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Abstract

Background: Humans and other organisms are equipped with a set of responses that can prevent damage from
exposure to a multitude of endogenous and environmental stressors. If these stress responses are overwhelmed,
this can result in pathogenesis of diseases, which is reflected by an increased development of, e.g., pulmonary and
cardiac diseases in humans exposed to chronic levels of environmental stress, including inhaled cigarette smoke
(CS). Systems biology data sets (e.g., transcriptomics, phosphoproteomics, metabolomics) could enable
comprehensive investigation of the biological impact of these stressors. However, detailed mechanistic networks
are needed to determine which specific pathways are activated in response to different stressors and to drive the
qualitative and eventually quantitative assessment of these data. A current limiting step in this process is the
availability of detailed mechanistic networks that can be used as an analytical substrate.

Results: We have built a detailed network model that captures the biology underlying the physiological cellular
response to endogenous and exogenous stressors in non-diseased mammalian pulmonary and cardiovascular cells.
The contents of the network model reflect several diverse areas of signaling, including oxidative stress, hypoxia,
shear stress, endoplasmic reticulum stress, and xenobiotic stress, that are elicited in response to common
pulmonary and cardiovascular stressors. We then tested the ability of the network model to identify the
mechanisms that are activated in response to CS, a broad inducer of cellular stress. Using transcriptomic data from
the lungs of mice exposed to CS, the network model identified a robust increase in the oxidative stress response,
largely mediated by the anti-oxidant NRF2 pathways, consistent with previous reports on the impact of CS
exposure in the mammalian lung.

Conclusions: The results presented here describe the construction of a cellular stress network model and its
application towards the analysis of environmental stress using transcriptomic data. The proof-of-principle analysis
described here, coupled with the future development of additional network models covering distinct areas of
biology, will help to further clarify the integrated biological responses elicited by complex environmental stressors
such as CS, in pulmonary and cardiovascular cells.

Background
The human body is constantly exposed to endogenous
(e.g., mitochondrial reactive oxygen species (ROS) gen-
eration, unfolded protein response) and environmental
stress. Stressors such as combustion products (diesel

exhaust, carbon monoxide, nitrogen oxides, cigarette
smoke), particulate matter, ozone, exert a daily challenge
to our body’s cellular defenses, in particular within the
pulmonary and cardiovascular system [1,2]. Lung epithe-
lial cells directly interface with the external environment
and are often the first cells to be exposed to environ-
mental stress [3,4]. While not facing the external envir-
onment directly, cells of the cardiovascular system are
constantly exposed to the stressors that circulate in the
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bloodstream [5-7]. It is therefore not surprising that epi-
demiological studies have linked exposure to environ-
mental stress to increased incidence of cardiovascular
disease over the past decades [8-10]. Thus, further
investigation into the mechanistic underpinnings of the
response to different types of cellular stress is an impor-
tant area of human health research [11-14].
One of the central challenges faced by contemporary

investigators is how to comprehensively assess the biolo-
gical impact of complex processes such as the cellular
stress response at a molecular level, in order to under-
stand their influence on disease susceptibility and pro-
gression. Computational approaches are increasingly
being applied to analyze complex biological systems like
the cellular stress response, including investigations into
the role of key transcription factors such as NRF2 (med-
iating the antioxidative stress response), or identifying
potential mechanisms for how stress can lead to diseases
such as asthma [15,16]. Large scale, systems biology
measurements (e.g., transcriptomics, proteomics, and
metabolomics) can be applied to molecular regulatory
network models in an effort to understand the underly-
ing cellular response to biological insults. The field of
pulmonary and cardiovascular biology has been quick to
adopt systems biology approaches, using transcriptomic
data to investigate the mechanistic basis behind the
development of complex, multi-factorial diseases such as
atherosclerosis and lung cancer [17-20], particularly
with respect to the contribution of CS.
With a view to developing a Systems biology-based

risk assessment approach for tobacco products, we are
building a series of biological network models that
reflect smoking-related molecular changes in the target
tissues of the lung and the cardiovascular system.
Detailed mechanistic networks are needed to drive the
qualitative and eventually quantitative assessment of
product-related data (conventional CS and harm
reduced next generation products) to determine which
pathways are activated in response to such exposures,
and to measure the biological impact on in vitro and in
vivo systems.
Physiological stress responses are diverse, depending

on the type of stressor (chemical or physical), the tissue/
cell types affected, and the duration and/or dose of the
stressor. Therefore, in order to understand the biological
pathways that are affected in response to a particular
stressor in a specific physiological context, the availabil-
ity of comprehensive network models that causally relate
the relevant nodes (biological entities or processes) and
edges (relationships between nodes) are needed to inte-
grate systems biology data with the current knowledge
of biological pathways. Ideally, the impact of environ-
mental stress on all major cellular processes, e.g., prolif-
eration, inflammatory processes, and apoptosis, can be

evaluated by integrating multiple biological network
models and systems biology data sets, using appropriate
computational approaches. We have previously reported
on the construction of a network model describing the
pathways that are known to regulate cell proliferation in
the lung as the first step towards the availability of a
publicly available, integrated model of the major cellular
processes operating in lung and cardiovascular tissues
[21]. However, in order to holistically assess the effects
of environmental and endogenous stressors on pulmon-
ary and cardiovascular cells, as well as to link such
effects to the onset of related diseases, the availability of
detailed mechanistic network models for other major
cellular processes is necessary.
Here we report the construction and testing of a more

detailed network model reflecting the pathways that are
described to operate in response to stress in non-dis-
eased pulmonary and cardiovascular cells. Containing
connectivity support from 428 unique literature sources,
the network model conveys mechanistic detail about the
pathways that are involved in response to several promi-
nent pulmonary and cardiovascular cell stressors,
including exogenous factors (i.e., air pollution, environ-
mental toxicants) and endogenous factors (i.e., respira-
tory chain generated ROS, the unfolded/misfolded
proteins). Model content boundaries were set to con-
strain the coverage of the network model to the stres-
sors and stress responses that can occur in healthy,
non-diseased cells of the pulmonary and cardiovascular
systems. After establishing these content boundaries, we
constructed a literature model of these processes. Next,
we used computational analysis of four transcriptomic
data sets to identify conserved sub-networks that are
activated in response to different stressors, populating
the network model with additional nodes and edges in
the process.
Towards a verification of the network model, its

descriptive content has to be assessed for correctness
and relevance; therefore, the network model was evalu-
ated for its ability to detect stress responses to a stressor
that was not used to build the network model. Cigarette
smoke (CS) contains thousands of chemicals that collec-
tively induce complex molecular responses making CS
an ideal test substance. The cellular response to stress
induced by CS has been shown to be largely mediated
by the oxidative-stress responsive transcription factor
NFE2l2 (nuclear factor, erythroid derived 2, like 2;
NRF2) making an NRF2 knockout mouse an ideal sys-
tem to differentiate the response to stress using this net-
work model [22,23]. Therefore, we tested the ability of
the network model to detect cellular stress using tran-
scriptomic data from mouse lung following acute in vivo
CS exposure. In addition, we used the network model to
investigate the response to acute CS exposure in mice
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that were constitutively deficient for NRF2. Our results
suggest that the use of focused biological network mod-
els combined with large scale systems biology data sets
can identify the salient biology underlying complex
stressors like CS.

Results
Network Definition
Network model boundaries
The network model described here was constructed
from content described from two sources, a literature
model describing the relevant mechanisms involved in
the stress response known from published literature,
and a data set derived component, with content derived
from the computational analysis of publicly available
transcriptomic data from stress relevant experiments
performed in pulmonary and cardiovascular cells. In
order to ensure that the network model depicts biologi-
cal mechanisms related to stress response in non-dis-
eased pulmonary and cardiovascular tissues, we applied
a set of rules for selecting network model content. Our
overall goal was to generate a network model that
reflects acute, non-pathological stress responses, and
does not include the adjacent biological processes such
as cell death/apoptosis, tissue damage, or inflammation
which will be addressed in separate models.
Relationships derived from human tissue context were

prioritized, however, if needed, connections derived
from mouse and rat contexts were also used to com-
plete the model (see Table 1 and Materials & Methods,
“Knowledgebase” section). Canonical mechanisms repre-
senting pathways well-established in the literature were
included in the network model even if literature support
explicitly demonstrating the presence of the mechanism

in lung- or cardiovascular-related tissues was not identi-
fied. For example, it was assumed that the same physio-
logical machinery designed to combat metabolically
generated ROS, e.g. the glutathione synthesis pathway,
can operate in most mammalian cell types. However, if
specific lung or cardiovascular contexts for canonical
mechanisms were found in the literature, they were
used. If needed to complete critical relationships within
the network model, other tissue contexts were also con-
sidered, based on our assumption that they would reflect
the response to stress in normal lung and cardiovascular
tissues. For example, while liver contexts were generally
excluded, they were used in the xenobiotic stress build-
ing block (see below for a description of building blocks)
because many central mediators of xenobiotic stress
response (e.g., AHR, PXR) have been extensively studied
in hepatic systems. Additionally, renal contexts were
generally excluded, with the notable exception of the
osmotic stress building block, where renal cells are
widely used as model systems to study osmotic regula-
tion. Likewise, the use of causal relationships with tissue
contexts from immortalized cell lines was limited to
building critical mechanisms in the network model,
when only available from this type of experimental sys-
tem. In fact, causal relationships with tissue contexts
derived from tumors or other diseased tissues were used
at a frequency of only 1%. Since the Cellular Stress Net-
work model is fully referenced, the tissue contexts for
each causal edge are available for examination. Data
derived from experiments with CS exposure were
excluded during initial network building in order to
maintain the ability to verify the network model at a
later stage without bias from circularity.
Following an exhaustive search of the literature, com-

ponents were selected for inclusion in the Cellular Stress
Network model based on the biological mechanisms
known to operate in response to stresses in lung and
cardiovascular contexts, creating the mechanistic biolo-
gical boundaries of the network model. The network
model was constructed in a modular fashion using a
“building block” framework in which the responses to
several key types of stressors were modeled (see Figure
1). These building blocks contain overlapping nodes
that, when joined, create an extensive network model of
the pathways involved in the pulmonary and cardiovas-
cular responses to physiological stress. The building
blocks comprising the network model are:
Xenobiotic stress Includes the role of AHR, Cytochrome
p450 enzymes, and various environmental stressors.
Endoplasmic reticulum (ER) stress Includes the
unfolded protein response and the pathways down-
stream of the three key stress mediators: PERK
(Eif2ak3), ATF6, and IRE1alpha (Ern1). The pro-apopto-
tic arm of the ER stress response was excluded from

Table 1 Summary of relevant statistics describing the
content of the Cellular Stress Network model

Nodes 730

mRNAs 84

Proteins 235

Phosphoproteins 43

Activities 180

Complexes 57

Protein families 18

Biological processes 48

Chemicals/Small molecules 65

Total Edges 1280

Causal Edges 778

Human-derived 545

Mouse-derived 175

Rat-derived 58

Unique PMIDs 428
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this network model in anticipation of being included in
a separate network model on cell death related
processes.
Endothelial shear stress Includes the effects of laminar
(atheroprotective) and turbulent (atherogenic) shear
stress on monocyte adhesion, including NF-�B and
nitric oxide pathways.
Hypoxic stress Includes HIF1a activation and targets,
control of transcription, protein synthesis, and crosstalk
with oxidative stress, ER stress, and osmotic stress
response pathways.
Osmotic stress Includes NFAT5, aquaporin, and CFTR
pathways downstream of the hyperosmotic response.
Oxidative stress Includes intracellular free radical man-
agement, cellular responses to endogenous/exogenous
oxidants and anti-oxidants and the glutathione metabo-
lism. Key players of the involved intracellular pathways
are the transcription factors AP-1, NF-�B and NRF2. A
particular focus is on NRF2 as the central mediator of
the cellular oxidative stress response including its
upstream regulators and downstream gene expressions
regulation via the antioxidant response element [24].
Ideally, all nodes and edges of the network model

would be supported by published data from experiments
conducted in non-diseased human, mouse, or rat pul-
monary/cardiovascular tissue. However, in some cases,
the results of the relevant detailed experiments have not
been published. Thus, causal relationships with literature
support coming from the tissues and cell types found in
the normal lung (e.g., bronchial epithelial cells, alveolar
type II cells, etc.) and in cardiovascular tissue (e.g., cor-
onary artery endothelial cells) were prioritized. Approxi-
mately two thirds of the network model reflected lung

and cardiovascular cell biology directly (Figure 2 and
Additional File 1).

Cellular stress network model literature component
The Cellular Stress Network model describes physiologi-
cal stressors and the main processes operating in
response to these stressors that occur in non-diseased
lung and cardiovascular tissue. Specifically, this network
model captures the responses to oxidative, endoplasmic
reticulum, hypoxic, osmotic, xenobiotic, and shear stres-
ses. Causal relationships (described in further detail in
this section) describing these processes were added to
the network model from the Selventa Knowledgebase
[25], a unified collection of over 1.5 million elements of
biological knowledge captured from the public literature
and other sources. This network model was constructed
using a computable framework, enabling its application
to the evaluation of cellular stress based on systems
biology data.
The literature component of the Cellular Stress Net-

work model contains 512 nodes and 876 edges. Network
model nodes are biological entities such as mRNA
expressions, protein abundances, or protein activities
(Figure 3). Nodes may also be chemicals or small mole-
cules whose transcriptional signatures may represent
signaling similar to that which the chemical would
induce. Finally, nodes can represent biological processes,
such as “response to oxidative stress” or “laminar shear
stress”. This fine-grained representation allows for biolo-
gical processes to be modeled with a high degree of
mechanistic detail. Edges are relationships between
nodes and may be either non-causal or causal. Non-cau-
sal edges simply connect different forms of a biological

Figure 1 Schematic overview of the modular “building block”
framework used to construct the Cellular Stress Network. A
detailed network model of NRF2 signaling was included in the
Oxidative Stress building block. A few examples of relevant
transcription factors and kinase cascades included in the network
model are shown.

Figure 2 Pie chart summarizing the tissue context origin of
causal edges in the Cellular Stress Network (for details, see
Additional File 1).
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entity, such as its mRNA expression and its protein
abundance, while causal edges are cause-effect relation-
ships between biological entities based on primary litera-
ture data (Figure 4, for details, see Materials and
Methods).

Cellular Stress Network model data set component
Cell stress data sets
Application of Reverse Causal Reasoning (RCR, see
below) to cellular stress transcriptomic data sets that
capture the responses to a diversity of cellular stresses
in lung and cardiovascular cell types was performed to
confirm the activities of nodes already present in the lit-
erature portion of the network model, and also to sup-
plement the literature-derived components of the
network model with unique data set-derived nodes and
edges. Data sets were selected with the goal of including
a balance of mouse and human, in vitro and in vivo
experiments, and a variety of cellular stresses. Data sets
were selected to ensure representation from multiple
building blocks, with oxidative stress as the focus. By
using a variety of data sets which used different experi-
mental stressors, we were able to confirm the literature-
derived components in the network model and also add
data set-derived nodes and edges from a variety of

biological pathways, enhancing the breadth of the net-
work model, in addition to its mechanistic detail.
Furthermore, data sets with 48 hours or less treatment
times were prioritized to best reflect the stress response
mechanisms as they occur in non-diseased tissue. Other
general data set selection criteria included: 1) how well
physiologically-relevant stress in non-diseased lung or
cardiovascular tissue was represented in the experiment,
2) the availability of phenotypic stress endpoint data, 3)
the statistical rigor of the gene expression profiling
experiments, and 4) the relevance of the experimental
context to normal non-diseased lung or cardiovascular
biology. The four data sets selected are summarized in
Table 2. These data sets represent oxidative stress
(Hyperoxia/GSE495 and HOCl/GSE15457), ER stress
(OxPAPC/GSE20060), and hypoxic stress (Hypoxia/
GSE11341). The Hyperoxia and Hypoxia experiments
were performed in whole lung and a specific lung cell
type, while the OxPAPC experiment was performed in a
cardiovascular tissue context. Since the HOCl experi-
ment was not performed in a lung or cardiovascular
context, we assumed that the macrophage cell line used
was generally reflective of the signaling that would
occur in response to stress in lung macrophages as well.
Reverse Causal Reasoning
Reverse Causal Reasoning (RCR) [25] was applied to
identify statistically significant predictions of the activity
states of biological mechanisms ("hypotheses”) that are
consistent with the measurements taken for a given sys-
tems biology data set. RCR on these four data sets iden-
tified upstream hypotheses which can explain the
significant mRNA State Changes in each cell stress tran-
scriptomic data set, enabling a deeper mechanistic
understanding of the biological network perturbed by
the experimental conditions, beyond the mere identifica-
tion of significantly changing mRNAs [26,27]. These
hypotheses represent mechanisms involved in the
response to the various stressors used in the experi-
ments. RCR prediction of activity for a given node using
gene expression data sets requires a minimum of four
observed RNA expression changes that are consistent
with the predicted change in node activity. Thus, one
reason that a network model node may not be predicted
changed in the data sets is that the Knowledgebase con-
tains too few causal connections from the node to
downstream RNA expressions. To address this, we aug-
mented the Selventa Knowledgebase with over 23,000
new statements from the public literature to enhance
the prediction of nodes in the Cellular Stress Network
model. Following this effort, 272 of the 730 nodes in the
final Cellular Stress Network model were eligible for
prediction (containing four or more downstream gene
expression relationships and thus capable of prediction
as a hypothesis) by RCR. As a notable caveat to these

Figure 3 Network model detail. A portion of the network model
surrounding NRF2 (NFE2L2) is shown, including transcriptional
regulation by KEAP1 and downstream expression targets. Activating
direct causal relationships are shown as dark arrows; inhibitory
direct causal relationships are shown as edges ending in a knob.
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Figure 4 The Cellular Stress Network. Highlighted nodes are Reverse Causal Reasoning (RCR) hypotheses, predicted to have increased or
decreased abundance or activity, in the indicated cell stress data sets.

Table 2 Data sets analyzed by RCR for assessment and augmentation of the Cellular Stress Network model

Data Set Hyperoxia HOCl OxPAPC Hypoxia

Data Set ID GSE495 GSE15457 GSE20060 GSE11341

PubMed ID N/A 19376150 20170901 18469115

Perturbation 100% O2 1.4 mM hypochlorous acid 40 μg/ml oxidized
phospholipid

1% O2

Tissue/Cells Whole lung RAW 267.4 cell line Aortic endothelial
cells

Lung microvascular endothelial
cells

In vivo/in
vitro

In vivo In vitro In vitro In vitro

Species Mouse Mouse Human Human

Timepoint 48 h 6 h 4 h 48 h

Control 0 h 6 h untreated 4 h untreated 0 h

Platform Affymetrix
U74v2

Affymetrix 430_2 Affymetrix
HGU133A

Affymetrix HGU133A

# State
Changes

1122 1618 185 639

Measured
outcome(s)

None Cell viability, RT-PCR, and Western blot analysis of
Nrf2 and Nrf2 target genes

qRT-PCR for
HMOX1, GJA5

Hypoxia-induced marker genes;
Scratch wound assay
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statistics, many of the nodes for which a prediction was
not possible are “connector” nodes such as phosphoryla-
tions and complexes (145 nodes combined), which link
protein activities to one another. For many of the pre-
dicted hypotheses, a corresponding literature-derived
node was already present in the network model. Specifi-
cally, 43/272 (16%), 45/254 (18%), 23/163 (14%) and 30/
246 (12%) RCR predicted HYPs were already nodes in
the literature model for GSE495, GSE20060, GSE15457,
and GSE11341, respectively. For example, RCR predicted
the increased transcriptional activity of NF-�B in 3 out
of the 4 data sets. Because the transcriptional activity of
NF-�B was already in the literature model as a node, its
prediction by RCR serves to verify its importance to the
stress response, but did not add a new node to the net-
work model.
Building block nodes are recapitulated by RCR results
RCR analysis on the four data transcriptomic data sets
predicted the modulated activity or abundance for many
nodes in the oxidative stress building block (Additional
File 2). These include ROS and the transcriptional activ-
ity of NRF2, which are both predicted increased in each
of the oxidative stress data sets (Hyperoxia and HOCl).
Notably, there are also predictions for ER stress nodes
in the ER stress data set (OxPAPC), such as increased
“response to ER stress”, Xbp1 transcriptional activity,
and the activities of several ATF family members
[28,29]. Finally, both the response to hypoxia and
increased HIF1alpha activity hypotheses are predicted in
the hypoxia data set. Hypotheses from the other build-
ing blocks of the Cellular Stress Network model are also
predicted, including xenobiotic metabolism (AHR activ-
ity and the transcriptional signatures of the environmen-
tal contaminants tetrachlorodibenzodioxin, diesel
exhaust, and soot), endothelial shear stress (laminar
shear stress and monocyte adherence), and osmotic
stress (NFAT5 activity, hyperosmotic response).
Although these specific stresses did not have corre-
sponding data sets, these predictions demonstrate the
large degree of overlap between these stress response
pathways.
Additional data set-derived nodes
For gap analysis and network augmentation, we further
investigated those RCR-derived hypotheses from the
four data sets that were not already represented in the
literature network model. Thirty five hypotheses with
clear impact on the response to cellular stress in the
lung or cardiovascular tissues based on literature investi-
gation of their biological roles were added to the net-
work model. A table of these data set-derived
hypotheses that were incorporated into the network
model can be found in Additional File 3. The two-
pronged approach of including both literature- and data
set-derived nodes into the Cellular Stress Network

model ensured that the network model covered a broad
range of stress response pathways. This network model
structure is critical to understanding complex stresses
that can simultaneously activate multiple stress
pathways.
For a complete list of nodes in each building block,

see Additional File 4.
The final Cellular Stress Network model (a combina-

tion of the literature and data set derived components)
contains 730 nodes and 1280 edges (778 of which are
causal edges), and is supported by 428 unique PubMed-
indexed references. This fully referenced Cellular Stress
Network model is comprised of both literature-derived
and data set-derived components (described in the sub-
sequent sections) and provides the greater research
community with the most comprehensive connectivity
map of the molecular mechanisms involved in response
to certain stresses in non-diseased lung and cardiovascu-
lar tissues currently in existence.
Cellular Stress Network model coverage
In total, 130 of the 272 RCR-capable network model
nodes (48%) were predicted in at least one of the four
data sets (Additional Files 5, 6, 7, 8). 83 (31%) were pre-
dicted based on the OxPAPC data set alone, while 72
(26%), 54 (20%) and 49 (18%) were predicted based on
the Hyperoxia, Hypoxia, and HOCl data sets, respec-
tively (Figure 4). These statistics are based on the full
Cellular Stress Network model, including both litera-
ture-derived and data set-derived components. The pre-
sence of these hypotheses as nodes in the Cellular Stress
Network model confirms that this network model is an
accurate representation of the response to various phy-
siological stresses in the lung and cardiovascular tissues.
These hypotheses also confirm the ability of RCR to
predict relevant biological mechanisms based on tran-
scriptomic data from multiple, independent data sets.
Therefore, this network model and the framework used
to create it are well-suited for the evaluation of mechan-
isms involved in the response to cellular stress in the
lung and cardiovascular tissues for a wide variety of
relevant stressors.

Cellular Stress Network model verification
To test the ability of the Cellular Stress Network model
to provide qualitative mechanistic explanations for tran-
scriptomic stress data, we investigated a recently pub-
lished data series, GSE18344, which captures the
transcriptional response to cigarette smoke (CS), as a
prototypic inducer of pleiotropic cellular stress, in
mouse lung [30]. This data series includes data from
both wild type (WT) and NRF2 knockout (NRF2 KO)
animals exposed to ambient air (sham exposure) or CS.
The 1 day CS treatment data were chosen to test the
Cellular Stress Network model; these data represent the
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stress response in non-diseased, naïve tissue that the
network model was designed to evaluate.
Significant mRNA State Changes (SCs) were deter-

mined for three comparisons, (1) WT 1 day CS vs.
sham exposure, (2) NRF2 KO 1 day CS vs. sham expo-
sure, and (3) NRF2 KO 1 day CS vs. WT 1d CS expo-
sure (Figure 5 and Table 3; see also Materials and
Methods). In this analysis, an SC is a statistically signifi-
cant difference in mRNA levels in different experimental
conditions. The first two comparisons represent the
response to 1 day CS exposure in WT and NRF2 KO
mice, respectively. The third comparison represents the
difference in response to CS in NRF2 KO compared to
WT (Figure 5), and enables specific investigation of the
contribution of NRF2 to the cellular response to CS.
Because NRF2 is a key mediator of the cellular stress

response in lung and other tissues [22,31,32], it is of
great interest to compare the response to acute CS in
WT and NRF2 KO mouse lungs. Notably, only 21 of
113 (19%) mRNA SCs induced by 1 day CS exposure in
WT mice overlap with those observed in the NRF2 KO
mice (Figure 5). These results are consistent with a cen-
tral role for NRF2 in the lung cellular response to CS.
RCR was performed on the significant mRNA SCs for

each comparison to evaluate the ability of the Cellular
Stress Network model nodes to explain the transcrip-
tomic data (Additional File 9). Overlaying the significant
hypothesis predictions and observed mRNA SCs from
the WT 1 day vs. sham data set onto the network
model (Figure 6) results in coverage of many network
model areas, with a notable concentration of observed
mRNA SCs around the transcriptional activity of NRF2
(taof(Nfe2l2)). Taken together, the significantly predicted
hypotheses that are Cellular Stress Network model
nodes explain 71/81 (88%) and 90/113 (80%) of the
mRNA SCs induced by 1 day CS exposure in WT and
NRF2 KO mice, respectively. The majority of SCs that
were not explained by the Cellular Stress Network were
those whose known upstream expression controllers fell
outside of the network boundaries (e.g., IL18, NPAS1,
TCF3). Future analyses of these data sets together with
networks that describe other areas of CS-influenced
biology such as inflammation, will serve to minimize
these knowledge gaps.
Hypotheses significant in the WT or NRF2 KO 1-d CS
data sets were placed into clusters based on their pat-
tern of prediction in comparisons across all three CS
data sets (Additional File 9). Cluster A is comprised of
network model nodes predicted increased in WT 1-d vs.
sham, and the opposite direction in the NRF2 KO 1-d
vs. WT 1-d comparison, indicating signal dependence
on NRF2. Cluster B is comprised of network model
nodes predicted increased or decreased in the same
direction for both the WT 1-d and NRF2 KO 1-d vs.
sham exposure comparisons, but predicted in the oppo-
site direction for the NRF2 KO 1-d vs. WT 1-d compar-
ison, indicating that the signal is at least partially
dependent on NRF2. Clusters A and B contain many
components of the oxidative stress building block within

Figure 5 Test data set and mRNA State Change overview. (top)
Test data set comparisons. Comparisons of GSE18344 data from 1
day cigarette smoke exposure experiments used to evaluate the
Cellular Stress Network model. (bottom) mRNA State Change (SC)
overlap between WT and NRF2 KO data sets. WT = wildtype mice;
NRF2 KO = NRF2 knockout mice; SCs = mRNA State Changes.

Table 3 Cellular Stress Network coverage statistics for the test data set comparisons based on GSE18344 data

Comparison WT 1d vs sham Nrf2 KO 1d vs sham Nrf2 KO 1d vs WT 1d

State Changes (SCs) 81 113 45

Significant Cellular Stress Network Hypotheses 39 47 23

SCs Explained by Network 67/81 (83%) 75/113 (66%) 40/45 (89%)

SCs Explained by Nfe2l2 29/81 (36%) 20/113 (18%) 31/45 (69%)

SCs Explained by Nfe2l2 or Keap1 37/81 (46%) 27/113 (24%) 36/45 (80%)

SCs = mRNA State Changes; hypotheses - network model nodes predicted to have significantly increased or decreased activity by Reverse Causal Reasoning
(RCR) on the SCs for each test data set comparison.
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the network model, including the oxidant hypotheses
“Hypochlorous acid” and menaquinone ("Menadione”),
as well as NRF2 ("Nfe2L2”) itself and its negative regu-
lator, “Keap1”. Cluster C is comprised of nodes pre-
dicted increased in both WT 1-d vs. sham and NRF2
KO 1-d vs. sham, with no predicted differences in the
NRF2 KO 1-d vs. WT comparison. These nodes come
from a mix of network model building blocks and
include the ER stress-inducer “Tunicamycin” as well as
“ATF6”, a transcription factor activated by the
unfolded protein response [33]. Cluster D is comprised
of nodes predicted up- or down-regulated by CS expo-
sure in WT 1-d and not the NRF2 KO 1-d, but with
no significant difference between WT 1-d and the
NRF2 KO 1-d when directly compared. Cluster E is
comprised of nodes predicted changed in the NRF2
KO 1-d vs. sham comparison only. While clusters A
and B represent elements of the stress response influ-
enced by NRF2, cluster C represents likely NRF2-inde-
pendent components of the stress response. Most of

the network model nodes from the oxidative stress
building block are present in the NRF2-influenced
clusters A and B, consistent with the key role for
NRF2 in the oxidative stress response.
Notably, 29/81 (35%) of SCs induced by 1 day CS

exposure in WT mice can be explained by activation
of NRF2. Expanding this calculation to include KEAP1,
a negative regulator of NRF2 and key mediator of its
activation by oxidative stress [34], explains 37/81 (46%)
of the WT 1 day vs. sham SCs. While the NRF2 KO
mice lack NRF2, 20/113 (18%) SCs induced by CS
exposure can be explained by NRF2, and 27/113 (24%)
explained by NRF2 and KEAP1 network model nodes
together. Some of the genes that can potentially be
controlled by NRF2 can also be controlled by other,
NRF2-independent mechanisms [35-37]. When the 1
day CS exposed NRF2 KO mice are compared to the
WT mice, decreased transcriptional activity of NRF2 is
predicted, consistent with the absence of NRF2 in
these mice.

Figure 6 Cellular Stress Network model colored for the WT 1 day cigarette smoke test data set. Red - node corresponds to observed
increased mRNA SCs; yellow halo - node is predicted by RCR to have increased activity; blue halo - node is predicted to have decreased activity.
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Discussion
The Cellular Stress Network model is a unique resource
The Cellular Stress Network model was designed to be
used as a comprehensive research resource for the
scientific community and as a functional backbone for
computational analysis. As a publicly available research
resource, the network model can be used by investiga-
tors to explore the connectivity of the genes/proteins/
processes involved in different stress responses relevant
to their research programs. Until now, no such single
resource existed for the pulmonary and cardiovascular
research communities. In addition, the network model is
compatible with computational reasoning to analyze sys-
tems biology data.
One unique aspect of the Cellular Stress Network

model is its specificity with respect to tissue context.
We focused network model connectivity on mechanisms
that operate in a defined set of cell types relevant to car-
diovascular and pulmonary biology. Other common
approaches for building connectivity networks that inte-
grate prior knowledge, e.g., using Kyoto Encyclopedia of
Genes and Genomes (KEGG) maps or protein-protein
interaction databases, generally compile connections
that have been reported in many different tissue types,
sometimes in the context of disease as an added advan-
tage over other common pathway analyses, the edges in
the network model presented are embedded with acces-
sible literature evidence supporting each relationship,
making for a highly transparent network model. Last,
because the edges in the network model described here
are supported by causal relationships directly observed
in published experiments, the network model contains a
unique level of biological transparency.
The Cellular Stress Network model is part of a broader

systems biology initiative. Previously, we reported on the
construction and utility of a network model describing
pathways known to be involved in regulating cell prolifera-
tion in the non-diseased lung (Cell Proliferation Network
model) [21]. Additional biological process network mod-
els, constructed using a similar modular design, can then
be combined with the existing Cell Proliferation and Cel-
lular Stress Network models. Forming an integrated net-
work that covers an unparalleled level of complex
pulmonary and cardiovascular-related biology, this collec-
tion of network models will be an invaluable resource to
the greater research community, aiding in the effort to
understand the underpinning mechanisms. Eventually, this
integrated network will serve as a scaffold for the parallel
analysis of multiple systems biology data types (e.g., phos-
phoproteomics) in combination with transcriptomic data
to assess complex biology.
Other lung-focused stress networks have been gener-

ated using systems biology data (specifically gene

expression profiling), however they differ in their con-
struction methods, content, applications, and explana-
tory power. For example, Freishtat et al. report a 26-
member lung stress network comprised of genes regu-
lated by asthma-relevant challenges or tobacco smoke in
multiple gene expression data sets [16]. A second exam-
ple network used information-theoretic network infer-
ence algorithms to identify NRF2 targets and regulatory
relationships using a large number of mouse lung
microarray data sets [15]. Similar to the Cellular Stress
Network model reported here, these networks are rele-
vant to the stress response in lung tissue and make use
of microarray data for their construction; however, these
networks differ in that they have highly focused applica-
tion and less explanatory power for experimentally
observed gene expression changes. The relatively large
size and comprehensive biological coverage of the Cellu-
lar Stress Network model imparts it with a unique abil-
ity to explain systems biology data and provide
mechanistic detail.

The Cellular Stress Network model captures diverse stress
responses in pulmonary and cardiovascular cells
The daily environmental assaults posed to normal pul-
monary and cardiovascular cells can exert multiple,
complex, and often interconnected stress responses. In
order to unravel the mechanisms behind these inte-
grated responses using systems biology data sets (e.g.,
gene expression profiling), the Cellular Stress Network
model was designed to represent the response to stress
in normal, non-diseased lung and cardiovascular cells.
To focus the network model on this tissue-specific stress
response, we used four data sets representing some of
the stresses that lung and cardiovascular cells are
exposed to. These data sets not only provided a means
to assess the content of the literature-derived portion of
the network model, but perhaps more importantly,
revealed the shared and unique mechanisms that oper-
ate in pulmonary and cardiovascular cells following
exposure to stress. The hypoxia data set aided in ensur-
ing the hypoxia response signaling was comprehensively
captured in the network model. Similarly, the hyperoxia
and HOCl (inducers of oxidative stress [38-40]) data
sets aided in construction and evaluation of the oxida-
tive stress response mechanisms in the network model.
OxPAPC, a pro-inflammatory oxidized phospholipid
that induces both oxidative and ER stress [41], provided
a fourth stress data set to aid network model construc-
tion. These data sets come from a variety of lung and
cardiovascular-relevant tissues from both human and
mouse, as well as both in vivo and in vitro stressors.
The network model construction strategy of using data
sets together with literature-derived tissue-specific and
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canonical pathway mechanisms ensured that the net-
work model provides comprehensive coverage of a
range of physiological and environmental stressors
affecting the lung and cardiovascular system, a critical
aspect of a network model designed to evaluate inte-
grated stress responses.
Several network model nodes were predicted by RCR

to increase or decrease in activity across multiple data
sets. The responses to the different types of stress repre-
sented by the Cellular Stress Network model are inte-
grated - while the stressors and some response pathway
elements are unique, many common signaling pathways
are shared. The structure of the Cellular Stress Network
model as a collection of nodes linked by edges repre-
senting qualitative relationships between the nodes cap-
tures causal connectivity between response pathways for
different stresses. For example, while NRF2 is a key reg-
ulator of the oxidative stress response, it can be acti-
vated by other stressors. ER stress activates NRF2
through phosphorylation by Eif2ak3 (PERK) [42], shear
stress activates it via Klf2 or 15-deoxy-Δ(12,14)-prosta-
glandin J2 [43,44], and intermittent hypoxia and xeno-
biotic metabolism stress activate NRF2 through
activation of ROS production [45,46]. Notably, NRF2
activation is predicted by RCR in three of the four data
sets used to guide network model construction:
OxPAPC, hyperoxia, and HOCl. Similarly, the transcrip-
tional activity of the NF-�B complex is activated by
multiple stresses, including oxidative, shear, ER, and
hypoxic stress [47-51], and is predicted to have
increased activity in three of the four data sets: hypoxia,
OxPAPC, and hyperoxia. These points of stress signaling
integration are captured in detail by the network model,
facilitating the application of the network model to the
analysis of complex stressors which may activate multi-
ple signaling pathways.

The Cellular Stress Network model can be used with
systems biology data to identify mechanistic explanations
for complex cellular responses
One of the benefits of using systems biology analyses,
like transcriptomic profiling, is the wealth of data that is
provided following experimental application of a stres-
sor. For contemporary scientists, a modern challenge is
how to transform this biological data into meaningful
mechanistic explanations for the observed biology fol-
lowing experimental stress induction. This is especially
challenging for the cellular stress response, which can
manifest in complex, overlapping signaling responses.
We tested the Cellular Stress Network model by apply-
ing it to the analysis of gene expression profiling data
for the response to acute CS exposure in WT mouse
lung (GSE18344;[30]). The Cellular Stress Network
model explained 88% of the mRNA SCs induced by CS

in WT. Notably, a significant portion of these SCs (46%)
can be explained by the oxidative and electrophilic
stress-activated transcription factor NRF2 or its negative
regulator KEAP1. Our results, consistent with the
reported role of NRF2 in the in vivo lung response to
CS [52], provide additional confidence in the ability of
the Cellular Stress Network model to identify stress
pathways using transcriptomic data.
In addition to NRF2, other elements of the Cellular

Stress Network model predicted to be activated in WT
mice by acute CS exposure include the response to ER
stress and the ER stress response-induced transcription
factors ATF4 and ATF6. Moreover, the oxidative stress
building block network model components “gtpof(Kras)”
and “taof(AP-1 complex)” are predicted activated in
response to CS. These elements are predicted in both
WT and NRF2 KO mice, and are not differential in the
direct comparison of the NRF2 KO to WT mice, sug-
gesting that this response is NRF2-independent. In addi-
tion, these predictions are consistent with previous
reports of CS-induced signaling mechanisms.
CS has been reported to induce ER stress in both dis-

eased and non-diseased lung cells [53,54] as well as in
other cell types [55]. Moreover, CS has been reported to
induce the proteolytic cleavage and activation of ATF6
as well as the increased nuclear expression of ATF4 in
cultured human lung cells in response to acute CS
exposure [53,54]. While ATF4 physically interacts with
NRF2 [56], the prediction of increased ATF4 in both
WT and NRF2 KO mice in response to CS suggests that
NRF2 is not required for ATF4 transcriptional activity.
Similar to the ER stress response, KRAS and AP-1

activation represent portions of the stress response that
are activated by acute CS exposure that are not depen-
dent on NRF2. These oxidative stress response mechan-
isms are predicted activated in both WT and NRF2 KO
mice. AP-1 has been implicated in CS-induced gene
expression in lung [57,58] and in Swiss 3T3 cells [59].
ROS have been demonstrated to activate RAS family
members in a variety of tissues including the lung and
cardiovascular-relevant cell types, fibroblasts and
smooth muscle cells [60-62].
We report here both the construction of a literature-

based network describing cellular stress signaling in the
lung, and the assessment of cellular stress signaling in
this network for several RNA expression data sets. Our
approach for assessing pathway activation utilizes RCR,
where the differential mRNA expression of genes is
used to infer the activity of nodes/pathways in the net-
work based on causal relationships. Several other meth-
odologies for detecting pathway activation using
transcriptomic profiling data as a substrate have been
published previously. One common approach is to gen-
erate interaction (protein-protein, protein-gene)
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networks from publicly available resources (databases,
published experiments, etc.) [63-66]. Using these inter-
action networks, differentially expressed genes from an
experimental test case are then used to identify statisti-
cally enriched pathways or subnetworks. Here, protein
subnetworks are identified on the basis of the structured
expression patterns of their genes (i.e. subnetworks are
identified if the genes encoding the proteins in a subnet-
work are all observed to increase or decrease) in a
stereotyped fashion. In contrast, we use the differentially
expressed genes in the context of prior knowledge-
derived causal relationships between the genes and their
upstream controllers to infer pathway activity.

Conclusions
The cellular response to stress is a key process mediat-
ing adaptation and survival, particularly in tissues like
lung with significant direct environmental exposure. Sys-
tems biology data such as gene expression profiling hold
great promise for the comprehensive assessment of
complex molecular signaling processes like the cellular
response to stress. The non-diseased lung and cardio-
vascular tissue-focused Cellular Stress Network model
described here is a fully referenced mechanistic repre-
sentation of multiple physiological stress response path-
ways, including oxidative stress, ER stress, and the
response to hypoxia. The adaptable and computable
structure of this network model provides a useful frame-
work for assessing and investigating biological impact
from systems biology data. When tested using lung-
derived transcriptomic data from CS-exposed mice, it
explained a large proportion (88%) of the observed sig-
nificant mRNA expression changes, and mechanistically
confirmed the role of NRF2, a known mediator of the
oxidative stress response, as a central contributor to the
CS-induced stress response.

Methods
Knowledgebase
The nodes and edges comprising the Cellular Stress
Network model were added to the model from the Sel-
venta Knowledgebase, a repository containing over 1.5
million nodes (biological concepts and entities) and over
7.5 million edges (connections between nodes). The Sel-
venta Knowledgebase is comprised of causal and non-
causal assertions between biological entities or processes
derived from peer-reviewed scientific literature as well
as other public and proprietary databases. Causal asser-
tions are derived from published literature reporting on
experiments performed in human, mouse, and rat spe-
cies contexts, both in vitro and in vivo. Causal assertions
also capture additional details about the relationship and
tissue context in which the relationship was experimen-
tally observed to occur. Notably, correlative

relationships, particularly from clinical studies, are also
captured in the Knowledgebase. Each causal assertion is
associated with its source information as well as key
information including the species (human, mouse, or
rat) and the tissue or cell line from which the experi-
mental observation was derived. An example causal
assertion is the increased transcriptional activity of Ahr
(aryl-hydrocarbon receptor) causes an increase in the
mRNA expression of Cyp1a1 (cytochrome P450, family
1, subfamily a, polypeptide 1). Causal assertions are
encoded using Biological Expression Language (BEL), an
intuitive language developed at Selventa that provides a
framework for qualitative modeling of biological pro-
cesses. BEL enables the development of computable
pathway models comprised of cause and effect relation-
ships, as well as construction of knowledgebases of bio-
logical relationships suitable for automated reasoning
methods such as Reverse Causal Reasoning (RCR, see
Materials and Methods below). The assembled collec-
tion of these causal assertions is referred to as either the
human or mouse Knowledge Assembly Model (KAM).
The Knowledgebase contains causal relationships
derived from healthy tissues and disease areas such as
inflammation, metabolic diseases, cardiovascular injury,
liver injury, and cancer.

Analysis of transcriptomic data sets
Four previously published cell stress data sets, GSE495
(hyperoxia), GSE15457 (HOCl), GSE20060 (OxPAPC),
and GSE11341 (hypoxia), were used for the construction
of the Cellular Stress Network model (Table 2).
GSE18344 (CS) was used for Cellular Stress Network
model testing. All five data sets were downloaded from
Gene Expression Omnibus (GEO) http://www.ncbi.nlm.
nih.gov/gds. Raw RNA expression data for each data set
were analyzed using the “affy” and “limma” packages of
the Bioconductor suite of microarray analysis tools avail-
able for the R statistical environment [67-70]. Robust
Microarray Analysis (RMA) background correction and
quantile normalization were used to generate microarray
expression values. An overall linear model was fit to the
data for all sample groups, and specific contrasts of
interest were evaluated to generate raw p-values for
each probe set on the expression array [71]. The Benja-
mini-Hochberg False Discovery Rate (FDR) method was
then used to correct for multiple testing effects.
Probe sets were considered to have statistically signifi-

cant changed expression levels in a specific comparison
if they had an adjusted p-value of lower than 0.05 and
an absolute fold change greater than 1.3. An additional
expression abundance filter was applied to three of the
data sets; probe set differences were considered signifi-
cant only if the average expression intensity was above
250. NetAffx version na31 feature annotation files,
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available from Affymetrix http://www.Affymetrix.com,
were used for mapping of probe sets to genes. In our
analysis, genes represented by multiple probe sets were
considered to have changed if at least one probe set was
observed to change. Gene expression changes that met
these criteria are called “State Changes” and have the
directional qualities of “increased” or “decreased”, i.e.,
they were upregulated or downregulated, respectively in
response to the experimental condition. The number of
State Changes for each data set is listed in Table 2.

Reverse Causal Reasoning (RCR): Automated hypothesis
generation
RCR of the four cell stress transcriptomic data sets was
used to aid in the selection of nodes for the Cellular
Stress Network model. RCR interrogates a Knowledge
Assembly Model to identify upstream controllers of the
RNA State Changes observed in the data set (see [25]
for specific detail on RCR). For the hypoxia and
OxPAPC data sets, the human KAM was used, while
the mouse KAM was used for the HOCl, hyperoxia, and
CS data sets. These potential upstream controllers iden-
tified by RCR are called “hypotheses”, as they are statis-
tically significant potential explanations for the observed
RNA State Changes.
Each hypothesis is scored according to two probabilis-

tic scoring metrics, richness and concordance. Richness
is the probability that the number of observed RNA
State Changes connected to a given hypothesis could
have occurred by chance alone, calculated using the
hypergeometric distribution. Concordance is the prob-
ability that the number of observed RNA State Changes
that match the direction of the hypothesis (e.g.,
increased or decreased activity or abundance of a node)
could have occurred by chance alone, calculated using a
binomial distribution. Hypotheses meeting both richness
and concordance p-value cutoffs of 0.1 were considered
to be statistically (although not necessarily biologically)
significant. For the purposes of network model con-
struction, each scored hypothesis meeting the minimum
statistical cutoffs for richness and concordance was eval-
uated and selected for integration based on its biological
plausibility and relevance to the experimental stress
used to generate the data.
Additional File 10 shows the color key and abbrevia-

tions for the tables in this section, while Additional File
3 shows all of the hypotheses predicted by RCR on the
four data sets that were present in the Cellular Stress
Network model. These hypotheses may also be visua-
lized in Figure 4, which is a schematic diagram of the
Cellular Stress Network model with the hypotheses pre-
dicted in each of the four cellular stress data sets identi-
fied by colored halos around the hypothesis node. The
Cellular Stress Network accompanies this manuscript in.

xls (Additional File 11) and.owl (Additional File 12) for-
mats, and can be viewed using freely available network
visualization software such as Cytoscape http://www.
cytoscape.org/.

Additional material

Additional file 1: Tissue context origins for causal edges in the
Cellular Stress Network. Corresponding tissue context categories are
referenced in Figure 2.

Additional file 2: RCR-predicted hypotheses in the Cell Stress
Network model. Indicates nodes that are RCR-predicted hypotheses
from the four cell stress data sets analyzed (Hypoxia, OxPAPC, Hyperoxia,
and HOCl). The building block(s) in which these nodes are contained is
also shown in the rightmost column. See Additional File 10 for color and
abbreviation key.

Additional file 3: Data set-derived nodes added to the Cellular
Stress Network based on their predictions as hypotheses. See
Additional File 10 for color and abbreviation key.

Additional file 4: Tables showing the nodes contained in each
building block that comprise the Cellular Stress Network.

Additional file 5: Cellular Stress Network model colored for the
HOCl data set. Red - node corresponds to observed increased mRNA;
yellow halo - node is predicted by RCR to have increased activity; blue
halo - node is predicted to have decreased activity.

Additional file 6: Cellular Stress Network model colored for the
hyperoxia data set. Red - node corresponds to observed increased
mRNA; green - node corresponds to observed decreased mRNA; yellow
halo - node is predicted by RCR to have increased activity; blue halo -
node is predicted to have decreased activity.

Additional file 7: Cellular Stress Network model colored for the
hypoxia data set. Red - node corresponds to observed increased mRNA;
green - node corresponds to observed decreased mRNA; yellow halo -
node is predicted by RCR to have increased activity; blue halo - node is
predicted to have decreased activity.

Additional file 8: Cellular Stress Network model colored for the
OxPAPC data set. Red - node corresponds to observed increased
mRNA; green - node corresponds to observed decreased mRNA; yellow
halo - node is predicted by RCR to have increased activity; blue halo -
node is predicted to have decreased activity.

Additional file 9: RCR-predicted Cellular Stress Network model
hypotheses for the test data set comparisons. Hypotheses are
grouped by pattern of prediction across the three test data set
comparisons. See Additional File 10 for color and abbreviation key.

Additional file 10: Color and abbreviation key for hypothesis nodes.

Additional file 11: The Cellular Stress Network,.xls format.

Additional file 12: The Cellular Stress Network,.owl format. This file
can be viewed using freely available network visualization software such
as Cytoscape http://www.cytoscape.org/.
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cigarette smoke; ER: endoplasmic reticulum; FDR: false discovery rate; GEO:
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