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a b s t r a c t 

Web Security is a challenging task amidst ever rising threats 

on the Internet. With billions of websites active on Internet, 

and hackers evolving newer techniques to trap web users, 

machine learning offers promising techniques to detect ma- 

licious websites. The dataset described in this manuscript is 

meant for such machine learning based analysis of malicious 

and benign webpages. The data has been collected from In- 

ternet using a specialized focused web crawler named Mal- 

Crawler [1] . The dataset comprises of various extracted at- 

tributes, and also raw webpage content including JavaScript 

code. It supports both supervised and unsupervised learn- 

ing. For supervised learning, class labels for malicious and 

benign webpages have been added to the dataset using 

the Google Safe Browsing API. 1 The most relevant attributes 

within the scope have already been extracted and included 

in this dataset. However, the raw web content, including 

JavaScript code included in this dataset supports further at- 

tribute extraction, if so desired. Also, this raw content and 

code can be used as unstructured data input for text-based 

analytics. This dataset consists of data from approximately 

1.5 million webpages, which makes it suitable for deep 

E-mail address: aksingh2411@gmail.com 

1 Safe Browsing [2] is a Google service for checking whether a webpage is malicious or not. In this dataset, it has 

been used for assigning Class Labels (‘good’-benign/ ‘bad’-malicious). URL of the webpage is submitted using this API to 

Google Safe Browsing Service, which thereafter cross-checks with its blacklist, and replies whether it is malicious or not. 
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learning algorithms. This article also provides code snippets 

used for data extraction and its analysis. 

© 2020 The Author. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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Subject Artificial Intelligence 

Specific subject area Machine Learning using Web Content 

Type of data Dataset 

Tables 

Figures 

Graphs 

Python Code 

How data were 

acquired 

The data were collected from the Internet by scraping webpages using a 

customized focused web crawler named MalCrawler [1] . Thereafter, the raw data 

collected was processed using customized Python code to extract relevant features. 

Data format Raw (Unstructured web content and JavaScript) 

Analyzed 

Filtered 

Parameters for data 

collection 

Web content was pruned down to reduce size by removing less relevant content, 

viz., meta data, stop words, style data, HTML tags, etc. 

Obfuscated JavaScript code was de-obfuscated using a browser emulator. 

Description of data 

collection 

The raw data comprises of webpages. This data was collected from the Internet by 

scraping websites using MalCrawler [1] . MalCrawler is a focused crawler designed 

to seek more malicious webpages compared to a random web crawl. Scraped data 

was further processed using customized Python code to extract attributes. 

Class labels for malicious and benign webpages were added using the Google Safe 

Browsing API [2] . 

Data source location Data was gathered from Web between November 2019 and March 2020, with 

random web crawls carried out to ensure adequate global coverage. 

Data accessibility Data hosted in public repository. 

Repository name: Mendeley Data 

Data identification number: 10.17632/gdx3pkwp47.2 

Direct URL to data: http://dx.doi.org/10.17632/gdx3pkwp47.2 

alue of the Data 

• Useful for building machine learning models for carrying out varied analysis on webpages.

Both supervised and unsupervised learning models can be developed. It is pertinent to note

that presently no such comprehensive dataset exists in public domain to facilitate research

work in this field. 

• Will benefit all researchers who are pursuing research in the field of Web Security. Further,

this data can be used by Cyber Security firms or Anti-Virus companies to model their security

products. 

• Contains sufficient attributes for further insight and future work. Notwithstanding, this data

also includes processed raw web content, including JavaScript code, which can be used for

extraction of new attributes, if so required, to aid future research. 

• It has value, not only to Internet Security research community or Cyber Security firms, but

can also be used for policy development by Cyber Law Enforcement agencies. 

. Data Description 

The dataset was designed and prepared with the aim of classification of webpages as Mali-

ious or Benign. However, this dataset contains sufficient information that can be used for any

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.17632/gdx3pkwp47.2
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machine learning task related to webpage analysis. The attributes of this dataset are listed below

in Table 1 . 

Table 1 

Attributes of dataset. 

# Attribute name Data type Attribute description 

1. url String URL of the Webpage. 

2. ip_add String IP Address of the webpage. 

3. geo_loc Categorical String {Variable Bucket 

Size} 

Name of the country based on IP Address location. 

4. url_len Numerical {int16} Length of URL- count of characters in a URL. 

5. js_len Numerical {float64} Length of JavaScript code (in KB) in the webpage. 

6. js_obf_len Numerical {float64} Length of Obfuscated JavaScript (in KB) in the 

webpage. 

7. tld Categorical String {Variable Bucket 

Size} 

Top Level Domain of the webpage. 

8. who_is Categorical String {Value- 

incomplete/complete} 

Gives out whether the WHO IS information of the 

registered domain is complete or incomplete. 

9. https Categorical String {Value- yes/no} Gives out whether the website uses https or http 

protocol. 

10. content Text Raw Web Content of the Webpage. Includes filtered 

and processed text and JavaScript code. 

11. label Categorical String {Value- good/bad} Classification label categorizing the webpage class as 

Malicious (bad) or Benign (good). 

The dataset comprises of 1.564 million webpages having 11 attributes. These attributes were

selected based on their performance in predicting malicious and benign webpages in previous

researches [5] . A snapshot of the dataset is shown below in Fig. 1 . 

Fig. 1. Snapshot of the dataset. 

The last attribute in Table 1 is Class Label, which can be used for training the machine

learning algorithm. The two classes correspond to Malicious and Benign webpages. As the In-

ternet has more Benign pages than Malicious 2 webpages, a similar disproportion also reflects in
2 A webpage is malicious if it has a malware (Cross Site Scripting (XSS), Code injection or Drive by Download based 

malware), or exhibits behavior like phishing. 
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ur Dataset. As seen in the graphical representation of Class Labels in Fig. 2 , a majority of the

ebpages are benign. Thus, users of this dataset should appropriately factor this skew in class

istribution while training machine learning models. 

Fig. 2. Class label distribution- Malicious & Benign. 

First attribute of the dataset represents URL of the webpages. Visualization of ‘url’ attribute,

fter vectorizing it (using Profanity Score 3 ), is depicted in Fig. 3 . The second attribute ‘ip_add’

ives the IP Address of the Webserver hosting the webpage. Third attribute ‘geo_loc’ gives

he country to which the IP Address belongs. The IP Address distribution is plotted coun-

ry wise in Fig. 4 and Fig. 5 for Malicious and Benign webpages, respectively. As can be in-

erred from the maps in Fig. 4 and Fig. 5 , the dataset represents webpages from servers across

he globe. 

Fig. 3. URL plot (vectorized using profanity score). 

ig. 4. Geographic distribution of IP addresses - Malicious. Fig. 5. Geographic distribution of IP addresses - Benign. 
3 Profanity Score is a mathematical value given to a group of words based on their goodness/badness. A higher value 

ndicates that a greater number of bad/vulgar words were present. 
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The fourth, fifth and sixth attribute of the dataset are ‘url_len’, js_len’ and ‘js_obf_len’ respec-

tivley. All three are numerical attributes and their univariate plots are shown below in Fig. 6 . 

Fig 6. Univariate plots: URL length, JavaScript length and obfuscated JavaScript length. 

The trivariate distributions of these three numerical attributes are shown in Figs. 7–10 .

Fig. 7 gives the 3D plot, Fig. 8 shows correlation score 4 amongst these three numerical attributes,

Fig. 9 plots these three attributes against each other pairwise, and Fig. 10 plots all three together

as parallel coordinates. 

Fig. 7. Trivariate 3D plot. Fig. 8. Trivariate correlation matrix. 

Fig. 9. Trivariate pairwise plot. Fig. 10. Trivariate parallel coordinates plot. 
4 Correlation score gives the relationship between two attributes, with higher score depicting closer relationship. 
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As attributes ‘js_len’ and ‘js_obf_len’ have exhibited high correlation in matrix of Fig. 8 , their

ivariate distributions are plotted in Figs. 11 and 12 to highlight their relationship. 

Fig. 11. Bivariate pairwise plot. Fig. 12. Bivariate density plot. 

The seventh attribute is ‘tld’ that gives the Top Level Domain Name of the webpage. This

ttribute is plotted in Fig. 13 . As depicted by the graph, this dataset contains webpages from

umerous domains. 

Fig. 13. Plot of top level domain (‘tld’) attribute. 

The eighth and ninth attributes of dataset are ‘who_is’ and ‘https’ respectively. Both are cat-

gorical attributes. The ‘who_is’ attribute gives completeness of domain registration records of

ebsites, which are held with domain registrars. The ‘https’ attribute tells us whether HTTP

ecure protocol is used by the webserver or not for delivering the webpage. These two attributes

re visualized in Figs. 14 and 15 below. 

Fig. 14. Plot of who is registration (‘who_is’) attribute. Fig. 15. Plot of HTTPS (‘https’) attribute. 
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The tenth attribute of the dataset is ‘content’. This attribute contains raw web content,

including JavaScript code, which has been filtered and cleaned to reduce size. The objective

of providing this attribute in the dataset is to enable further attribute extraction from this

dataset, if so desired in future research. Further, certain machine learning techniques, like Deep

Learning, can use this unstructured web content directly for experiments. Fig. 16 (a), (b) and (c)

below show the vectorized plot of this raw content. 

Fig. 16. (a) Web content: sentiment score. (b) Web content: profanity score. (c) Web content: word count. 

All attributes discussed above, reduced to three dimensions using Principal Component Anal-

ysis (PCA) are plotted below. The 3D scatter plot is given below in Fig. 17 , while the Tri Surface

plot is given in Fig. 18 . These plots show that the dataset is non-convex; however, it can be seg-

regated into classes. Thus, data scientists can apply various machine learning techniques to this

dataset. 

Fig. 17. 3D plot of complete dataset. Fig. 18. Tri surface plot of complete dataset. 

The objective of showing the above visualizations of dataset and its attributes is to enable

readers of this article to understand the dataset better, and accordingly utilize it for their re-

search. The detailed visualization, with more insight and analysis, along with the Python code

that has been used to generate it, is available alongside the dataset hosted on Mendeley reposi-

tory [3] . Also, the visualization output is hosted publicly on Kaggle for live experimentation [4] . 

2. Experimental Design, Materials, and Methods 

The dataset was collected by scraping websites across the globe on the Internet. MalCrawler

[1] , which is a special purpose focused crawler, was used for this task. MalCrawler [1] is a

preferred crawler for this task as it seeks more malicious websites than a random crawl by any

other generic web crawler. Further, it is a uniquely designed crawler that does not get entan-

gled in deep crawls or in dynamic websites. The data collected from crawl was then processed

to extract the attributes, which have been described in the previous section. The basic informa-

tion captured during the crawl included IP address, URL, and web content. Other attributes were
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hereafter extracted using customized Python Code. The choice of attributes extracted for this

ataset was based on its relevance in malicious webpage classification, as brought out by Singh

t al. in their paper [5] . The attribute ‘url_len’ was computed from ‘url’ using the Python code

iven in Fig. 19 . 

Fig. 19. Code snippet for extracting ‘url_len. 

The ‘geo_loc’ attribute, which gives out the country to which the IP Address belongs, is com-

uted from GeoIP Database [6] , as given by the code in Fig. 20 . 

Fig. 20. Code snippet for computing ‘geo_loc. 

Attribute ‘js_len’ is computed using the code given in Fig. 21 . The JavaScript code, enclosed

ithin ‘ < script > 

∗∗∗∗∗< /script > ’ tags are identified and extracted using regex function. 

Fig. 21. Code snippet for computing ‘js_len. 
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Attribute ‘js_obf_len’ requires decoding of the obfuscated JavaScript code before computation.

This decoding of obfuscated code is carried out using ‘JavaScript Auto De-Obfuscator’ (JSADO)

[7] and Selenium Python library [8] . Code for de-obfuscation is available at [9] . Attribute ‘tld’ is

computed from URL using the Python ‘Tld’ library [10] . Code snippet for this extraction is given

below in Fig. 22 . 

Fig. 22. Code snippet for extracting ‘tld’. 

Attribute ‘who_is’ is computed with the WHOIS API [11] using the code snippet shown below

in Fig. 23 . 

Fig. 23. Code snippet for computing ‘who_is. 

Attribute ‘https’ is computed using the code shown in Fig. 24 below. 

Fig. 24. Code snippet for computing ‘https’. 
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Class labels for this dataset have been generated using the Google Safe Browsing API (refer

he sample code for generating labels below in Fig. 25 ). 

Fig. 25. Code snippet for computing Class Labels. 

The code used for generating and pre-processing this dataset has been hosted online on the

endeley repository [3] , and Kaggle [12] to facilitate future research. 
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