
Process-Driven Inference of Biological Network
Structure: Feasibility, Minimality, and Multiplicity
Guanyu Wang1, Yongwu Rong2, Hao Chen1, Carl Pearson1, Chenghang Du1, Rahul Simha3, Chen Zeng1,4*

1 Department of Physics, George Washington University, Washington, D.C., United States of America, 2 Department of Mathematics, George Washington University,

Washington, D.C., United States of America, 3 Department of Computer Science, George Washington University, Washington, D.C., United States of America,

4 Department of Physics, Huazhong University of Science and Technology, Wuhan, China

Abstract

A common problem in molecular biology is to use experimental data, such as microarray data, to infer knowledge about the
structure of interactions between important molecules in subsystems of the cell. By approximating the state of each
molecule as ‘‘on’’ or ‘‘off’’, it becomes possible to simplify the problem, and exploit the tools of Boolean analysis for such
inference. Amongst Boolean techniques, the process-driven approach has shown promise in being able to identify putative
network structures, as well as stability and modularity properties. This paper examines the process-driven approach more
formally, and makes four contributions about the computational complexity of the inference problem, under the ‘‘dominant
inhibition’’ assumption of molecular interactions. The first is a proof that the feasibility problem (does there exist a network
that explains the data?) can be solved in polynomial-time. Second, the minimality problem (what is the smallest network
that explains the data?) is shown to be NP-hard, and therefore unlikely to result in a polynomial-time algorithm. Third, a
simple polynomial-time heuristic is shown to produce near-minimal solutions, as demonstrated by simulation. Fourth, the
theoretical framework explains how multiplicity (the number of network solutions to realize a given biological process),
which can take exponential-time to compute, can instead be accurately estimated by a fast, polynomial-time heuristic.
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Introduction

A central theme in molecular biology is to understand the

complex network of interactions between biomolecules and how

those interactions contribute to higher-level biological function [1–

6]. This problem belongs to the broader field of network analysis:

graph theoretic representation of objects in physics, biology,

sociology, etc; and the categorization and analysis of graph

properties [7,8]. Many important network classes have been well

studied, such as random networks [9], small-world networks [10],

and scale-free networks [11]. Many important measures and

concepts have been defined to characterize network structures,

such as degree distribution [12], clustering coefficient [7], the

Estrada index [8], entropy-based molecular descriptors [13–16],

and network motif [17]. These structural approaches have been

used in studying biological networks. For example, topological

properties such as scale-free, power-law degree distribution [18]

have been found for biomolecular networks. The implications of

scale-freeness on the robustness and evolvability of genetic

regulatory networks have been studied in [19].

Against the backdrop of the success of structural network

analysis is the disappointing reality that for many subsystems in the

cell, very little is known about the network structure. Instead, what

is observable from data is whether or not the molecules are active

at a given moment when a ‘‘snapshot’’ (such as a microarray

sample) is taken. Given a collection of such snapshots that

represent the dynamics of the system, one major goal is to address

the network inference problem: what possible network structures could

have resulted in the given dynamics? The network inference

problem is made challenging because of the variety of molecule-to-

molecule interactions and by the sheer number of molecules in

even small subsystems of the larger cell. As reviewed in [20], many

important inference approaches have recently emerged, which

include clustering-based (e.g., [21]), Boolean-based (e.g., [22]),

Bayesian-based (e.g., [23]), in silico-based (e.g., [20]), and

information-theory-based methods. For example, the algorithm

C3NET, based on the estimation of mutual information, is a

successful example of information-theory-based methods [24].

Boolean-based analysis is relatively simple and might be suitable to

handle large-scale data [25–27]. In [28], the authors investigated

the effects of discretisation methods, biological constraints, and

stringency of Boolean function assignment on the performance of

Boolean network, by using performance indices such as accuracy,

precision, specificity and sensitivity. These performance indices

indicate the correctness of the inferred network based upon the

matches between the inference and reference networks. For

example, sensitivity was defined as TP=(TPzFN), where TP
(true positive) is the number of network connections that were

correctly predicted and FN (false negative) is the number of

network connections that were deemed as disconnected. They

found that biological constraints have pivotal influence on the

network performance over the other factors.
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In [29], the Boolean network inference problem has been made

computationally tractable by some simplifying assumptions. The

goal of this paper is to examine this computational complexity

more formally. In particular, we show that the existence problem

(is there a network that explains the dynamics?) can be solved

quickly, in polynomial-time whereas the minimality problem (what

is the smallest network that explains the dynamics?) is NP-hard.

Fortunately, a simple heuristic, which while not guaranteed to find

the minimal network, does appear to find near-minimal networks

very efficiently. Furthermore, our formulation also sheds light on

the exponential counting problem of multiplicity (also called

designability by some authors), the number of networks that explain

a given dynamics.

There are two simplifying assumptions we make in this paper.

One of these is the Boolean molecule-state assumption adopted by

most prior work in the literature on Boolean-network models

[1,30–32]: at any given moment, a given biomolecule is either

‘‘on’’ (active or highly-expressed) or ‘‘off’’ (inactive or inhibited),

and molecules stimulate or inhibit other molecules. The successive

application of stimulatory or inhibitory interaction results in the

next state for each molecule, and in this manner, the system

evolves from state to state. The second assumption we make is the

dominant inhibition assumption [30,33,34], in which any competition

between inhibition and stimulation results in inhibition. These two

assumptions allow an analysis that is entirely Boolean in nature

and let us, after some algebraic reduction, exploit fast algorithms

for the class of Boolean expressions called Horn formulas. The

satisfiability of a Horn formula is known to be determinable in

polynomial-time [35,36].

The complexity results in this paper imply that large systems

can be solved efficiently, in polynomial-time, when the goal is to

obtain solution networks or to obtain a characterization of the

class of network solutions. On the other hand, when the goal is to

find the smallest network, the problem remains hard; however, a

simple heuristic approach appears to work well in practice

although no theoretical guarantees can be made about the

minimality of the heuristic solutions. In either case, both the

existence problem and the minimization problem reveal useful

characteristics of the network. These include the network

‘‘backbone,’’ a list of edges that must be present in all network

solutions, as well as additional groups of edges called network

modules or network motifs that are thought to be an important

organizing principle for biological networks [37].

The results of the paper are organized as follows. In Section 1,

we introduce the Boolean network model and process-driven

analysis. In Section 2, we study the feasibility problem and its

applications. In Section 3, we discuss the computational complex-

ity of finding a minimal network and develop an algorithm to find

an approximated minimal network. In Section 4, we develop a

polynomial-time algorithm to estimate multiplicity. Technical

details and illustrative examples are further provided in File S1.

Results

1. Boolean Network Model
The starting point for our model is a collection of N interacting

molecules, each of which at any given time is modeled as either

‘‘on’’ or ‘‘off.’’ Let si(t)[f0,1g denote the state of molecule i and

S(t)~(s1(t), . . . ,sN (t)) the state of the system at time t. Here, the

change of state is assumed to occur over a large enough time

interval for biochemical reactions to complete, and thus time is

assumed to be discrete: t~0,1,2,, . . . T{1. A sequence of such

system states, S�~S(0),S(1), . . . ,S(T{1) is what we term a

Boolean process. Intuitively, in biological terms, a Boolean process

corresponds to discretized time-course data. Thus, a sequence of

microarray snapshots taken for a system of molecules over a time

course can be converted into this Boolean form by noting which

molecules are active and which are not.

In [3], Li et al. introduced a specific type of Boolean network

model to determine the next state of a particular node i from the

current state:

si tz1ð Þ~

1
P
j=i

ajisj(t)w0

0
P
j=i

ajisj(t)v0

0
P
j=i

ajisj(t)~0 aii~{1

si(t)
P
j=i

ajisj(t)~0 aii~0 ,

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

where j ranges over 1,2, � � � ,Nf g. Each non-diagonal entry, aji

(j=i), takes the value {c, 1, or 0, depending on whether node j
inhibits, stimulates, or does not interact with, node i. The diagonal

entries, aii, take the value {1 (degradation) or 0 (no degradation).

The inclusion of degradation allows the model to determine

whether degradation plays an important role in the dynamics.

Note: we have not explicitly included the case that node i is self-

activating (aii~1), because a self-activating node can be replaced

by two different nodes with one activating the other.

The parameter c models the relative dominance of inhibition

over stimulation. Since we assume inhibition dominates stimula-

tion for most biomolecular interactions, c§1 in our model.

Simulation results reported in [29] show that for the budding yeast

network, the cases c~3,4,5, � � � ,? produce exactly the same

dynamics and are only slightly different from the cases c~1,2; for

the fission yeast network, the cases c~2,3,4, � � � ,? produce

exactly the same dynamics and are only slightly different from the

case c~1. We therefore follow the ‘‘dominant inhibition’’

assumption [30,33,34] by setting c~?. This assumption renders

a simpler, purely logical representation of Eq. (1), namely:

si tz1ð Þ~
X
j=i

sj tð Þgji

� �
zsi tð Þ�rrii

 !
P
j=i

sj tð Þrji

� �
, ð2Þ

where addition represents the Boolean operator OR, multiplica-

tion represents AND, and the bar on a variable represents NOT.

The Boolean variable rji represents a putative inhibitory edge

(conventionally drawn in red color) from node j to node i. The

Boolean variable gji represents a putative stimulatory edge

(conventionally drawn in green color) from node j to node i.
Note that each r or g is modulated by an s-variable because edge ji
is active only when sj(t)~1. For Eq. (2), one additional constraint,

rjigji~0, is imposed to exclude solutions where an edge interaction

is both inhibitory and stimulatory, a possibility absent in Eq. (1).

However, under ‘‘dominant inhibition’’ condition, such a solution

with an edge being both inhibitory and stimulatory produces

exactly the same dynamics as if the edge were only inhibitory

because the inhibition dominates over the stimulation. Thus this

constraint will only come into play in Section 4 on solution

multiplicity, and the Boolean variables rji and gji will be treated as

independent for the rest of the paper.

To understand Eq. (2), consider just one of the four possible

transitions for node i at some time step t, for example, 1?1. This

transition requires either at least one active stimulatory edge, or no

active self degradation if no active stimulatory edge is present,

and no active inhibitory edge overall. These three conditions

Process-Driven Inference of Bio-Network Structure
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correspond precisely to the three terms
P

j=i sj tð Þgji

� �
, si tð Þ�rrii, and

Pj=i sj tð Þrji

� �
in Eq. (2) respectively. To prove Eq. (2), one

similarly completes the analysis for the remaining three possible

transitions of 1?0, 0?1, and 0?0.

2. Feasibility: Does a Solution Exist?
2.1. Simplification. Equation (2), while compact, is some-

what inconvenient for determining the feasibility of a Boolean

process. By a simplification procedure (see File S1 A), Eq. (2) is

instead converted into four equations each corresponding to a type

of state transition of node i:

0?1 :
X

j[ht(i)

gji~1, ð3Þ

1?1 :
X

j[ht(i)

gjiz�rrii~1, ð4Þ

0?0 : P
j[ht(i)

gjiz
X

j[ht(i)\H

rji~1, ð5Þ

1?0 : rii P
j[ht(i)

gjiz
X

j[ht(i)\H

rji~1, ð6Þ

where ht(i)~ jDsj tð Þ~1; j=i
� �

represents the set of nodes other

than i that are active at time t, H~ jDrji~0; j=i
� �

represents the

set of nodes that are found not inhibiting node i (see File S1 A as to

how these nodes are identified), and ht(i)\H represents the set of

nodes in ht(i) but with the ones in H excluded.

2.2. Conjunctive normal form. Equations (3)–(6) represent

a Boolean satisfiability (SAT) problem – the problem of deciding

whether a setting of variables rji,gji

� �
can satisfy a Boolean

statement. The general satisfiability problem is usually given in the

so-called Conjunctive Normal Form (CNF) [38]. A CNF formula

or statement consists of a number of clauses in conjunction, and

where each clause features variables or their complements with the

OR operator. While a solution to the satisfiability problem of a

general CNF statement is NP-complete [39], there are some types

of CNF that lend themselves to a polynomial solution: a CNF in

Horn-clause form can be solved in polynomial time [35,36].

First, note that the first two equations above are already in the

form of CNF clauses. The other two are not because they feature

products that are not allowed inside clauses. However, they can be

multiplied out to create CNF clauses as follows. Treating the entire

sum of rji’s with the symbol x, each equation is of the form.

y1y2 � � � ynzx~(y1zx)(y2zx) � � � (ynzx), ð7Þ

where n~Dht(i)D. Then, with yk~gj(k),i (for k~1,2, � � � ,n) and

x~
P

j[ht(i)\H rji, one has

P
j[ht(i)

gjiz
X

k[ht(i)\H

rki ~ P
j[ht(i)

gjiz
X

k[ht(i)\H

rki

 !
: ð8Þ

Note that the conversion takes nvN steps, which is clearly

polynomial. In summary, we have the following new forms of

equations:

0?1 :
X

j[ht(i)

gji~1, ð9Þ

1?1 :
X

j[ht(i)

gjiz�rrii~1, ð10Þ

s?0 : gjiz
X

j[ht(i)\H

rji~1, ð11Þ

1?0 : riiz
X

j[ht(i)\H

rji~1, ð12Þ

where s can be either 0 or 1.

2.3. Horn formula. With the equations transformed into the

conjunctive normal form, one can apply a SAT algorithm to

determine whether the given Boolean process is feasible or not.

Although a general SAT problem is NP-complete [40], some

special class of SAT problem can be solved in polynomial time.

For example, the 2-SAT problem (the number of literals in a

clause is limited to 2), is a polynomial time problem [41]. Another

important example, relevant to our case, is the HORNSAT

problem.

In mathematical logic, a Horn clause is a clause with at most

one positive literal. The positive literal is called the head and the

negative literals form the body of the clause. The Horn clause form

is named after the logician Alfred Horn, who first pointed out the

significance of such clauses in [42]. Indeed, Horn clause forms

have played a basic role in logic programming and are important

for constructive logic [43–45]. A Horn formula is a propositional

formula formed by the conjunction of Horn clauses. In formal

logic, Horn-satisfiability, or HORNSAT, is the problem of

deciding whether a given Horn formula is satisfiable.

Because HORNSAT can be determined in polynomial-time

[35,36,45], this means that the network existence problem (for a

given dynamics) can be solved in polynomial-time, as discussed

below.

We now show how to convert the particular CNF formula for

our Boolean network into a Horn formula. First, recall that we

have formed a set of nodes H~ jDrji~0; j=i
� �

. In the following,

we let lowercase letters a,b,c, � � � denote nodes belonging to H;

leave node i as it is; and let uppercase letters A,B,C, � � � denote the

other nodes. With these new notations, the left hand side of Eqs

(9)–(12) can be represented by the following clause forms:

gaizgbizgciz � � � , ð13Þ

�rriizgaizgbizgciz � � � , ð14Þ

�ggdizrAizrBizrCiz � � � , ð15Þ

�ggDizrAizrBizrCiz � � � , ð16Þ

Process-Driven Inference of Bio-Network Structure
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riizrAizrBizrCiz � � � , ð17Þ

where expressions (13), (14), and (17) are from Eqs. (9), (10), and

(12), respectively; expressions (15) and (16) are from Eq. (11). Note

that the used subscripts do not correspond to the actual nodes;

they only indicate to which set (H or not H) the nodes belong. For

example, the subscript a in Eq. (13) does not necessarily equal the

subscript a in Eq. (14), and similarly the subscript D in Eq. (16) is

allowed to equal the subscript A in the same equation.

For the nodes j~a,b,c, � � �, we define new variables.

Gji~�ggji

to replace gji. That is, we shall use the four variables rji, �rrji, Gji,

and Gji for j~a,b,c, � � �. For the nodes j~A,B,C, � � �, we define

new variables

Rji~�rrji

to replace rji. That is, we shall use the four variables Rji, Rji, gji,

and gji for j~A,B,C, � � �. The clauses (13)–(17) now turn into

GaizGbizGciz � � � , ð18Þ

�rriizGaizGbizGciz � � � , ð19Þ

GdizRAizRBizRCiz � � � , ð20Þ

�ggDizRAizRBizRCiz � � � , ð21Þ

riizRAizRBizRCiz � � � , ð22Þ

which are in Horn-clause form.

To summarize, the simplification (to CNF) and conversion steps

result in a Horn formula that is solvable in polynomial time.

Theorem: Given a Boolean process, the feasibility problem (the problem

of determining whether or not the process can be realized by a network based on

the model Eq. (2)), can be solved in polynomial time.

File S1 B and C provide two examples for CNF and Horn

formula conversions. A different proof of the above theorem using

Eq. (2) directly is also given in File S1 D.

3. Finding a Minimal Network
Minimality is an important concept in studying genetic networks

[46,47], biochemical networks [48], and cell signaling networks

[49,50], for example. In the context of this paper, it refers to

making the smallest number of positive assignments (rji~1 or

gji~1) necessary for the Boolean equations to be satisfied. Because

each such an assignment corresponds to an interaction edge in the

biomolecular network, a minimal number of positive assignments

corresponds to a minimal network –– a network that can realize

the same biological function but has the smallest number of edges

[51]. For example, the budding yeast cell cycle process in [29] can

be produced by 3:7|1030 networks, according to the present

model Eq. (2). Among these network solutions, there are 40,300

networks that only have 23 edges. The remaining networks all

have more than 23 edges. The 40,300 networks are therefore

minimal networks because they have the smallest number of edges.

The minimality of the budding yeast cell cycle process is therefore

23.

It is important to identify these minimal networks. First, the

smallest network that ‘‘explains’’ a biological process helps identify

the core relationships between molecules that must be present for the

biological process to function. Second, in a real biological network,

the remaining edges beyond the minimal network often confer

some functionality orthogonal to the biological process. For

example, for the cell-cycle process, the non-minimal edges were

found to confer stability properties [29]. Therefore, identifying

minimal networks may well be the key to understanding the

important elements of a biological process.

In general, a minimal network solution is difficult to find by

chance, because the minimal solutions occupy only a tiny fraction

of the whole solution space (e.g., 40,320 out of 3:7|1030 for the

case of budding yeast cell cycle process). Perhaps for this reason, a

large number of algorithms have been developed in the area of

learning sparse Boolean functions [48,52–55]. These algorithms

usually take minimality as a constraint in learning.

From the computational complexity viewpoint of this paper,

one would like to know whether it is even computationally feasible

to compute a minimal solution in reasonable time. Some early

studies [25,27,56] have considered and established the connection

between the minimal Boolean network inference problem and the

minimal set cover (MSC) problem. For the present Boolean model,

we show that the minimal network problem is of equal complexity

to the MSC problem, which is well-known to be NP-complete.

The comparison also enables the development of a fast heuristic

that, when evaluated with randomly-generated processes, produc-

es near-minimal solutions.

3.1. Minimal set covering (the MSC problem). The

Minimal Set Cover (MSC) problem is a classical question in

computer science and complexity theory [57,58]. It is a problem

‘‘whose study has led to the development of fundamental

techniques for the entire field’’ of approximation algorithms

[59], and it was one of Karp’s 21 core NP-complete problems

shown to be NP-complete in his landmark 1972 paper [60]. It can

be informally described as follows. Given a collection of M sets

S1, . . . ,SM , each is a subset of the integers f0, . . . ,K{1g, what is

the minimum number of sets whose union contains all the integers

0, . . . ,K{1? For example, if the collection of sets (M~8,K~4) is:

fS1~f1g,S2~f0,1g,S3~f1,3g,S4~f0g,S5~f0,2g,S6~f2,3g,
S7~f2g,S8~f3gg. Note that sets S1,S3,S5,S7 together cover the

elements, that is, S1|S3|S5|S7~ 0,1,2,3f g. However, it is a

cover of size 4. On the other hand, S2~f0,1g and S6~f2,3g also

form a cover: S2|S6~f0,1,2,3g. No single set contains all the

elements, and thus the minimal set cover is of size 2.

Next, we explain how an MSC problem can be expressed in

Boolean form, using the example above. Consider the Boolean

equations.

Element 0 : x2zx4zx5~1,

Element 1 : x1zx2zx3~1,

Element 2 : x5zx6zx7~1,

Process-Driven Inference of Bio-Network Structure
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Element 3 : x3zx6zx8~1: ð23Þ

Here, the variable xj~1 if set Sj is part of a set cover. Thus, the

first line above says that at least one of the sets S2,S4,S5 needs to

be in the cover in order for element 0 to be included. Since all

elements need to be included, a solution to the CNF expression.

(x2zx4zx5)(x1zx2zx3)(x5zx6zx7)(x3zx6zx8) ~ 1

results in a cover. For a minimal cover, we want as few variables

xj~1 as possible.

3.2. The minimal-network problem is at least as hard as

the MSC problem. In the standard approach [58], to

demonstrate that problem A is hard, one shows that a known

hard problem B can be transformed into A. In this manner, a

putative fast (polynomial-time) algorithm for A must also be able

to solve B quickly and since B is known to be hard, therefore A

must be hard. The transformation from B to A needs to occur in

polynomial-time so that the entire process takes polynomial-time.

We now show how an arbitrary instance of an MSC problem

can be transformed into an equivalent minimal-network problem

in polynomial time so that a putative fast algorithm for the

minimal network problem would have to solve the MSC problem

in polynomial-time. The transformation is best explained via an

example – we use the example MSC problem above in Eq. (23).

Figure 1. The transformation of a minimal set covering problem into the problem of finding a minimal biological network for a
given Boolean process. (A) A Boolean process which does not always have a network solution. (B) The Boolean equations for network edges
incoming to node i, according to the process in (A). (C) A Boolean process that is guaranteed to have a network solution. (D) The Boolean equations
for network edges incoming to node i, according to the process in (C).
doi:10.1371/journal.pone.0040330.g001

Process-Driven Inference of Bio-Network Structure
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We need to find a feasible Boolean biological process whose

equations match Eq. (23).

Figure 1(A) shows a process with Mz1~9 nodes and 2K~8
time steps 0,1, . . . ,2K{1. The Mz1ð Þ-th column is for a

molecule called i, whose transitions will define the desired Boolean

process. At time t~2k (k~0,1, � � � ,K{1), we set sj~1 for those j

appearing in the equation for element k. For example, the

equation for set element 3 is x3zx6zx8~1; we therefore set

s3~s6~s8~1 in the row 6 of the process. As for node i, we set

si~1 at rows t~2kz1 (k~0,1, � � � ,K{1).

Next, consider the Boolean equations for node i, shown in

Fig. 1(B). The first four equations are exactly Eq. (23) after

replacing gji with xj . Notice that in the column for i, whenever

node i makes a 0?1 transition, the other nodes in the row that are

‘‘on’’ cannot have an inhibitory edge. Thus, rji~0 for these nodes.

Similarly, the only way in which the 1?0 transition can occur is

due to self-degradation, i.e., rii~1.

At first, it appears that this transformation is sufficient.

However, notice that nodes 1, . . . ,8 need to make a 0?1
transition in alternate rows. Unfortunately, the transitions rely

solely on the activations from node i, which would result in

conflicts. Figure 1(A) indicates that node 3 makes a 0?1 transition

at t~5, and therefore there must be a stimulatory edge from node

i to node 3 (gi3~1). Therefore, this stimulatory edge must have

activated node 3 at time t~3 (i.e., s3 4ð Þ~1), which contradicts the

Boolean process and which shows s3 4ð Þ~0.

Based on the process in Fig. 1(A), we construct a new process in

Fig. 1(C) whose feasibility is guaranteed. The process has K{1
additional nodes, denoted by Ak (for k~0,1, � � � ,K{2). The node

Ak is responsible solely for all the activations at time t~2kz1.

File S1 E explains why the resulting process is always feasible.

If the minimal network problem for the Boolean process in

Fig. 1(C) were solved in polynomial-time, then the equations in

Fig. 1(D) and consequentially Eq. (23) could be solved in

polynomial-time. This would imply that the MSC problem can

be solved in polynomial-time and that the NP = P problem is

solved in the affirmative. Therefore, it is unlikely that there is a

polynomial-time algorithm to find a minimal network.

Theorem: Given a Boolean process, the problem of finding a minimal

network (a network with the smallest number of edges) to realize it, based on

the model Eq. (2), is NP-complete.

3.3. A heuristic algorithm for finding an approximated

minimal network. While the association with the cover

problem proved that the problem is hard, it also suggests a

heuristic. It is known that a simple ‘‘greedy’’ algorithm for the set-

cover problem is effective in practice and in fact can be shown to

result in covers within log (N) of optimal [61]. The greedy

algorithm for set-cover works as follows: first select the set that

covers the most elements. Then, mark the covered elements as

‘‘covered.’’ Then, select the set that covers the most uncovered

elements, and repeat in this fashion. The greedy algorithm was

used in various biological fields including the inference of sparse

Boolean functions [56,62–64].

For our minimal network problem, we first apply the greedy

algorithm to only the equations containing stimulatory edges,

which approximately identifies a set of minimal stimulatory edges.

The results simplify the remaining equations, which contain only

inhibitory edges. By applying the greedy algorithm again, an

approximated minimal network is found. We consider separately

the two cases of rii~1 and rii~0. The algorithm is described as

follows.

1. // Start with the first node

i r 1

2. // The case rii = 1

rii r 1

Use the greedy algorithm to find a set of stimulatory edges

Use the greedy algorithm to find a set of inhibitory edges

3. // The case rii = 0

rii r 0

Use the greedy algorithm to find a set of stimulatory edges

Use the greedy algorithm to find a set of inhibitory edges

4. Choose the smaller edge set from steps 2 and 3 above for node i

5. // Move onto the next node

i r i + 1

if i . N goto 6

else goto 2

endif

6. Stop

3.4. Validation of the algorithm for finding an

approximated minimal network. To test the efficacy of the

greedy heuristic, we constructed 90,635 feasible processes, each

with N~11 and T~12. For each of these 90,635 processes, we

used the algorithm to seek an approximated minimal network. As

a comparison, we also compute the actual minimal networks, by

time-consuming brute force enumerations, whereby we can assess

how far off from optimal the heuristic’s solutions are. The results

are shown in Fig. 2(A). One sees that the approximated minimal

network for each of the 68,058 processes (75.1% of total) is a

genuine minimal network. The approximated minimal network

for each of 18,862 processes (20.8% of total) has only one more

edge than the genuine minimal network. Only 4% processes have

two or more edges than minimal.

We also constructed 21,000 feasible processes each with N~15
and T~16. The results for these are shown in Fig. 2(B). One sees

that the approximated minimal network for each of the 9030

processes (43% of total) is a genuine minimal network. The

approximated minimal network for each of the 7329 processes

(34.9% of total) has one more edge than the genuine minimal

network. Only 22% processes give deviations more than one edge.

We also studied many N~9 and T~10 processes, with the results

presenting in Fig. 2(C), together with the other results.

The above numerical results indicate that the heuristic

algorithm is very accurate, with high confidence for at most one

additional edge than optimal.

File S1 F and G further provide examples of finding minimal

networks.

4. Designability: How Many Solutions?
We consider one more computational aspect of Boolean

networks: computing the designability of a biological process. The

designability of a process is the number of network solutions, that

is, the total number of networks that can produce a given process.

A process with high designability is likely to be more robust and

therefore survive natural selection. If a biological process has only

one network solution, for example, then it is unlikely that random

mutation would find that network. In other words, processes with

high designability are more likely to occur (or be discovered by

evolution) than low-designability ones [5,65].

Unfortunately, computing the designability of a process appears

to take exponential time, a result that is not unexpected because

the problem is similar to many such combinatorial enumeration
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problems [66]. Instead, we seek a fast approximate algorithm. Our

approach is to use a type of logistic regression on certain features

of a problem. These features are obtained during the simplification

procedure described earlier in the feasibility solution.

During simplification, it is easy to obtain the following: xr, the

number of inhibitory edges (rji~1); xg, the number of stimulatory

edges (gji~1); xr, the number of edges that cannot be inhibitory

(�rrji~1); xg, the number of edges that cannot be stimulatory (�ggji~1);

x0, the number of nodes that cannot connect to node i (�rrji�ggji~1);

x1, the number of nodes that can be associated with node i in

arbitrary way (inhibitory, stimulatory, or ‘‘no connection’’).

We now assume that the approximated log-designability

(denoted by D) is a linear function of xk:
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Figure 2. Validation of a heuristic algorithm for finding an approximated minimal network. A large number of feasible Boolean processes
were generated. For each process, an approximated minimal network was determined by the heuristic algorithm; the actual minimal network is also
computed by time-consuming enumeration. The histogram shows how the number of processes spread over the deviation of estimation (actual
minimality minus estimated minimality). (A) 90,635 processes with N~11 and T~12. (B) 21,000 processes with N~15 and T~16. (C) Processes with
N~9 and T~10 as compared with other processes.
doi:10.1371/journal.pone.0040330.g002
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ln D~bz
X

k

akxk, ð24Þ

where k[ r,g,�rr,�gg,0,1f g, b and ak are unknown coefficients. The

coefficients can be estimated by minimizing the difference between

the approximated designability D and the exact designability D0 for

some test cases. To this end, we generate 800,000 random Boolean

process, each of which has N~11 and T~12. For each process, we

calculate the exact designability D0 and the values of xk, for

k[ r,g,�rr,�gg,0,1f g. We then perform a least-square data fitting to

obtain the values of the coefficients. The results are: b~64:0796,

ar~{0:458234, ag~{0:302389, ar~{0:0477189, ag~

{0:0368327, a0~{0:572591, and a1~0:398622.

In Fig. (3), each dot represents one Boolean process; the x and y
axes represent D0 and D, respectively. One sees that the fitting is

successful. The dots locate along the diagonal with only small

deviations. Therefore, we now have an empirical formula to

estimate designability with sensible accuracy. Although it is not

very accurate to assume N- and T- independent regression

coefficients and use them to estimate designability, the estimation

can still be very useful because it becomes very difficult to compute

the exact designability for large N and T.

Discussion

Biological systems are generally large, involving many compli-

cated molecular interactions among numerous working compo-

nents. In this case, a ‘‘coarse grained’’ description such as a

Boolean network model is often a useful step towards understand-

ing a system. Furthermore, a study of general Boolean networks

may help elucidate network design principles in biological systems.

The Boolean framework in this paper results in a single analytical

equation (Eq. 2) to integrate the information about network

structure (edge variables) and biological process (state variables).

This has rendered the structure-function relationship tractable.

When structural information is known, one can use Eq. (2) to study

the dynamics and learn the biological function. When the process

is known, one can use Eq. (2) to characterize the network space

constrained by the process. When both information are partially

known, Eq. (2) can still help enumerate the structure-function

combinations.

In this paper, we have answered some key questions about the

computational complexity of the network inference problem in

Boolean networks that feature dominant inhibition. The first is the

feasibility problem: is the solution space null? The second is the

minimal network problem: what are the fundamental building

blocks of the space, namely those networks with the least number

of edges? The third is the designability problem: how big is the

solution space if it is not null?

Fast algorithms provide the benefit of being able to study many

types of processes and to explore the statistics of processes. For

example, one is interested in what general features of a process

make a process a biological one suited to evolution. Is it the case,

for example, that a small minimal network acts as the core with

additional edges accumulated during evolution, and does a large

multiplicity help maintain stability against mutation?

Beyond a rigorous classification of problem complexity, the

present study also offers accurate heuristic algorithms that run in

polynomial time. This will be crucial for handling both large-scale

datasets and the inevitable statistical noise. The former requires a

well-controlled scaling as observed in these polynomial heuristics

and the latter requires iterative applications of these algorithms for

noise sampling on a trial-and-error basis.
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