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Crawler [1]. The dataset comprises of various extracted at-
tributes, and also raw webpage content including JavaScript
code. It supports both supervised and unsupervised learn-
ing. For supervised learning, class labels for malicious and
benign webpages have been added to the dataset using
the Google Safe Browsing APL.! The most relevant attributes
within the scope have already been extracted and included
in this dataset. However, the raw web content, including
JavaScript code included in this dataset supports further at-
tribute extraction, if so desired. Also, this raw content and
code can be used as unstructured data input for text-based
analytics. This dataset consists of data from approximately
1.5 million webpages, which makes it suitable for deep

1 Safe Browsing [2] is a Google service for checking whether a webpage is malicious or not. In this dataset, it has
been used for assigning Class Labels (‘good’-benign/ ‘bad’-malicious). URL of the webpage is submitted using this API to
Google Safe Browsing Service, which thereafter cross-checks with its blacklist, and replies whether it is malicious or not.
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learning algorithms. This article also provides code snippets
used for data extraction and its analysis.

© 2020 The Author. Published by Elsevier Inc.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject

Artificial Intelligence

Specific subject area
Type of data

How data were
acquired

Data format
Parameters for data
collection

Description of data
collection

Data source location

Data accessibility

Machine Learning using Web Content

Dataset

Tables

Figures

Graphs

Python Code

The data were collected from the Internet by scraping webpages using a
customized focused web crawler named MalCrawler [1]. Thereafter, the raw data
collected was processed using customized Python code to extract relevant features.
Raw (Unstructured web content and JavaScript)

Analyzed

Filtered

Web content was pruned down to reduce size by removing less relevant content,
viz., meta data, stop words, style data, HTML tags, etc.

Obfuscated JavaScript code was de-obfuscated using a browser emulator.

The raw data comprises of webpages. This data was collected from the Internet by
scraping websites using MalCrawler [1]. MalCrawler is a focused crawler designed
to seek more malicious webpages compared to a random web crawl. Scraped data
was further processed using customized Python code to extract attributes.

Class labels for malicious and benign webpages were added using the Google Safe
Browsing API [2].

Data was gathered from Web between November 2019 and March 2020, with
random web crawls carried out to ensure adequate global coverage.

Data hosted in public repository.

Repository name: Mendeley Data

Data identification number: 10.17632/gdx3pkwp47.2

Direct URL to data: http://dx.doi.org/10.17632/gdx3pkwp47.2

Value of the Data

Useful for building machine learning models for carrying out varied analysis on webpages.

Both supervised and unsupervised learning models can be developed. It is pertinent to note
that presently no such comprehensive dataset exists in public domain to facilitate research

work in this field.

« Will benefit all researchers who are pursuing research in the field of Web Security. Further,
this data can be used by Cyber Security firms or Anti-Virus companies to model their security

products.

- Contains sufficient attributes for further insight and future work. Notwithstanding, this data
also includes processed raw web content, including JavaScript code, which can be used for
extraction of new attributes, if so required, to aid future research.

« It has value, not only to Internet Security research community or Cyber Security firms, but
can also be used for policy development by Cyber Law Enforcement agencies.

1. Data Description

The dataset was designed and prepared with the aim of classification of webpages as Mali-
cious or Benign. However, this dataset contains sufficient information that can be used for any
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machine learning task related to webpage analysis. The attributes of this dataset are listed below
in Table 1.

Table 1
Attributes of dataset.

# Attribute name Data type Attribute description
1. url String URL of the Webpage.
2. ip_add String IP Address of the webpage.
3. geo_loc Categorical String {Variable Bucket Name of the country based on IP Address location.
Size}
4. url_len Numerical {int16} Length of URL- count of characters in a URL.
5. js_len Numerical {float64} Length of JavaScript code (in KB) in the webpage.
6. js_obf_len Numerical {float64} Length of Obfuscated JavaScript (in KB) in the
webpage.
7. tld Categorical String {Variable Bucket Top Level Domain of the webpage.
Size}
8. who_is Categorical String {Value- Gives out whether the WHO IS information of the
incomplete/complete} registered domain is complete or incomplete.
9. https Categorical String {Value- yes/no} Gives out whether the website uses https or http
protocol.
10. content Text Raw Web Content of the Webpage. Includes filtered
and processed text and JavaScript code.
11. label Categorical String {Value- good/bad} Classification label categorizing the webpage class as

Malicious (bad) or Benign (good).

The dataset comprises of 1.564 million webpages having 11 attributes. These attributes were
selected based on their performance in predicting malicious and benign webpages in previous
researches [5]. A snapshot of the dataset is shown below in Fig. 1.

url ip_add geo_loc url_len js_len js_obf_len tid who_is https content label
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Fig. 1. Snapshot of the dataset.

The last attribute in Table 1 is Class Label, which can be used for training the machine
learning algorithm. The two classes correspond to Malicious and Benign webpages. As the In-
ternet has more Benign pages than Malicious? webpages, a similar disproportion also reflects in

2 A webpage is malicious if it has a malware (Cross Site Scripting (XSS), Code injection or Drive by Download based
malware), or exhibits behavior like phishing.
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our Dataset. As seen in the graphical representation of Class Labels in Fig. 2, a majority of the
webpages are benign. Thus, users of this dataset should appropriately factor this skew in class
distribution while training machine learning models.

stack Plot: Malicious & Benign Webpages 600
100% m— Benign
mmm Malicious s00
80%
400
60% g 300
40% 200
f— 100
0% 4 Da 0.1 - 0.2 0.3 0.4
Benign/Malicious Webpages Profanity Score
Fig. 2. Class label distribution- Malicious & Benign. Fig. 3. URL plot (vectorized using profanity score).

First attribute of the dataset represents URL of the webpages. Visualization of ‘url’ attribute,
after vectorizing it (using Profanity Score®), is depicted in Fig. 3. The second attribute ‘ip_add’
gives the IP Address of the Webserver hosting the webpage. Third attribute ‘geo_loc’ gives
the country to which the IP Address belongs. The IP Address distribution is plotted coun-
try wise in Fig. 4 and Fig. 5 for Malicious and Benign webpages, respectively. As can be in-
ferred from the maps in Fig. 4 and Fig. 5, the dataset represents webpages from servers across
the globe.
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Fig. 4. Geographic distribution of IP addresses - Malicious. ~ Fig. 5. Geographic distribution of IP addresses - Benign.

3 Profanity Score is a mathematical value given to a group of words based on their goodness/badness. A higher value
indicates that a greater number of bad/vulgar words were present.
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The fourth, fifth and sixth attribute of the dataset are ‘url_len’, js_len’ and ‘js_obf_len’ respec-
tivley. All three are numerical attributes and their univariate plots are shown below in Fig. 6.
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Fig 6. Univariate plots: URL length, JavaScript length and obfuscated JavaScript length.

The trivariate distributions of these three numerical attributes are shown in Figs. 7-10.
Fig. 7 gives the 3D plot, Fig. 8 shows correlation score* amongst these three numerical attributes,
Fig. 9 plots these three attributes against each other pairwise, and Fig. 10 plots all three together

as parallel coordinates.

Fig. 7. Trivariate 3D plot.
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Fig. 9. Trivariate pairwise plot.
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]
150 tad
125
10.0
75
50
25
00
url_len js_len js_obf_len

Fig. 10. Trivariate parallel coordinates plot.

4 Correlation score gives the relationship between two attributes, with higher score depicting closer relationship.
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As attributes ‘js_len’ and ‘js_obf_len’ have exhibited high correlation in matrix of Fig. 8, their
bivariate distributions are plotted in Figs. 11 and 12 to highlight their relationship.
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Fig. 11. Bivariate pairwise plot. Fig. 12. Bivariate density plot.

The seventh attribute is ‘tld’ that gives the Top Level Domain Name of the webpage. This
attribute is plotted in Fig. 13. As depicted by the graph, this dataset contains webpages from
numerous domains.
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Fig. 13. Plot of top level domain (‘tld’) attribute.

The eighth and ninth attributes of dataset are ‘who_is’ and ‘https’ respectively. Both are cat-
egorical attributes. The ‘who_is’ attribute gives completeness of domain registration records of
websites, which are held with domain registrars. The ‘https’ attribute tells us whether HTTP
secure protocol is used by the webserver or not for delivering the webpage. These two attributes
are visualized in Figs. 14 and 15 below.
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Fig. 14. Plot of who is registration (‘who_is’) attribute. Fig. 15. Plot of HTTPS (‘https’) attribute.
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The tenth attribute of the dataset is ‘content’. This attribute contains raw web content,
including JavaScript code, which has been filtered and cleaned to reduce size. The objective
of providing this attribute in the dataset is to enable further attribute extraction from this
dataset, if so desired in future research. Further, certain machine learning techniques, like Deep
Learning, can use this unstructured web content directly for experiments. Fig. 16(a), (b) and (c)
below show the vectorized plot of this raw content.

300 M Benign Webpages B Benign Webpages B Benign Webpages

B Malicious Webpages 70k B Malicious Webpages 1000 | B Malicious Webpages
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Fig. 16. (a) Web content: sentiment score. (b) Web content: profanity score. (c) Web content: word count.

All attributes discussed above, reduced to three dimensions using Principal Component Anal-
ysis (PCA) are plotted below. The 3D scatter plot is given below in Fig. 17, while the Tri Surface
plot is given in Fig. 18. These plots show that the dataset is non-convex; however, it can be seg-
regated into classes. Thus, data scientists can apply various machine learning techniques to this
dataset.
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Fig. 17. 3D plot of complete dataset. Fig. 18. Tri surface plot of complete dataset.

The objective of showing the above visualizations of dataset and its attributes is to enable
readers of this article to understand the dataset better, and accordingly utilize it for their re-
search. The detailed visualization, with more insight and analysis, along with the Python code
that has been used to generate it, is available alongside the dataset hosted on Mendeley reposi-
tory [3]. Also, the visualization output is hosted publicly on Kaggle for live experimentation [4].

2. Experimental Design, Materials, and Methods

The dataset was collected by scraping websites across the globe on the Internet. MalCrawler
[1], which is a special purpose focused crawler, was used for this task. MalCrawler [1] is a
preferred crawler for this task as it seeks more malicious websites than a random crawl by any
other generic web crawler. Further, it is a uniquely designed crawler that does not get entan-
gled in deep crawls or in dynamic websites. The data collected from crawl was then processed
to extract the attributes, which have been described in the previous section. The basic informa-
tion captured during the crawl included IP address, URL, and web content. Other attributes were
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thereafter extracted using customized Python Code. The choice of attributes extracted for this
dataset was based on its relevance in malicious webpage classification, as brought out by Singh
et al. in their paper [5]. The attribute ‘url_len’ was computed from ‘url’ using the Python code
given in Fig. 19.

import pandas as pd

# Loading the raw data file into Pandas Dataframe
df=pd.read_csv("raw_data.csv")

#Generating 'url_len' from 'url'
dff'url_len']= dff'url'].str.len()

Fig. 19. Code snippet for extracting ‘url_len.

The ‘geo_loc’ attribute, which gives out the country to which the IP Address belongs, is com-

puted from GeolP Database [G], as given by the code in Fig. 20.

# Loading the GeolIP Database
reader = geoipR.database.Reader('GeoLite2-Country. mmdb")

def geoloc(ip_add): #Function for Computing geo_loc
geo_loc=""
try:
response = reader.country(ip_add)
geo_loc = response.country.name
except Exception as msg:
geo_loc=""
return geo_loc

#Fill the 'geo_loc' column in df
for x in df.index:
df['geo_loc'][x]= geoloc(df['ip_add"][x]

reader.close() #Close the reader

Fig. 20. Code snippet for computing ‘geo_loc.

Attribute ‘js_len’ is computed using the code given in Fig. 21. The JavaScript code, enclosed
within ‘<script>*****<[script>" tags are identified and extracted using regex function.

import re

#importing regex for string selection and parsing

def get_js_len_inKB(content): #Function for computing 'js_len from Web Content
js=re.findall(r'<script>(. *?)</script>',content)
complete_js=".join(js)
js_len = len(content.encode(‘utf-8"))/1000
return js_len

for x in df.index: #Computing and Putting !js_len' in Pandas Dataframe
dffjs_len'][x] = get_js_len_inKB(df['content'][x])

Fig. 21. Code snippet for computing ‘js_len.




Attribute ‘js_obf_len’ requires decoding of the obfuscated JavaScript code before computation.
This decoding of obfuscated code is carried out using ‘JavaScript Auto De-Obfuscator’ (JSADO)
[7] and Selenium Python library [8]. Code for de-obfuscation is available at [9]. Attribute ‘tld’ is
computed from URL using the Python ‘Tld’ library [10]. Code snippet for this extraction is given

AK. Singh/Data in Brief 32 (2020) 106304

below in Fig. 22.

Attribute ‘who_is’ is computed with the WHOIS API [11] using the code snippet shown below

in Fig. 23.

from tld import get_tld # Importing the tld library

for x in df.index:
daf['tld"][x] = get_tld(str(df['url'][x]), fix_protocol=True)

Fig. 22. Code snippet for extracting ‘tld".

from urllib.request import urlopen  # Importing url library
import json # Importing the JSON Module

url = 'https://www.bits-pilani.ac.in' #A sample URL

apiKey ='at_YCTWOLMRw11QOCMmNOKUe30U7B8dJc'

url = 'https://www.whoisxmlapi.com/whoisserver/WhoisService?'\
+'domainName='+ url + '&capiKey='+ apiKey + "&outputFormat=JSON"

whois_data= urlopen(url).read().decode('utf8") #WHO IS info returned by API
data=json.loads(whois_data) # Converting it from JSON to a Python Dict Object
if data['registrarName']=="":

who_is ='incomplete'
else:

who_is = 'complete'

# Sample of one URL is shown here
# Similarly, who_is data is checked for all URLs in the dataset

Fig. 23. Code snippet for computing ‘who_is.

Attribute ‘https’ is computed using the code shown in Fig. 24 below.

import http.client # Import http client library

for x in df.index:

https_status= False

try:
conn = http.client. HTTPSConnection(df['url'][x])
conn.request("HEAD", "/")
res = conn.getresponse()
if res.status == 800 or res.status==301 or res.status==308:

https_status= True

except Exception as msg:
print(x,"Error: ",msg)

finally:
df['https'][x]= https_status
conn.close

Fig. 24. Code snippet for computing ‘https’.
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Class labels for this dataset have been generated using the Google Safe Browsing API (refer
the sample code for generating labels below in Fig. 25).

KEY="AIzaSyABOGDPGmMHpCs8UBii1 EfkpldUPJHQIGpo"
s = SafeBrowsing(KEY)

for x in df.index:

try:
url = dfl'url'][x]
r = s.lookup_urls([url])
label=r[url]['malicious']
df['label']=label

except Exception as msg:
df['label']=""

Fig. 25. Code snippet for computing Class Labels.

The code used for generating and pre-processing this dataset has been hosted online on the
Mendeley repository [3], and Kaggle [12] to facilitate future research.
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