
Data in Brief 32 (2020) 106304

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Malicious and Benign Webpages Dataset

A.K. Singh

Advanced Data Analytics & Parallel Technologies Lab (ADAPT Lab), Department of Computer Science & Information

Systems, BITS Pilani, Pilani Campus, India

a r t i c l e i n f o

Article history:

Received 26 June 2020

Revised 26 August 2020

Accepted 8 September 2020

Available online 12 September 2020

Keywords:

Web security

Malicious webpages

Machine learning

Deep learning

Malicious JavaScript

a b s t r a c t

Web Security is a challenging task amidst ever rising threats

on the Internet. With billions of websites active on Internet,

and hackers evolving newer techniques to trap web users,

machine learning offers promising techniques to detect ma-

licious websites. The dataset described in this manuscript is

meant for such machine learning based analysis of malicious

and benign webpages. The data has been collected from In-

ternet using a specialized focused web crawler named Mal-

Crawler [1] . The dataset comprises of various extracted at-

tributes, and also raw webpage content including JavaScript

code. It supports both supervised and unsupervised learn-

ing. For supervised learning, class labels for malicious and

benign webpages have been added to the dataset using

the Google Safe Browsing API. 1 The most relevant attributes

within the scope have already been extracted and included

in this dataset. However, the raw web content, including

JavaScript code included in this dataset supports further at-

tribute extraction, if so desired. Also, this raw content and

code can be used as unstructured data input for text-based

analytics. This dataset consists of data from approximately

1.5 million webpages, which makes it suitable for deep

E-mail address: aksingh2411@gmail.com

1 Safe Browsing [2] is a Google service for checking whether a webpage is malicious or not. In this dataset, it has

been used for assigning Class Labels (‘good’-benign/ ‘bad’-malicious). URL of the webpage is submitted using this API to

Google Safe Browsing Service, which thereafter cross-checks with its blacklist, and replies whether it is malicious or not.

https://doi.org/10.1016/j.dib.2020.106304

2352-3409/© 2020 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.dib.2020.106304
http://www.ScienceDirect.com
http://www.elsevier.com/locate/dib
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2020.106304&domain=pdf
mailto:aksingh2411@gmail.com
https://doi.org/10.1016/j.dib.2020.106304
http://creativecommons.org/licenses/by/4.0/

2 A.K. Singh / Data in Brief 32 (2020) 106304

learning algorithms. This article also provides code snippets

used for data extraction and its analysis.

© 2020 The Author. Published by Elsevier Inc.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

Specifications Table

V

1

c
Subject Artificial Intelligence

Specific subject area Machine Learning using Web Content

Type of data Dataset

Tables

Figures

Graphs

Python Code

How data were

acquired

The data were collected from the Internet by scraping webpages using a

customized focused web crawler named MalCrawler [1] . Thereafter, the raw data

collected was processed using customized Python code to extract relevant features.

Data format Raw (Unstructured web content and JavaScript)

Analyzed

Filtered

Parameters for data

collection

Web content was pruned down to reduce size by removing less relevant content,

viz., meta data, stop words, style data, HTML tags, etc.

Obfuscated JavaScript code was de-obfuscated using a browser emulator.

Description of data

collection

The raw data comprises of webpages. This data was collected from the Internet by

scraping websites using MalCrawler [1] . MalCrawler is a focused crawler designed

to seek more malicious webpages compared to a random web crawl. Scraped data

was further processed using customized Python code to extract attributes.

Class labels for malicious and benign webpages were added using the Google Safe

Browsing API [2] .

Data source location Data was gathered from Web between November 2019 and March 2020, with

random web crawls carried out to ensure adequate global coverage.

Data accessibility Data hosted in public repository.

Repository name: Mendeley Data

Data identification number: 10.17632/gdx3pkwp47.2

Direct URL to data: http://dx.doi.org/10.17632/gdx3pkwp47.2

alue of the Data

• Useful for building machine learning models for carrying out varied analysis on webpages.

Both supervised and unsupervised learning models can be developed. It is pertinent to note

that presently no such comprehensive dataset exists in public domain to facilitate research

work in this field.

• Will benefit all researchers who are pursuing research in the field of Web Security. Further,

this data can be used by Cyber Security firms or Anti-Virus companies to model their security

products.

• Contains sufficient attributes for further insight and future work. Notwithstanding, this data

also includes processed raw web content, including JavaScript code, which can be used for

extraction of new attributes, if so required, to aid future research.

• It has value, not only to Internet Security research community or Cyber Security firms, but

can also be used for policy development by Cyber Law Enforcement agencies.

. Data Description

The dataset was designed and prepared with the aim of classification of webpages as Mali-

ious or Benign. However, this dataset contains sufficient information that can be used for any

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.17632/gdx3pkwp47.2

A.K. Singh / Data in Brief 32 (2020) 106304 3

machine learning task related to webpage analysis. The attributes of this dataset are listed below

in Table 1 .

Table 1

Attributes of dataset.

Attribute name Data type Attribute description

1. url String URL of the Webpage.

2. ip_add String IP Address of the webpage.

3. geo_loc Categorical String {Variable Bucket

Size}

Name of the country based on IP Address location.

4. url_len Numerical {int16} Length of URL- count of characters in a URL.

5. js_len Numerical {float64} Length of JavaScript code (in KB) in the webpage.

6. js_obf_len Numerical {float64} Length of Obfuscated JavaScript (in KB) in the

webpage.

7. tld Categorical String {Variable Bucket

Size}

Top Level Domain of the webpage.

8. who_is Categorical String {Value-

incomplete/complete}

Gives out whether the WHO IS information of the

registered domain is complete or incomplete.

9. https Categorical String {Value- yes/no} Gives out whether the website uses https or http

protocol.

10. content Text Raw Web Content of the Webpage. Includes filtered

and processed text and JavaScript code.

11. label Categorical String {Value- good/bad} Classification label categorizing the webpage class as

Malicious (bad) or Benign (good).

The dataset comprises of 1.564 million webpages having 11 attributes. These attributes were

selected based on their performance in predicting malicious and benign webpages in previous

researches [5] . A snapshot of the dataset is shown below in Fig. 1 .

Fig. 1. Snapshot of the dataset.

The last attribute in Table 1 is Class Label, which can be used for training the machine

learning algorithm. The two classes correspond to Malicious and Benign webpages. As the In-

ternet has more Benign pages than Malicious 2 webpages, a similar disproportion also reflects in
2 A webpage is malicious if it has a malware (Cross Site Scripting (XSS), Code injection or Drive by Download based

malware), or exhibits behavior like phishing.

4 A.K. Singh / Data in Brief 32 (2020) 106304

o

w

d

a

g

t

t

f

t

F

i

ur Dataset. As seen in the graphical representation of Class Labels in Fig. 2 , a majority of the

ebpages are benign. Thus, users of this dataset should appropriately factor this skew in class

istribution while training machine learning models.

Fig. 2. Class label distribution- Malicious & Benign.

First attribute of the dataset represents URL of the webpages. Visualization of ‘url’ attribute,

fter vectorizing it (using Profanity Score 3), is depicted in Fig. 3 . The second attribute ‘ip_add’

ives the IP Address of the Webserver hosting the webpage. Third attribute ‘geo_loc’ gives

he country to which the IP Address belongs. The IP Address distribution is plotted coun-

ry wise in Fig. 4 and Fig. 5 for Malicious and Benign webpages, respectively. As can be in-

erred from the maps in Fig. 4 and Fig. 5 , the dataset represents webpages from servers across

he globe.

Fig. 3. URL plot (vectorized using profanity score).

ig. 4. Geographic distribution of IP addresses - Malicious. Fig. 5. Geographic distribution of IP addresses - Benign.
3 Profanity Score is a mathematical value given to a group of words based on their goodness/badness. A higher value

ndicates that a greater number of bad/vulgar words were present.

A.K. Singh / Data in Brief 32 (2020) 106304 5

The fourth, fifth and sixth attribute of the dataset are ‘url_len’, js_len’ and ‘js_obf_len’ respec-

tivley. All three are numerical attributes and their univariate plots are shown below in Fig. 6 .

Fig 6. Univariate plots: URL length, JavaScript length and obfuscated JavaScript length.

The trivariate distributions of these three numerical attributes are shown in Figs. 7–10 .

Fig. 7 gives the 3D plot, Fig. 8 shows correlation score 4 amongst these three numerical attributes,

Fig. 9 plots these three attributes against each other pairwise, and Fig. 10 plots all three together

as parallel coordinates.

Fig. 7. Trivariate 3D plot. Fig. 8. Trivariate correlation matrix.

Fig. 9. Trivariate pairwise plot. Fig. 10. Trivariate parallel coordinates plot.
4 Correlation score gives the relationship between two attributes, with higher score depicting closer relationship.

6 A.K. Singh / Data in Brief 32 (2020) 106304

b

a

n

e

w

s

a

As attributes ‘js_len’ and ‘js_obf_len’ have exhibited high correlation in matrix of Fig. 8 , their

ivariate distributions are plotted in Figs. 11 and 12 to highlight their relationship.

Fig. 11. Bivariate pairwise plot. Fig. 12. Bivariate density plot.

The seventh attribute is ‘tld’ that gives the Top Level Domain Name of the webpage. This

ttribute is plotted in Fig. 13 . As depicted by the graph, this dataset contains webpages from

umerous domains.

Fig. 13. Plot of top level domain (‘tld’) attribute.

The eighth and ninth attributes of dataset are ‘who_is’ and ‘https’ respectively. Both are cat-

gorical attributes. The ‘who_is’ attribute gives completeness of domain registration records of

ebsites, which are held with domain registrars. The ‘https’ attribute tells us whether HTTP

ecure protocol is used by the webserver or not for delivering the webpage. These two attributes

re visualized in Figs. 14 and 15 below.

Fig. 14. Plot of who is registration (‘who_is’) attribute. Fig. 15. Plot of HTTPS (‘https’) attribute.

A.K. Singh / Data in Brief 32 (2020) 106304 7

The tenth attribute of the dataset is ‘content’. This attribute contains raw web content,

including JavaScript code, which has been filtered and cleaned to reduce size. The objective

of providing this attribute in the dataset is to enable further attribute extraction from this

dataset, if so desired in future research. Further, certain machine learning techniques, like Deep

Learning, can use this unstructured web content directly for experiments. Fig. 16 (a), (b) and (c)

below show the vectorized plot of this raw content.

Fig. 16. (a) Web content: sentiment score. (b) Web content: profanity score. (c) Web content: word count.

All attributes discussed above, reduced to three dimensions using Principal Component Anal-

ysis (PCA) are plotted below. The 3D scatter plot is given below in Fig. 17 , while the Tri Surface

plot is given in Fig. 18 . These plots show that the dataset is non-convex; however, it can be seg-

regated into classes. Thus, data scientists can apply various machine learning techniques to this

dataset.

Fig. 17. 3D plot of complete dataset. Fig. 18. Tri surface plot of complete dataset.

The objective of showing the above visualizations of dataset and its attributes is to enable

readers of this article to understand the dataset better, and accordingly utilize it for their re-

search. The detailed visualization, with more insight and analysis, along with the Python code

that has been used to generate it, is available alongside the dataset hosted on Mendeley reposi-

tory [3] . Also, the visualization output is hosted publicly on Kaggle for live experimentation [4] .

2. Experimental Design, Materials, and Methods

The dataset was collected by scraping websites across the globe on the Internet. MalCrawler

[1] , which is a special purpose focused crawler, was used for this task. MalCrawler [1] is a

preferred crawler for this task as it seeks more malicious websites than a random crawl by any

other generic web crawler. Further, it is a uniquely designed crawler that does not get entan-

gled in deep crawls or in dynamic websites. The data collected from crawl was then processed

to extract the attributes, which have been described in the previous section. The basic informa-

tion captured during the crawl included IP address, URL, and web content. Other attributes were

8 A.K. Singh / Data in Brief 32 (2020) 106304

t

d

e

g

p

w

hereafter extracted using customized Python Code. The choice of attributes extracted for this

ataset was based on its relevance in malicious webpage classification, as brought out by Singh

t al. in their paper [5] . The attribute ‘url_len’ was computed from ‘url’ using the Python code

iven in Fig. 19 .

Fig. 19. Code snippet for extracting ‘url_len.

The ‘geo_loc’ attribute, which gives out the country to which the IP Address belongs, is com-

uted from GeoIP Database [6] , as given by the code in Fig. 20 .

Fig. 20. Code snippet for computing ‘geo_loc.

Attribute ‘js_len’ is computed using the code given in Fig. 21 . The JavaScript code, enclosed

ithin ‘ < script >

∗∗∗∗∗< /script > ’ tags are identified and extracted using regex function.

Fig. 21. Code snippet for computing ‘js_len.

A.K. Singh / Data in Brief 32 (2020) 106304 9

Attribute ‘js_obf_len’ requires decoding of the obfuscated JavaScript code before computation.

This decoding of obfuscated code is carried out using ‘JavaScript Auto De-Obfuscator’ (JSADO)

[7] and Selenium Python library [8] . Code for de-obfuscation is available at [9] . Attribute ‘tld’ is

computed from URL using the Python ‘Tld’ library [10] . Code snippet for this extraction is given

below in Fig. 22 .

Fig. 22. Code snippet for extracting ‘tld’.

Attribute ‘who_is’ is computed with the WHOIS API [11] using the code snippet shown below

in Fig. 23 .

Fig. 23. Code snippet for computing ‘who_is.

Attribute ‘https’ is computed using the code shown in Fig. 24 below.

Fig. 24. Code snippet for computing ‘https’.

10 A.K. Singh / Data in Brief 32 (2020) 106304

t

M

E

D

s

A

A

t

S

d

R

Class labels for this dataset have been generated using the Google Safe Browsing API (refer

he sample code for generating labels below in Fig. 25).

Fig. 25. Code snippet for computing Class Labels.

The code used for generating and pre-processing this dataset has been hosted online on the

endeley repository [3] , and Kaggle [12] to facilitate future research.

thics Statement

The work did not involve any human subject or animal experiments.

eclaration of Competing Interest

The author declares that he has no known competing financial interests or personal relation-

hips which have, or could be perceived to have, influenced the work reported in this article.

cknowledgments

I thankfully acknowledge the help, support and guidance of Dr Navneet Goyal, Advanced Data

nalytics & Parallel Technologies Lab (ADAPT Lab), Department of Computer Science & Informa-

ion Systems, BITS Pilani , Pilani Campus.

upplementary Materials

Supplementary material associated with this article can be found in the online version at

oi: 10.1016/j.dib.2020.106304 .

eferences

[1] A.K. Singh, Navneet Goyal, "Malcrawler: a crawler for seeking and crawling malicious websites, in: International
Conference on Distributed Computing and Internet Technology, Springer, 2017, pp. 210–223. https://doi.org/10.1007/

978- 3- 319- 50472- 8 _ 17 .
[2] Google Safe Browsing API. [Online] Available at: https://developers.google.com/safe-browsing .

[3] Dataset, Visualization code and output, and pre-processing code are hosted on mendeley data. [Online] Available

at: http://dx.doi.org/10.17632/gdx3pkwp47.2 .
[4] Code for Visualization of Dataset hosted on Kaggle. [Online] Available at: https://www.kaggle.com/aksingh2411/

visualisation- of- webpages- dataset .
[5] A.K. Singh , N. Goyal , A comparison of machine learning attributes for detecting malicious websites, in: 11th Interna-

tional Conference on Communication Systems & Networks (COMSNETS 2019), Bengaluru, India, 2019, pp. 352–358 .

https://doi.org/10.13039/501100006464
https://doi.org/10.1016/j.dib.2020.106304
https://doi.org/10.1007/978-3-319-50472-8_17
https://developers.google.com/safe-browsing
http://dx.doi.org/10.17632/gdx3pkwp47.2
https://www.kaggle.com/aksingh2411/visualisation-of-webpages-dataset
http://refhub.elsevier.com/S2352-3409(20)31198-7/sbref0005
http://refhub.elsevier.com/S2352-3409(20)31198-7/sbref0005
http://refhub.elsevier.com/S2352-3409(20)31198-7/sbref0005

A.K. Singh / Data in Brief 32 (2020) 106304 11
[6] GeoIP Database. [Online] Available at: https://www.maxmind.com/en/geoip2-databases .

[7] JavaScript Auto De-Obfuscator (JSADO). [Online] Available at: https://github.com/lucianogiuseppe/JS-Auto-
DeObfuscator .

[8] Selenium for Python. [Online] Available at: https://pypi.org/project/selenium .

[9] Code for De-obfuscation. [Online] Available at: https://github.com/lucianogiuseppe/JS- Auto- DeObfuscator/blob/
master/jsado.py .

[10] Tld Library. [Online] Available at: https://pypi.org/project/tld .
[11] WHOIS API. [Online] Available at: https://whois.whoisxmlapi.com .

[12] Pre-processing code on Kaggle. [Online] Available at: https://www.kaggle.com/aksingh2411/sample-preprocessing-
of- web- content- dataset- prepa/ .

https://www.maxmind.com/en/geoip2-databases
https://github.com/lucianogiuseppe/JS-Auto-DeObfuscator
https://pypi.org/project/selenium
https://github.com/lucianogiuseppe/JS-Auto-DeObfuscator/blob/master/jsado.py
https://pypi.org/project/tld
https://whois.whoisxmlapi.com
https://www.kaggle.com/aksingh2411/sample-preprocessing-of-web-content-dataset-prepa/

	Malicious and Benign Webpages Dataset
	Specifications Table
	Value of the Data
	1 Data Description
	2 Experimental Design, Materials, and Methods
	Ethics Statement
	Declaration of Competing Interest
	Acknowledgments
	Supplementary Materials
	References

