the acute inflammatory response to 
both infectious and sterile stimuli. Also during infection, 
CD44 may influence host defense by affecting phagocytosis 
(van der Windt et al., 2010). In our present study, we found 
that NFKB1 and CD44 are down-regulated which means that 
MTB is burglarized and seizing the host immune system by 
slowing down the expression of NFKB1. It is well known that 
MET (hepatocyte growth factor receptor) regulates several 
functions of immune cells, including cytokine production, 
differentiation and maturation, cellular migration and 
adhesion, and T-cell effector function, and HGF exerts anti-
inflammatory activities through MET signaling (Sagi and 
Hieronymus, 2018). A group of researchers has elucidated 
that PLAUR domain containing Lypd8 that inhibits bacterial 
invasion of colonic epithelia (Okumura et al., 2016). The gene 

FIGURE 10 | This figure shows the LCP-corr of all the modules/sub-modules of up-regulated genes at various levels. The compactness characterized by 2D plots 
between √(LCL) versus CA.
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TRFA1 has an active or passive interaction with many tumor 
necrosis factor receptor (TNFR), and it has been also shown 
that TRAF1 plays as an antiapoptotic role in lymphoma cells 
by activation of NFKB (Wan et al., 2016). Further, the gene 
TNFAIP3 (A20) is a cytoplasmic zinc-finger protein which 
works as a negative-feedback regulator of NFKB activation 
(Vereecke et al., 2011). It has been shown that IRAK2 is 
an important factor and potential novel biomarkers for 
human antiviral innate immunity (Wang et al., 2015a). Also, 
MAP3K8 is a serine-threonine kinase and has a critical 
function in integrating host immune responses to complex 
pathogens (Mielke et al., 2009). Similarly, S. Srijata, et al. 
has suggested that AgNP attenuate the NF-κB pathway as 
indicated by the downregulation of NF-κB target genes CSF3 
and subsequently inhibit MTB-induced proinflammatory 
responses (Sarkar et al., 2015). The downregulation of these 
genes has allowed the process of host defense to cease and 
give time to bacteria for progression. 

• Up-regulated genes: We found that NLRC4 gene is associated 
with inflammasome signaling. Its upregulation means 
inflammasome activation (play an important role in host 
defense against MTB) not only leads to cytokine secretion 
but may also cause pyroptosis (Ting et al., 2008) (Bergsbaken 

et al., 2009). The NDUFS8 genes also play an important role 
in host immunity by increasing the expression level (Lohman 
et al., 2017). The gene FZD2 (frizzled class receptor 2) is Wnt 
pathway component (Wnt signaling), and Wnt signaling 
pathway plays a key role at different stages of TB development 
(Villaseñor et al., 2017). It has been reported that LRRK2 is 
involved in the IFN-γ response and host response to pathogens 
(Gardet et al., 2010), and LRRK2 also inhibits the immune 
response transcription factor NFAT1 (Liu et al., 2011). The 
genes DDX58 interact with IRGM and promote its K63-linked 
polyubiquitination, indicating that IRGM is positioned at a 
nexus of various innate immunity (Chauhan et al., 2016) while 
SAMD9L and EIF2AK2 play key roles in the innate immune 
responses to multiple stimuli. The gene EIF2AK2 is also 
involved in the regulation of signal transduction, apoptosis, 
cell proliferation, and differentiation (Lemos de Matos et al., 
2013) (Onomoto et al., 2012) (Reineke and Lloyd, 2015). It is 
well known that type-I IFN induces potent cellular defense 
against viral infection mediated by up-regulation of ISGs 
like IFI44, IFI44L, and HERC5 (Jeon et al., 2010; Power et al., 
2015). In our study, the expression of IFI44 and HERC5 were 
found to be up-regulated that means host system tried to resist 
bacterial infection. 

FIGURE 11 | This figure shows the LCP-corr of all the modules/sub-modules of down-regulated genes at various levels. The compactness characterized by 2D 
plots between √(LCL) versus CA.
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We didn’t find any literature evidence that supports the role 
of four genes (NFE2L3, TST, MTHFD1, and CARS2) and three 
genes (ETV6, DOCK4, and PARD6G) which are down-regulated 
and up-regulated respectively in host immune response against 
the pathogen, but most of these genes are involved in various 
types of cancers like ETV6 is involved in prostate cancer as well 
as colorectal cancer susceptibility (Fararjeh and Liu, 2019; Wang 
et al., 2016); mutation in DOCK4 can cause ovarian, prostate, 
glioma, and colorectal cancers (Sundaravel et al., 2015), and 
PARD6G suppresses cell proliferation and is targeted by loss-
of-function mutations in several cancers (Marques et al., 2016). 
Besides of these NFE2L3 (transcription factor) which involved 
in several cellular processes like inflammation, stress response, 
differentiation, and carcinogenesis (Kannan et al., 2015), MTHFD1 
are key players in folate metabolism, which is essential for de novo 
purine synthesis, and several defects in this pathway have been 
associated with immunodeficiency (Keller et al., 2013), and CARS2 
is associated with a severe progressive myoclonic epilepsy most 
resembling MERRF syndrome (Hallmann et al., 2014). The TST 
gene is a mitochondrial matrix enzyme (Pallini et al., 1991). It may 
play roles in cyanide detoxification, the formation of iron–sulfur 
proteins, and the modification of sulfur-containing enzymes.

CONCLUSION

In this study, we have compared gene-expression profiling of active 
TB patient and latent TB patients, as well as healthy controls. We have 
combined different data sets from multiple microarray experiment, 
and this combined effect size method for the gene expression 
analysis gave us more biologically consistent and conservative 
results. We have identified differentially expressed genes and their 
associated particular biological processes and pathways among 
healthy controls, active TB and LTBI. The gene interaction networks 
employed to obtain functional modules and also uncovered novel 
key regulators for active TB and LTBI which might play an important 
role in regulating the expression of multiple TB-related host factors. 
In conclusion, our study provides new insights into host genes and 
pathways important for TB infection. Experimental validation of 
these hypotheses would confirm the credibility of the key regulators 
and make easier the development of a cost-effective and sensitive 
molecular diagnostic platform for TB disease.
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