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Purpose. Adenosine A2A receptor (A2AR) signaling is neuroprotective in some retinal damage models, but its role in neuronal
survival during retinal detachment (RD) is unclear. We tested the hypothesis that A2AR antagonist ZM241385 would prevent
photoreceptor apoptosis by inhibiting retinal inflammation and oxidative stress after RD. Methods. The A2AR antagonist
ZM241385 was delivered daily to C57BL/6J mice for three days at a dose (3mg/kg, i.p.) starting 2 hours prior to creating RD.
A2AR expression, microglia proliferation and reactivity, glial fibrillary acidic protein (GFAP) accumulation, IL-1β expression,
and reactive oxygen species (ROS) production were evaluated with immunofluorescence. Photoreceptor TUNEL was analyzed.
Results. A2AR expression obviously increased and accumulated in microglia and Müller cells in the retinas after RD. The A2AR
antagonist ZM241385 effectively inhibited retinal microglia proliferation and reactivity, decreased GFAP upregulation and
proinflammatory cytokine IL-1β expression of Müller cells, and suppressed ROS overproduction, resulting in attenuation of
photoreceptor apoptosis after RD. Conclusions. The A2AR antagonist ZM241385 is an effective suppressor of microglia
proliferation and reactivity, gliosis, neuroinflammation, oxidative stress, and photoreceptor apoptosis in a mouse model of RD.
This suggests that A2AR blockade may be an important therapeutic strategy to protect photoreceptors in RD and other CNS
diseases that share a common etiology.

1. Introduction

Photoreceptor apoptosis because of physical separation of
the photoreceptors from the retinal pigment epithelium
(RPE) results in visual loss in a number of retinal diseases,
including macular degeneration [1], retinopathy of prematu-
rity [2], diabetic retinopathy [3], and retinal detachment
(RD) [4, 5]. Photoreceptors are extremely vulnerable and
undergo apoptosis in various types of RD including rhegma-
togenous, tractional, and exudative. Although surgical treat-
ment is routinely carried out to reattach the retina, visual
acuity is not always restored because of RD-induced photore-
ceptor apoptosis [4, 5]. Currently, there are no effective ther-
apies for protecting photoreceptors after RD. Therefore, the

development of neuroprotective agents for photoreceptors
is essential to provide visual stability for RD patients under-
going surgical treatment.

In RD, multiple pathways are known to be involved in the
RD-induced photoreceptor apoptosis, including the caspase
pathway, autophagy, inflammation and gliosis, and reactive
oxygen species (ROS) [6–9]. Reactive microglia cells are
prevalent in the detached retina where they play a principal
role in RD-induced photoreceptor apoptosis [10]. Müller
cells are central to the pathophysiology of RD, being involved
in gliosis, initiation of inflammatory cascades, and prolifera-
tive responses [11]. Increased levels of proinflammatory
mediator, IL-1β, are found in the retina and aqueous humor
of RD patients and experimental RD [8, 12–14]. Excessive
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generation of ROS and the consequent induction of oxidative
stress are one of the critical factors that trigger cellular
response to RD [15] and are also a major cytotoxic factor
for photoreceptor apoptosis [9, 16].

Adenosine is a neuromodulator in the central nervous
system acting through the activation of four receptors, A1,
A2A, A2B, and A3 [17]. The adenosine A2A receptor (A2AR),
a key molecule in the neural network, has been located on
photoreceptors and RGCs of zebrafish [18], rat [19] and
mouse [20], rat Müller cells [21], retinal pigment epithelium
and choriocapillaris of rat [19], dog endothelium [22], and
microglia of human [23] and rat [24]. A2AR participates in
inducing and maintaining microglial reactivity [25], NO
synthase-II expression [26], cyclooxygenase-2 (COX-2),
and the synthesis and release of proinflammatory cytokines
[26, 27] through the activation of its G-protein-coupled
receptor [28]. Previous studies have demonstrated that phar-
macological inhibition of A2AR affords profound neuroprotec-
tion in animal models of several cerebral diseases [29, 30].
Recent studies show that A2AR antagonists prevent photore-
ceptors and RGC apoptosis by modulating the inflammation
and oxidative stress in both age-related macular degeneration
(AMD) [31] and glaucoma [32]. However, whether A2AR-
mediated neuroprotection is applicable to RD-induced pho-
toreceptor apoptosis has not been determined.

In the current study, we have found that the expression of
A2AR is obviously increased in microglia and Müller cells in
the detached retina in a time-dependent manner, which is
accompanied by enhanced microglia and Müller cell reactiv-
ity. Meanwhile, we also provided evidence that a selective
A2AR antagonist, ZM241385, effectively protected photore-
ceptors with concomitant suppression of microglia activation,
GFAP and proinflammatory cytokine IL-1β expression and
ROS production after RD. Thus, in this study, we point out
that A2AR is a potential therapeutic target for preventing
RD-induced photoreceptor apoptosis.

2. Materials and Methods

2.1. Experimental Animals. We followed the methods of Su
et al. [33]. All animal experiments followed the guidelines
of the Association for Research in Vision and Ophthalmol-
ogy Statement for the Use of Animals in Ophthalmic and
Vision Research and were approved by Shanghai Jiao Tong
University School of Medicine Animal Care and Use Com-
mittee. Male, 7–9 weeks old, C57BL/6J mice were allowed
free access to water in a climate-controlled room with a
12 h light/12 h dark cycle.

2.2. Induction of RD. RD was induced as described previously
[34]. Briefly, the mice were anesthetized with sodium pento-
barbital (30mg/kg, i.p.), and pupils were dilated with phenyl-
ephrine (5%) and tropicamide (0.5%). The temporal
conjunctiva at the posterior limbus was incised. A 30-gauge
needle (BD) was used to create a sclerotomy 1mm posterior
to the limbus. A corneal puncture was made with a 30-gauge
needle to lower intraocular pressure. A 33-gauge needle con-
nected to a Hamilton 10μL syringe was inserted into the sub-
retinal cavity. Then, 4μL of 1% sodium hyaluronate (Provisc;

Alcon) was injected, separating approximately 60% of the
neurosensory retina from the underlying RPE. Eyes with sub-
retinal hemorrhage or unsuccessful detachment were
excluded from analysis. We detected retinas only within the
area detached after RD by immunofluorescence staining.

2.3. Drug Administration. The mice were given the following
treatment, as once daily i.p. injections of ZM241385 (S8105;
Selleckchem, USA) at a dose of 3mg/kg or vehicle for three
days. The injected volumes did not exceed 0.2mL per animal.
The doses of the drugs were based on previous studies [35, 36].

2.4. Immunofluorescence of Retinal Sections. Immunofluores-
cence of retinal sections was performed as previously
reported [33, 37]. The eyecups were cut into 10μm thick sec-
tions. The cryosections were, respectively, incubated with
monoclonal mouse anti-mouse A2AR antibody (05-717;
Millipore, USA), polyclonal rabbit anti-mouse Iba-1 anti-
body (019-19741; Wako, Japan), monoclonal rat anti-
mouse CD11b antibody (ab8878; Abcam, USA), monoclonal
rat anti-mouse MHC Class II antibody (ab25333; Abcam,
USA), monoclonal mouse anti-mouse GFAP antibody
(mab3402; Sigma-Aldrich, USA), polyclonal rabbit anti-
mouse GFAP antibody (ab7260; Abcam, USA), and poly-
clonal rabbit anti-mouse IL-1β antibody (ab9722; Abcam,
USA) by overnight incubation at 4°C. The cryosections were
then, respectively, incubated in Alexa 555-conjugated anti-
mouse IgG (4409), Alexa 488-conjugated anti-mouse IgG
(4408), Alexa 555-conjugated anti-rabbit IgG (4413), Alexa
488-conjugated anti-rabbit IgG (4412), or Alexa 488-
conjugated anti-rat IgG (4416) (all from cell signaling tech-
nology, Inc.). The sections were finally counterstained with
DAPI (sc-3598; Santa Cruz Biotechnology, Inc.). Images
were captured with a confocal microscope (SP5; Leica Micro-
systems, Inc., USA) with a fixed detection gain for each com-
parative section.

2.5. Oxidative Stress Assay. Superoxide dismutase (SOD)
activity and malondialdehyde (MDA) were performed as
previously reported [38]. Briefly, fresh retinal tissue was con-
verted to 100 g/L of retina homogenates in a homogenizer
filled. The homogenates were centrifuged at low temperature
for 15min at a speed of 3500 r/min. Proper amount of super-
natant was given to perform tissue protein quantification.
Levels of SOD and MDA were determined in accordance
with the specifications of the SOD kit (Dojindo Molecular
Technologies, Japan) and the MDA kit (Nanjing Jiancheng
Bioengineering Institute, China). The protein concentration
of the samples was determined using a BCA protein assay kit.

2.6. TUNEL Assay. The eyes were fixed in 4% paraformalde-
hyde overnight, then embedded in paraffin and sectioned at a
thickness of 10μm. The TUNEL assay was performed using
the In Situ Cell Death Detection Kit (11684795910; Roche
Diagnostics GmbH, Germany) according to the manufac-
turer’s instructions on the frozen sections as previously
described. The number of TUNEL+ cells in the outer nuclear
layer (ONL) was calculated in a masked fashion. The density
of TUNEL+ cells in the ONL was counted using ImageJ 1.48v
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software. These measurements were carried out without
knowledge of the treatment.

2.7. Western Blot Analysis. Retinas from experimental eyes
were dissected from the RPE-choroid. The samples were
homogenized and lysed in RIPA buffer. And protein concen-
trations were calculated by the BCA protein assay kit (P0009;
Beyotime, China). The samples were resolved on 10% SDS-
PAGE gels and transferred onto PVDF membranes (EMD
Millipore Corporation, US). The membranes were incubated
overnight at 4°C with primary antibodies against A2AR (05-
717; Millipore, USA) and β-actin (CW0096S; CWBiotech,
China). After being washed, the membranes were incubated
with horseradish peroxidase-conjugated secondary antibod-
ies (Jackson ImmunoResearch Inc., USA). The protein
expression level was determined by densitometric analysis
and normalized to the level of β-actin.

2.8. Quantitative RT-PCR Analysis. mRNA expression of
A2AR was analyzed by qRT-PCR as previously reported
[37]. Briefly, after total RNA was extracted from the retinas
using the TRIzol Reagent (Invitrogen, Carlsbad, CA, USA);
total RNA was used to synthesize complementary DNA
(cDNA) with a reverse transcription kit (Takara, Japan).
The reaction system was composed of specific primers,
cDNA, and the SYBR Green qPCR Mix (Takara, Japan).
Primers were synthesized by a private company (Sangon Bio-
tech Co. Ltd., China). β-Actin served as the reference gene,
and the expression of target genes was calculated as 2-△△Ct.
Primer sequences used were designed as follows: murine

A2AR forward, 5′-AGAGCAAGAGGCAGGTATCTC-3′ and
reverse, 5′-CCCAAAGGCTTTCTCACGGA-3′;

2.9. Statistical Analysis. The data are presented as the mean
± standard deviation (mean ± SD). The differences among
the groups were analyzed by Student’s t-test or one-way
ANOVA according to the normal distribution. All statistical
analysis was performed using GraphPad software (Prism 8;
GraphPad Software, Inc.). Values of P < 0:05 were consid-
ered statistically significant.

3. Results

3.1. A2AR Expression Is Increased after RD. To investigate the
expression of A2AR in RD, we collected the mouse retinas
from 12h to day 7 after induction of RD (Figure 1(a)) and
examined the mRNA and protein expression of A2AR using
quantitative real-time PCR and Western blotting, respec-
tively. Compared to the control, the mRNA expression of
A2AR in retinas after RD increased. RT-PCR analysis
revealed that there was a more than 6-fold induction of
A2AR mRNA expression in the RD model at day 1
(Figure 1(b)). Meanwhile, immunoblots also showed high
expression of A2AR protein in retinas after RD at 12 h, day
1, and day 3 (Figure 1(c)). Furthermore, to detect the distri-
bution of A2AR in detached retina, the immunofluorescence
staining was performed (Figure 1(d)). A2AR immunoreactiv-
ity was increased with time and very strong at day 1 in the
detached retina, whereas there was minimal staining in the
control. The A2AR staining was obviously detected in the

(a)

0

2

4

6

8

A
2A

R 
m

RN
A

 (f
ol

d)

Co
nt

12
H D
1

D
3

D
7

⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

(b)

RD
Cont 12H D1 D3 D7

𝛽-Actin

A2AR

(c)

Cont D1 D3 D7

GCL

INL

ONL

Negative control 12H

A2AR Dapi

(d)

Figure 1: A2AR expression levels at different time after retinal detachment (RD) in mice. (a) Hematoxylin and eosin staining of retinal
sections from mice after RD. (b) Quantification of A2AR mRNA in the retina of control and RD at 12 h, day 1, day 3, and day 7 (n = 6).
(c) Western blot analysis of A2AR protein expression in the retina of control and RD mice at 12 h, day 1, day 3, and day 7 (n = 3). (d)
Immunofluorescence staining of A2AR expression (red) in the retina of control and RD mice at 12 h, day 1, day 3, and day 7. ∗∗P < 0:01,
∗∗∗P < 0:005. Scale bar: 50μm.
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ganglion cell layer (GCL), the inner plexiform layer (IPL), the
inner nuclear layer (INL), and the outer plexiform layer
(OPL) after RD. These results demonstrate a significant
increase of A2AR mRNA and protein expression in the
mouse retina after RD, specifically in the GCL, IPL, INL,
and OPL.

3.2. A2AR Staining Is Colocalized with Microglia and Müller
Cells after RD. To verify the identity of the A2AR

+ cells, dou-
ble immunofluorescence was performed from 12h to day 1
after RD by using antibodies against A2AR and Iba-1, a
marker of microglia cell (Figure 2(a)). Microglia was signifi-
cantly increased in retina after RD, which is consistent with
previous research. The A2AR and Iba-1 signals colocalized
in microglia cells in the IPL, the inner nuclear layer (INL),
the OPL, and the ONL (Figure 2(a), arrows). To verify the
identity of the A2AR

+ cells, double immunofluorescence was
also performed after RD using antibodies against A2AR and
GFAP, a Müller cell marker (Figure 2(b)). After RD, simulta-
neously upregulation of GFAP was detected with the incre-
ment of A2AR. Compared to the restricted expression of
GFAP that was observed in the nerve fiber layer of the retina
from the control eyes, the GFAP immunoreactivity was
marked and extended across the entire neural retina to
the ONL after RD. The A2AR and GFAP signals coloca-
lized in Müller cells in the GCL and IPL (Figure 2(b),
arrows). These data demonstrate that A2AR expression

dramatically increased in the microglia and Müller cells
in the retina after RD.

3.3. A2AR Blockade Inhibits Microglia Proliferation and
Reactivity after RD.Microglia cells, the resident tissue macro-
phages of the retina, play a critical role in damage processes
and have both neuroprotective and neurotoxic effects during
retinal damage. To investigate the effects of A2AR on micro-
glial response after RD, the immunofluorescence colocaliza-
tion of Iba-1 (labeling both resting and active microglial
cells) and CD11b (for active microglial cells staining) [39]
was assessed in detached retina at day 3 (Figure 3(a)). Retinal
Iba-1+ cell counts were significantly increased after RD,
whereas Iba-1+ cell counts were strongly suppressed by
ZM241385 compared with the control vehicle treatment after
RD (Figure 3(c)). Significant accumulation of Iba-1 intensity
was detected in detached retina compared to controls. How-
ever, the administration of ZM241385 obviously decreased
Iba-1 intensity after RD (Figure 3(d)). Additionally, this
blockade of microglial reactivity is illustrated by the colocali-
zation of Iba-1 and CD11b. Iba-1+ CD11b+ cell counts were
dramatically inhibited by ZM241385 after RD, compared
with the control vehicle treatment (Figure 3(e)).

In order to better detect microglia reactivity, double
labeling was also performed using primary antibodies to
Iba-1 and major histocompatibility complex class II (MHC-
II, highly expressed in reactive microglia) (Figure 3(b)).
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Figure 2: A2AR localization in microglia cells and Müller cells in the retina of the RD mouse model. (a) Retinal sections were stained with
antibodies against A2AR (red) and Iba-1 (green) in the retina of control and RD mice at 12 h and day 1. The arrows designate region of
colocalization of A2AR and microglia. (b) Retinal sections were stained with antibodies against A2AR (red) and GFAP (green) in the retina
of control and RD mice at 12 h and day 1. The arrows designate region of colocalization of A2AR and Müller cells. Scale bar: 50μm.
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Iba-1+ MHC-II+ cells were considered reactive microglia. As
expected, microglia reactivity was obviously increased in the
retina after RD when compared with the retinas of control.
ZM146385 administration showed a significant decrease in

the percentage of reactive microglia cells compared to vehicle
after RD, whereas the administration of ZM146385 to con-
trol animals did not change the number of reactive microglia
(Figure 3(f)). These data suggest that A2AR is critical for the
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Figure 3: ZM241385 markedly reduced microglia proliferation and reactivity in the retina after RD in mice. (a) Retinal sections were stained
with antibodies against Iba-1 (red) and CD11b (green). Representative images are depicted, and arrows indicate some Iba-1+ and CD11b+

cells found in each condition. (b) Retinal sections were stained with antibodies against Iba-1 (red) and MHC-II (green). Representative
images are depicted, and arrows indicate some Iba-1+ and MHC-II+ cells found in each condition. (c) Quantification of Iba-1+ cell counts
per retinal section in the retina (n = 8). (d) Quantification of Iba-1 intensity per mm2 in the retina (n = 8). (e) Quantification of Iba-1+

CD11b+ cell counts per retinal section in the retina (n = 8). (f) Activated microglia (Iba-1+ MHC-II+ cells) were counted and normalized
to the percentage of total microglial cells (Iba-1+ cells) (n = 8). ∗∗P < 0:01, ∗∗∗P < 0:005, #P < 0:05, ###P < 0:005, Scale bar: 50 μm.
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microglia proliferation and reactivity after RD and for the
subsequent structural and functional disruption of these ret-
inal layers.

3.4. A2AR Blockade Reduces Reactive Gliosis and
Inflammatory Response after RD. Activation of gliosis repre-
sents Müller glial remodeling in response to RD-induced ret-
inal damage and contributes to tissue inflammation.
Additionally, IL-1β, an important inflammatory cytokine,
has previously been reported to contribute to the pathogene-
sis of photoreceptor apoptosis after RD [40]. Moreover, the
blockade of A2AR has been shown to effectively prevent
inflammatory responses within various injury models [41].
To investigate whether the A2AR blockade contributes to
inhibiting reactive gliosis and inflammatory responses after
RD, we evaluated the role of A2AR in the RD-induced GFAP
and IL-1β expression. After RD, the level of GFAP was obvi-
ously upregulated, whereas the increased GFAP expression in
detached retina was dramatically ameliorated by the addition
of ZM241385 (Figures 4(a) and 4(b)). The expression of IL-
1β, colocalized in Müller cells with GFAP signal, was

detected in the GCL, the IPL, and the OPL at day 3 after
RD (Figure 4(a)). The ZM146385 administration obviously
suppressed the upregulation of IL-1β expression in Müller
cells induced by RD (Figure 4(c)). Taken together, these
results indicate that the A2AR blockade can inhibit RD-
induced reactive gliosis and inflammatory response in
Müller cells.

3.5. A2AR Blockade Suppresses the Oxidative Stress after RD.
Silencing of the caffeine-antagonized A2AR significantly
reduced ROS production in THP-1 macrophages [42] and
on UV-induced skin damage in mice [43]. We therefore
hypothesized that A2AR blockade might protect neuronal
cells from RD by reducing oxidative stress. To test the
hypothesis, oxidative stress was measured in detached ret-
ina after ZM241385 administration. Immunofluorescence
results showed that the upregulation of ROS in the
ONL was inhibited dramatically by ZM241385 at day 3
after RD (Figure 5(a)). Moreover, we further observed
that ZM241385 markedly restrained RD-induced MDA
(Figure 5(b)), whereas the decreased activity of SOD was
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Figure 4: ZM241385 effectively inhibited upregulation of GFAP and IL-1β expression after RD in mice. (a) Retinal sections were stained with
antibodies against GFAP (green) and IL-1β (red). The arrows designate the region of colocalization of GFAP and IL-1β. (b) Quantification of
GFAP intensity per mm2 in the retina (n = 8). (c) Quantification of IL-1β intensity per mm2 in the retina (n = 8). ∗∗P < 0:01, ∗∗∗P < 0:005,
##P < 0:01. Scale bar: 50μm.
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largely restored (Figure 5(c)). These results demonstrate that
A2AR blockade effectively decreases RD-induced overproduc-
tion of oxidative stress.

3.6. A2AR Blockade Prevents Photoreceptor Apoptosis after
RD. Photoreceptor apoptosis was quantified at day 3 after
RD which is the peak time point [44, 45]. To investigate

whether A2AR is involved in RD-induced photoreceptor apo-
ptosis, the TUNEL assay was performed among different
groups (Figure 6(a)). In the absence of RD, the general
appearance of the retina was similar at vehicle and
ZM241385 groups. ZM241385 almost completely suppressed
the appearance of TUNEL+ cells in the ONL after RD, whereas
the control vehicle treatment had no effect (Figure 6(b)).
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Figure 5: ZM241385 significantly inhibited oxidative stress in the retina after RD. (a) Immunofluorescence staining of ROS production
(green) in retinal sections. (b) MDA concentration and (c) SOD activity analysis in the retina. ∗∗P < 0:01, ∗∗∗P < 0:005, #P < 0:05, ##P <
0:01. Scale bar: 50μm.
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Figure 6: ZM241385 prevented RD-induced photoreceptor apoptosis in mice. (a) TUNEL labelling (green) in retinal sections after RD. (b)
Quantification of TUNEL+ photoreceptors in the retina (n = 8). ∗∗P < 0:01, ∗∗∗P < 0:005, ##P < 0:01. Scale bar: 50μm.
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These data show that A2AR plays a critical role in RD-induced
photoreceptor apoptosis.

4. Discussion

Increased A2AR expression has been reported in several retinal
disease models, including oxygen-induced retinopathy [22],
diabetic retinopathy [46], glaucoma [41], and light-induced
retinal degeneration [47]. Therefore, A2AR may be a critical
factor for the inflammatory response during various acute
and chronic retinal diseases. In the light-induced retinal
degeneration model, A2AR upregulation is detected in the
GCL and INL, coinciding with the massive apoptosis of pho-
toreceptors [47]. In the current study, A2AR protein was
detected in the GCL, IPL, INL, and OPL in the detached ret-
ina and expressed predominately in microglia and Müller
cells after RD. In our conditions, RD-induced upregulation
of A2AR in microglia and Müller cells suggested that microg-
lia and Müller cells reacted to changes in retinal ischemia and
A2AR modulated the response of microglia and Müller cells
to retinal ischemia. The colocalization of A2AR

+ microglia
cells and the increased number of infiltrated microglia in
mice after RD indicated that increased A2AR in microglia
cells may attract microglia toward the outer retina. Addition-
ally, the GFAP immunoreactivity in A2AR

+ Müller cells was
marked and extended across the entire neural retina to the
ONL after RD. These findings are consistent with the fact
that the outer retina is the main site of injury after RD and
reveal that A2AR plays an important role in the photorecep-
tor cell death in detached retina.

There is a controversy on the effects mediated by A2AR in
pathological conditions, since A2AR activation in peripheral
immune cells is anti-inflammatory [48, 49], and in chronic
conditions of the central nervous system, the blockade of
the A2AR confers protection [28]. Recently, A2AR blockade
has been shown to selectively reduce avascular areas and neo-
vascularization, with the decreased cellular apoptosis and
proliferation, and increased astrocyte and tip cell functions
in OIR [50]. And the administration of A2AR blockade,
ZM241385, has been illustrated to reduce microglia activa-
tion and decrease the proinflammatory factor expression to
improve RGC survival in experimental glaucoma [41]. More-
over, Boia et al. [24] have demonstrated that treatment with
A2AR antagonist KW6002 and caffeine intake could obvi-
ously inhibit microglia reactivity and effectively protect ret-
ina against transient ischemic damage. A2AR selective
antagonist SCH58261 has been revealed to decrease GFAP
expression in rat brain astrocyte cell line with ischemia-like
injury [51]. However, whether A2AR blockade could play a
neuronal protective role in RD is still unclear. In the present
study, we observed that ZM241385, a selective A2AR antago-
nist, inhibited microglia reactivity after RD, accompanied by
reduced proliferation of microglia. We found that ZM241385
also decreased GFAP expression and alleviated expression of
inflammatory cytokine IL-1β. Furthermore, our results
revealed that ZM241385 reduced obviously ROS production
and attenuated the increase in MDA concentration after RD,
while SOD activity increased in detached retinas. This was

evident in a reduction of oxidative stress induced by RD,
through administration of A2AR blockade.

Mounting evidence indicates that the microglia activa-
tion may contribute to the secondary injury to neurons and
result in the chronic neuroinflammation [52]. The activation
of microglia leads to the excessive releasement of proinflam-
matory cytokines, such as IL-1β, IL-6, and TNF-α [53].
Although the release of these proinflammatory cytokines is
intended to protect the central nervous system tissue from
further damage, they can impair simultaneously neurons
[54]. Interestingly, the blockade of A2AR affords neuropro-
tection in several models of neurodegeneration, including
in the retina [28, 41, 55–57]. One of the mechanisms that
explains the protective properties of A2AR antagonists is the
control of microglia-mediated neuroinflammation [28, 56].
It has also been illustrated that A2AR blockade confers neuro-
protection by controlling microglia reactivity in vivo [31] and
in glaucoma [58]. Likewise, we found that ZM241385 could
dramatically inhibit the increase of Iba-1 intensity and count
of activated microglial cells after RD in the current study.
Our finding that A2AR blockade could alter microglia reactiv-
ity is consistent with those in other experimental models of
retinal damage [32].

GFAP is a marker of gliosis and is increased in reactive
Müller glia cells in various retinal disorders. Increasing stud-
ies have reported that GFAP levels in the central nervous sys-
tem are elevated under pathological conditions and that this
process plays an important role in neural injury [59, 60].
However, the pathological mechanisms of Müller activation
and GFAP upregulation after RD are largely unknown. As a
consequence of RD, a “mechanical” damage to the retina,
GFAP expression increases obviously in Müller cells. In addi-
tion, the hypertrophy of Müller both within the retina and on
the photoreceptor is accompanied with GFAP upregulation
[61]. Previous studies have shown that the deletion of GFAP
can prevent RD-induced gliosis and rescue photoreceptor
degeneration, which highlights the key role of Müller cells
in regulating retinal damage [62]. In this study, we found that
ZM241385 effectively suppressed the upregulation of GFAP
expression in Müller cells. The results suggest that A2AR
blockade could prevent Müller activation after RD. However,
improvement is needed in order to assess the effect of A2AR
regulation in a therapeutic setting using a modified model
of A2AR antagonist administration after the induction of RD.

IL-1β is a critical inflammatory cytokine involved in
various retinal diseases [58, 63–65]. Previous studies have
suggested IL-1β plays an important role in inducing photore-
ceptor apoptosis, using models of retinopathy of prematurity
[66] and age-related macular degeneration [40, 67]. Kataoka
et al. [40] showed that IL-1β partially contributed to photo-
receptor cell apoptosis after RD utilizing caspase-1 inhibitor
or IL-1β neutralizing antibody, which is in contrast to previ-
ous studies that have shown that IL-1β administration into
the subretinal space does not increase photoreceptor apopto-
sis during RD [68]. Interestingly, Zhao and colleagues
reported that caffeine could inhibit the increased production
of IL-1β by suppressing A2AR signaling to prevent LPS-
induced THP-1 macrophage activation [42]. In this study,
we found that IL-1β expression was significantly increased
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and located in the Müller cells after RD as it was previously
observed [40, 68], whereas the upregulation of IL-1β dramat-
ically decreased after ZM241385 administration. The results
suggest that A2AR blockade could effectively prevent RD-
induced upregulation of IL-1β expression in Müller cells.

The cellular and molecular mechanisms inducing photo-
receptor cell death have been partially revealed. Recent stud-
ies have shown that RIP kinase-mediated necrotic signaling
[69] and FAS-mediated apoptosis pathway [70] contribute
to photoreceptor death after RD. However, accumulating evi-
dence suggests that the rapid increase of oxidative stress is
currently considered to be a critical event for irreversible cel-
lular damage in RD [14]. Previous studies have demonstrated
an increased generation of ROS after RD, whereas photore-
ceptor cell death can be prevented after RD by suppressing
ROS [71, 72]. The overproduction of ROS is known to inter-
act with various inflammatory cytokines, including IL-1β,
TNF-α, and CCL2, which suggests an important role for
ROS in mediating the stress response [73]. Concurrent with
this, previous studies have demonstrated that microglia
A2AR blockade suppresses elevated pressure-induced oxida-
tive stress in retina [32]. Furthermore, modulation of α-adre-
noceptor signaling protects photoreceptors from apoptosis
after RD by inhibiting ROS production [14]. In our work,
we showed that ZM241385 was able to prevent photorecep-
tor loss from ROS overproduction triggered after RD, further
reinforcing its role in controlling retinal neuroinflammation.
We first found that MDA concentration increased in the
detached retina, while the SOD activity decreased signifi-
cantly after RD. Secondly, we observed that accompanied
by a decrease in MDA and an increase in SOD, ZM241385
inhibited photoreceptor apoptosis after RD. This suggests
that oxidative stress plays a key role in nerve injury after
RD. Therefore, pharmacological therapies targeting oxidative
stress may be critical for inhibiting RD-induced photorecep-
tor apoptosis.

5. Conclusions

In conclusion, we demonstrate that A2AR expression signifi-
cantly upregulate and its colocalization with microglia and
Müller cells in the retina after RD. In addition, A2AR block-
ade could provide effective protection against photoreceptor
apoptosis in a mouse model of experimental RD for the first
time. Meanwhile, we further demonstrate that the neuropro-
tective effects of the A2AR antagonist ZM241385 is related to
the amelioration of RD-induced environmental stress that
leads to microglia proliferation and reactivity, reactive gliosis,
upregulation of proinflammatory cytokine, and activation of
oxidative stress. Our results suggest that A2AR blockade may
present novel therapeutic targets for strategies aimed at pre-
serving visual acuity in patients with RD.
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