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Background: Colon adenocarcinoma (COAD) is a highly heterogeneous disease,

thus making prognostic predictions uniquely challenging. Metabolic reprogramming is

emerging as a novel cancer hallmark that may serve as the basis for more effective

prognosis strategies.

Methods: The mRNA expression profiles and relevant clinical information of COAD

patients were downloaded from public resources. The least absolute shrinkage and

selection operator (LASSO) Cox regression model was exploited to establish a

prognostic model, which was performed to gain risk scores for multiple genes in The

Cancer Genome Atlas (TCGA) COAD patients and validated in GSE39582 cohort.

A forest plot and nomogram were constructed to visualize the data. The clinical

nomogram was calibrated using a calibration curve coupled with decision curve

analysis (DCA). The association between the model genes’ expression and six types of

infiltrating immunocytes was evaluated. Apoptosis, cell cycle assays and cell transfection

experiments were performed.

Results: Univariate Cox regression analysis results indicated that ten differentially

expressed genes (DEGs) were related with disease-free survival (DFS) (P-value< 0.01).

A four-gene signature was developed to classify patients into high- and low-risk groups.

And patients with high-risk exhibited obviously lower DFS in the training and validation

cohorts (P < 0.05). The risk score was an independent parameter of the multivariate

Cox regression analyses of DFS in the training cohort (HR > 1, P-value< 0.001). The

same findings for overall survival (OS) were obtained GO enrichment analysis revealed

several metabolic pathways with significant DEGs enrichment, G1/S transition of mitotic

cell cycle, CD8+ T-cells and B-cells may be significantly associated with COAD in DFS

and OS. These findings demonstrate that si-FUT1 inhibited cell migration and facilitated

apoptosis in COAD.

Conclusion: This research reveals that a novel metabolic gene signature could be used

to evaluate the prognosis of COAD, and targeting metabolic pathways may serve as a

therapeutic alternative.
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INTRODUCTION

Metabolic reprogramming has been recognized as one of
the distinguishing feature of tumor cells recently (1). Cancer
metabolism is a major contributor to tumor initiation, growth,
and metastasis in colorectal cancer (2).

Colon adenocarcinoma (COAD) is a primary intestinal
aggressive malignancy (3). It is the third most prevalent cancer
(10.0%) and is ranked second (9.4%) in cancer-related mortality
worldwide (4). Further, this disease is genetically heterogeneous
whose prognosis is uniquely challenging. China, with the most
population in the world, is also ranked first in terms of new
cases of cancer and cancer-related deaths in the world (5, 6). In
China, more than 555,000 new colon and rectum cancer cases
are projected to be discovered annually (4, 6). The world’s cancer
burden including COAD continues to increase and malignancy
is quickly becoming the foremost cause of human death in
this century (7). Therefore, predicting the prognosis of COAD
patients and identifying new therapeutic strategies for COAD
are critical.

According to previous reports, metabolism serves a vital
role in the progress of COAD and some key genes such as
OMA1 mediate metabolism reprogramming under hypoxia,
thus facilitating colorectal cancer development by promoting
the Warburg effect (8). And LINRIS stabilizes IGF2BP2 and
facilitates aerobic glycolysis in COAD (9). However, the
link between metabolic-related genes and the prognosis of
COADpatients remains largely uncharacterized.Metabolism and
expression of specific genes affect the occurrence of metabolism,
making it a therapeutic potential target for the management
of malignant tumor (10). Thus, it is important to gain further
understanding of the underlying metabolic mechanisms of
COAD tumorigenesis and progression. Further, it is needed
urgently to identify new prognostic-related markers which could
become therapeutic potential targets in COAD (11, 12).

First, we acquired expression profiles of mRNA and the
relevant clinical features of COAD patients from open data
resources in our research. We then established a multigene
prognostic characteristic of COAD by metabolic-related
differentially expressed genes (DEGs) in a Gene Expression
Omnibus (GEO) cohort. Finally, functional enrichment analysis
was performed to explain the potential mechanisms involved,
after which a prognostic model was developed based on several
metabolic-related genes. We consider that this prognostic
model with the strong predictive power of COAD will improve
prognosis risk assessment of patients with COAD and help to
develop a more accurate evaluation of their clinical management.

MATERIALS AND METHODS

Publicly Available mRNA Data and
Metastasis Gene Sets
An RNA-sequencing (RNA-seq) dataset and relevant clinical data
of COAD patients were acquired from The Cancer Genome
Atlas colon adenocarcinoma dataset (TCGA-COAD) and GEO
website (GSE25071) to compare human colorectal tumors and
normal colorectal tissues. The normalization of gene expression

profiles was performed by the scale method provided in the
“limma” package in R. We then identified DEGs though the
comparison of patients with COAD with recurrent and normal
humans in the GEO cohort (GSE21510 and GSE32323). A total
of 566 COAD patients from the training set of the TCGA-
COAD cohort and 573 COAD patients from the GSE39582
cohort used for the validation set were eventually enrolled.
A list of metabolic-related genes was then gathered from the
Gene Set Enrichment Analysis (GSEA, v3.0, http://software.
broadinstitute.org/gsea/index.jsp) website (13) and is exhibited
in Supplementary Table 1.

Building and Verification of a Prognostic
Model of Metabolic-Related Genes
DEGswith log (|fold change|)>1 and a false discovery rate (FDR)
< 0.05 between tumor tissues and adjacent non-cancerous tissues
in the TCGA-COAD and GSE25071 datasets were identified by
the “limma” package in R. Differences between the recurrence
and normal human GEO cohorts (GSE21510 and GSE32323,
respectively) were also evaluated. Univariate Cox analysis of
disease-free survival (DFS) and overall survival (OS) in DEGs
were carried out to identify the metabolic-related genes with
prognostic significance. We utilized the log-rank test to adjust
the p-value.

To reduce the number of genes, we used the least absolute
shrinkage and selection operator (LASSO) Cox regression
analysis to screen genes for DFS and OS, respectively. The input
of the LASSO Cox regression analysis were the above-mentioned
screened genes. Themost vital value in the LASSOCox regression
analysis was λ. Using different λ values, LASSO Cox regression
analysis can be utilized to screen for different genes. We used
cross-validation to select the optimal λ for DFS and OS. With
these λ values, the genes associated with DFS and OS were
identified via LASSO Cox regression analysis, respectively. These
genes were then subjected to multivariate Cox regression analysis
to determine their coefficients for the prognostic models of DFS
and OS, respectively. The prognostic models were represented as
a risk score, which was expressed as follows:

Risk Score =

N∑

i=1

Expi× Coefi

A total of 222 patients obtained from the TCGA-COAD cohort
with a DFS survival status and survival time were classified into
low- and high-risk groups by the best cut-off point determined by
the surv_cutpoint function in the “Survminer” package in R. We
then plotted the survival curves for the risk score via the “survfit”
function with the “survival” R package. We did the same for the
214 patients included in the TCGA-COAD data set who had the
stages (stages I, II, and III) information of all those 222 patients,
51 patients for stage I, 147 patients for stage I and II, and 67
patients for stage III. To appraise the predictive power of the risk
score, we plotted the receiver operating characteristic (ROC) and
displayed the 1-, 3- and 5-year projections as function of survival
ROC in the “survivalROC” R package.
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Validation of the Prognostic Model as an
Independent Clinical Factor
To explore the correlation of the established prognostic model
with the clinical information, we carried out univariate cox
regression analyses to generate risk scores and consider other
clinical features including stage, sex, and age in 214 DFS patients
included in the TCGA-COAD data set. Risk scores and other
clinical factors were deemed statistically relevant at a p-value
threshold of <0.05. Association between risk score levels and
other clinical factors with DFS and OS were investigated by
multivariate Cox proportional hazard models. The results of the
multivariate Cox regression model were visualized in a combined
forest plot and the same procedure was also performed in TCGA
OS patients and the validation data set.

Verification of the Nomogram
A nomogram was created to forecast the DFS of patients at 1-,
3-, and 5-year survival probabilities to help doctors understand
and apply the model. Then, we performed ROC analysis to
gain the area under the curve (AUC) and verify the predictive
effect of the model. The same procedure was performed in
TCGA OS patients and the validation data set. The calibration
curve of the nomogram was drawn to validate the nomogram’s
predictive value. The calibration curve was produced by using the
calibration function in the “rms” package in R.

The decision curve analysis (DCA) results were plotted to
quantify and assess the clinical value of the nomogram (14).
DCA can be performed to obtain the clinical net benefit of the
nomogram compared with all or none of the strategies (15).

Functional Enrichment Analysis and Cell
Immune Infiltration
A comprehensive knowledge-base update to the sixth version of
the original web-based programs is provided by the Database
for Annotation, Visualization and Integrated Discovery (DAVID,
v6.8, https://david.ncifcrf.gov/). With the comprehensive set of
function annotation tools provided by DAVID, researchers can
examine the biological meanings of a large set of genes. The
Gene Ontology resource (GO; http://geneontology.org) provides
structured, computable knowledge regarding the functions of
genes and gene products (16). The knowledge of GO resource is
both human-readable and machine-readable, and is a foundation
for computational analysis of large-scale molecular biology and
genetics experiments in biomedical research. DAVID was used to
conduct GO analysis based on genes in a univariate Cox analysis
of OS and DFS.

Tumor Immune Estimation Resource (TIMER; https://
cistrome.shinyapps.io/timer/) is a web interactive platform and
is used to analyse tumor-infiltrating immunocytes systematically.
We utilized TIMER to study the correlation of genes in
the risk score model and the signatures of tumor-infiltrating
immunocytes in COAD. The “Gene” module was carried out to
investigate the relevance between the risk score model expression
and immunocyte infiltration levels specific to each gene (B-cells,
neutrophils, macrophages, dendritic cells, CD4+ and CD8+ T-
cells) with the TCGA database. We applied TIMER to explore

the relationship between the gene expression in the risk score
model and the marker gene sets of different immunocytes
with the “Correlation” module. The relationship between the
gene expression in the risk score model and the tumor-
infiltrating immune cells were assessed by purity-correlated
partial Spearman’s correlation and statistical significance (17).

External Validation Using Online Databases
Hub genes in LASSO Cox were surveyed from the following
online databases: (1) Oncomine database analysis. Oncomine
database (https://www.oncomine.org/resource/main.html) is a
tumor microarray database and online data analysis tool that
collects many “multi-arrays” (18). This tool was used to
determine gene expression signatures. Gene expression levels in
various types of cancers were identified using the Oncomine
database at a p-value threshold of 0.001 and a fold change
threshold of 2 using gene ranking. The following conditions
were used to acquire the mRNA expression level in tumor tissue
compared with normal tissues: P < 1E-4, fold change > 2, and
top gene rank 10% (19). (2) cBioPortal analysis. The cBioPortal
for Cancer Genomics (http://cbioportal.org) was constructed
specifically to decrease the difficulty of obtaining complex
data sets and promote the translation of genomic data into
novel biological knowledge, treatments, and clinical trials (20).
This platform encourages the study of multidimensional tumor
genomics data by supporting visualization and estimating across
genes, samples, and data types. The resource allows researchers
to visualize the patterns of gene alterations across samples in one
tumor research, to compare the frequencies of gene alterations
across multiple tumor researches, and to aggregate alterations
of all related genomes in an single cancer sample. cBioPortal
encompasses multiple genomic data types such as somatic
mutations, DNA copy number alterations (CNAs), mRNA and
microRNA (miRNA) expression, DNA methylation, protein
abundance, and phosphoprotein abundance (21). (3) PrognoScan
database Analysis. The PrognoScan database (http://www.abren.
net/PrognoScan/) was utilized to explore the association between
gene expression and survival across various types of cancers.
PrognoScan was utilized to dissect the correlations between gene
expression and prognosis indicators (e.g., OS and DFS) across a
large number of open tumor microarray datasets. The threshold
of Cox p-value was adjusted to <0.05 (22). (4) GEPIA database
Analysis. The Gene Expression Profiling Interactive Analysis
(GEPIA, http://gepia.cancer-pku.cn/) database is a developed
interactive web server for analyzing the RNA sequencing
expression data of tumor and normal samples from the TCGA
and the GTEx projects, using a standard processing pipeline.
GEPIA provides customizable functions such as tumor/normal
differential expression analysis, profiling according to cancer
types or pathological stages, patient survival analysis, similar
gene detection, correlation analysis and dimensionality reduction
analysis (23).

Apoptosis and Cycle Assay
The analysis of the previous sections indicated that FUT1 was
an aberrantly expressed gene in COAD tumors and therefore
high FUT1 expression could be used as a predictor of adverse
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TABLE 1 | Clinical characteristics of colorectal patients.

Characteristics TCGA (N = 566) GSE39582 (N = 573)

AGE, Median (Q1,Q3) 67 (57, 75) 68 (59, 76)

Gender, n (%)

Female 264 (47%) 256 (45%)

Male 302 (53%) 317 (55%)

ANNARBOR.Stage, n (%)

NA 12 (2%) –

0 – 4 (1%)

I 101 (18%) 37 (6%)

II 207 (37%) 265 (46%)

III 165 (29%) 208 (36%)

IV 81 (14%) 59 (10%)

outcomes. So we examined the function of FUT1 in cell apoptosis
and cell cycle and performed a flow cytometry assay. We
cultured HCT-116 cells for 24 h with FUT1 and then harvested
the cells. Next, Annexin V and propidium iodide (PI) were
used in accordance with the manufacturer’s recommendation
(Beijing Solarbio, China). The apoptotic rate and cell cycle were
detected using a NovoCyte flow cytometer (ACEA, Biosciences,
USA) and analyzed using the NovoExpress software (ACEA,
Biosciences, USA).

Cell Transfection
Cell transfection was also performed to further verify the
effect of FUT1. HCT-116 cells were gained from the American
Type Culture Collection. The cells were kept in Dulbecco’s
modified Eagle’s medium (DMEM) (Gibco, USA), supplemented
with 10% fetal bovine serum (FBS) (Gibco, USA), 100µg/mL
streptomycin (Gibco, USA) and 100 U/mL penicillin (Gibco,
USA) in a humidified incubator with 37◦C and 5% CO2. FUT1
was silenced in HCT-116 cells by transfection with FUT1 short
interfering RNA (si-FUT1). si-FUT1 and the siRNA negative
control (si-NC) were purchased from Tsingke Biotech (Beijing,
China). Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA)
was used to carried out the transfection trials according to the
manufacturer’s instructions.

RESULTS

Patient Selection
A total of 566 COAD patients were selected as the training
set from TCGA and 573 COAD patients were selected from
the GSE39582 cohort as the validation set. The specific clinical
features of the patients were listed in Table 1. A flow chart of our
research was illustrated in Supplementary Figure 1.

Identifying of Prognostic
Metabolic-Related DEGs in the TCGA
Cohort
A total of 153 overlapping DEGs were identified between (1)
tumor tissues and non-tumor adjacent tissues in TCGA and

TABLE 2 | Disease-free survival associated gene list in COAD from the training set

(TCGA).

No. Gene HR P-value

1 CCND1 0.238875 0.000367

2 CXCL1 2.968093 0.007837

3 CXCL10 3.176181 0.002312

4 CXCL3 2.856345 0.005621

5 EDAR 0.190756 3.90E-05

6 FUT1 0.358673 0.008883

7 INHBA 0.31451 0.001944

8 MMP1 4.725989 0.000239

9 MYC 2.978401 0.00377

10 PPAT 2.960687 0.006917

TABLE 3 | Overall survival associated gene list in COAD from the training set

(TCGA).

No. Gene HR P-value

1 CCNB1 2.639522 0.000693

2 CCND1 0.535604 0.005232

3 CDC6 1.75829 0.002691

4 CDH3 1.924981 0.008129

5 CXCL1 1.743645 0.005178

6 CXCL11 1.937543 0.001367

7 CXCL3 1.765604 0.00236

8 FUT1 0.583245 0.007906

9 GPD1L 1.832985 0.004354

10 MAD2L1 1.977956 0.000292

11 MMP1 2.060513 0.000426

12 MYC 1.670215 0.009585

13 NME1 2.070147 0.001144

14 PGM1 2.00308 0.001948

15 PPAT 2.180598 0.001574

16 PPIL1 1.822861 0.001349

17 PTTG1 1.746729 0.003743

18 RIPK2 2.426172 0.000253

19 RRM2 1.896863 0.001508

20 SPP1 0.519043 0.000739

21 TKT 1.957591 0.000346

GSE20571, and (2) recurrent and normal human tissues in the
GEO cohort (GSE21510 and GSE32323). A total of 62 genes were
identified by matching 153 DEGs with metabolic-related genes,
21 of which were correlated with OS and 10 were correlated with
DFS in the univariate Cox regression analysis (P < 0.01) in the
training set (Tables 2, 3).

Establishment of a Prognostic Model in the
TCGA Cohort
We used LASSO Cox regression analysis to both the 10 DFS
genes and 21 OS genes to develop prognostic models with the
expression profile of the above-mentioned genes. LASSO Cox
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regression analysis was used to screen four genes (CCND1,
EDAR, FUT1, and PPAT) in DFS and eight genes (CCNB1,
CDC6, FUT1, GPD1L, MAD2L1, MMP1, SPP1, and TKT) in
OS, which acted as the input for multivariate Cox regression
analysis. We obtained the coefficients of the prognostic models
of both DFS and OS using multivariate Cox regression analysis
(Figures 1A,B,D,E). Finally, prognostic models were displayed in
the form of a risk score as follows:

Risk score of DFS = 0.411228099154717× CCND1

+ 0.547206032433896× EDAR

+ 0.302185127495718× FUT1

− 0.583673054198275× PPAT

Risk score of OS = −0.0985300797882395× CCNB1

− 0.0566241392969015× CDC6

+ 0.111288163590287× FUT1

− 0.144434028275748× GPD1L

− 0.21174022083491×MAD2L1

− 0.231299794085908×MMP1

+ 0.129051446614179× SPP1

− 0.140224178453846× TKT

GO term analyses were carried out to investigate the potential
biological meanings of the 21 identified DFS genes and 10 OS
genes. As depicted in Figures 1C,F, GO annotation revealed top
categories that were positively correlated withmetabolism in DFS
such as chemokine-mediated signaling pathway, G1/S transition
of mitotic cell cycle, and re-entry into mitotic cell cycle, among
others. Other pathways were identified for OS including G1/S
transition of mitotic cell cycle, cell division, and inflammatory
response. These results indicate that GO enrichment is critically
important in COAD patients and is strongly associated with
metabolism, especially in the G1/S transition of the mitotic
cell cycle.

The relevance between the gene expression in the risk score
DFS model and six types of infiltrating immunocytes (B-cells,
neutrophils, macrophages, and dendritic cells, CD4+ and CD8+
T-cells) was examined further. The DFS analysis indicated that
3/4 of the expression levels in the risk score model were
obviously related with the infiltrating of B-cells, CD8+ T-
cells, and macrophages (Supplementary Figure 2). The EDAR
coefficient in the risk score of DFS was positive and EDAR
expression was positively associated with the levels of B-cell and
CD8+ T-cell infiltrating in COAD (Supplementary Figure 2B).
Our analysis indicates that CD8+ T-cells and B-cells may be
obviously associated with COAD.

We also investigated the correlation between the gene
expression in the risk score OS model expression and 6 types
of infiltrating immunocytes. The OS analysis indicated that the
genes in the risk score OS model were associated with CD8+
T and B-cell infiltrating. The coefficients of FUT1 and SPP1
in the risk score of OS were positive, and FUT1 expression
was critically correlated with the levels of B cell infiltrating
in COAD (Supplementary Figure 3C). SPP1 expression was

critically associated with the infiltrating degrees of CD8+ T-cells
in COAD (Supplementary Figure 3F). Above all, we considered
that CD8+ T-cells and B-cells may be obviously correlated with
COAD in both DFS and OS.

Independent Prognostic Role of the
Prognostic Model
Kaplan-Meier (KM) survival analysis was conducted for the risk
score. The optimal risk score cut-off point in 222 DFS patients
with DFS status and time records was 0.18 as illustrated in
Figure 2A. Based on this best cut-off point, we divided the 222
DFS patients into high- and low-risk groups, the distribution of
which was illustrated in Figure 2A. The survival curves of the 222
DFS patients under the optimal cut-off point were depicted in
Figure 2B (P < 0.0001). The optimal cut-off point for the risk
score in all 214 patients with stages I, II, and III was 0.13, as
illustrated in Figure 2C. Based on this optimal cut-off point, we
separated all 214 DFS patients into high- and low-risk groups,
the distribution of which was depicted in Figure 2C. The survival
curves of the 214 patients are shown in Figure 2D (P < 0.0001).
The survival curves of the patients with stage I, I + II, and III
are depicted in Figures 2E–G with P = 0.015, P < 0.0001, and
P = 0.00038, respectively. All survival curves indicated that the
risk score was an independent prognostic parameter, and the
low-risk group had a favorable prognosis. As an independent
prognostic parameter, the predictive performance of the risk
score was represented by the ROC in Figure 2H. The AUCs
of 1-, 3-, and 5-year predicted by the risk score were 0.779,
0.798, and 0.845, respectively. The OS results for TCGA are
included in Supplementary Figure 4. The survival curves of DFS
and OS for the validation data set are also included in the
Supplementary Figures 5, 6.

The Prognostic Model as an Independent
Clinical Parameter
Univariate Cox regression analysis of the 214 DFS patients
included in the TCGA-COAD data set indicated that sex and our
prognostic model were significantly correlated. Multivariate Cox
regression analysis revealed that this prognostic model was an
independent prognostic parameter of DFS (Figure 3A). Among
the 554 OS patients included in the TCGA-COAD data set,
the prognostic model was also shown to be an independent
prognostic parameter of OS (Figure 3C), which was consistent
with the results from the TCGA-COADDFS cohort. Tomake the
proposed approach more practical for clinicians, nomograms for
both DFS and OS were developed to predict survival probability
(Figures 3B,D). The C-indices of DFS and OS were 0.786 and
0.748, separately. The results for the validation data set are
included in the Supplementary Figure 7.

Validation of the Nomogram
The calibration curve for TCGA-COAD was plotted to validate
the predictive performance of the nomogram, which was
presented in Figure 4. The calibration curves illustrated in
Figures 4A–C represent the 1-, 3-, and 5-year survival of
DFS patients in TCGA. The x-axis suggests the nomogram
prediction probabilities and the y-axis indicates the observed
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FIGURE 1 | Identification of genes screened via LASSO cox regression analysis. (A,D) Coefficients of different genes screened via LASSO cox regression analysis with

different λ in DFS and OS. The two dashed lines represent lambda.min and lambda.1se and lambda.min was selected for both DFS and OS. (B,E) Partial likelihood

deviance of cross-validation with different λ in DFS and OS. (C,F) GO analysis of identified genes of LASSO cox regression analysis in DFS and OS.

rates. The dashed line denotes the reference line. The closer
the calibration curve was to the reference line, the better the
predictive performance of the nomogram. The same results for
OS patients in TCGA were illustrated in Figures 4D,E. The

calibration curves for the validation dataset of GSE39582 were
shown in Supplementary Figure 8.

In DCA, the y-axis denotes the net benefits and the x-axis
indicates the threshold probability. The gray diagonal line in
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FIGURE 2 | The risk score results acted as an independent prognostic factor in DFS. (A) Optimal cut-off of the total 222 DFS patients and distribution of high- and

low-risk groups based on the optimal cut-off of 0.18. (B) Survival curves of the total 222 DFS patients under the optimal cut-off of 0.18. (C) Optimal cut-off of the total

214 DFS patients at different stages (including stage I, II and III) and distribution of high- and low-risk groups based on the optimal cut-off of 0.13. (D) Survival curves

of all 214 DFS patients under the optimal cut-off of 0.13. (E–G) Survival curves of the DFS patients at stages I, I + II, and III, respectively. (H) ROC of 1-, 3-, and

5-years predicted by the risk score.
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FIGURE 3 | Forest plots and nomograms for DFS and OS in TCGA-COAD. (A) Forest plot for DFS in TCGA-COAD. (B) Nomogram for DFS in TCGA-COAD. (C)

Forest plot for OS in TCGA-COAD. (D) Nomogram for OS in TCGA-COAD. **P < 0.01; ***P < 0.001.

FIGURE 4 | Calibration curve for TCGA-COAD. (A–C) Calibration curve of 1-, 3-, and 5-year survival for DFS patients in TCGA. (D–F) Calibration curve of 1-, 3-, and

5-year survival for OS patients in TCGA.

Figure 5 denotes the hypothesis that all patients have 1-, 3-, and
5-year survival rates. The black horizontal solid lines represent
the surmise that no patients have 1-, 3-, or 5-year survival rate.

The 1-, 3-, and 5-year DCA for DFS patients in TCGA were
illustrated in Figures 5A–C. The higher the net benefit, the better
the nomogram. The same results for OS patients in TCGA were
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FIGURE 5 | DCA for TCGA-COAD. (A–C) DCA of 1-, 3-, and 5-year survival for DFS patients in TCGA. (D–F) DCA of 1-, 3- and 5-year survival for OS patients in

TCGA.

shown in Figures 5D–F. Additionally, the DCA for the validation
dataset of GSE39582 is shown in Supplementary Figure 9.

External Validation Using the Online
Database
In the cBioportal for Cancer Genomics website, FUT1 exhibited
the most frequent genetic alterations (2.9%) among the four
genes of the prognostic model, with missense mutation being
the most common alteration (Figure 6A). Consistent with
our results, CCND1, FUT1, and PPAT were found to be
significantly overexpressed in tumors, whereas EDAR was not
significantly expressed in COAD in Oncomine (Figure 6B).
FUT1 was also found to be significantly overexpressed in COAD
tumors compared to normal tissues in the GEPIA database
(23) (Figure 6C). Survival analyses were carried out by the
GEPIA database. Patients with high FUT1 expression displayed
remarkably shorter DFS and OS in GEPIA (Figures 6D,E);
however, CCND1, EDAR, and PPAT showed no significant
differences in DFS and OS (Supplementary Figure 10). Further,
FUT1 was found to be consistent with the DFS and OS results
of GSE17536 in PrognoScan (Figures 6F,G). Taken together, our
findings indicated that FUT1 was an aberrantly expressed gene
and high FUT1 expression could be used as a predictor of
adverse outcomes.

si-FUT1 Inhibited Cell Migration and
Induced Apoptosis in Colon Cancer Cells
A flow cytometry assay was performed to examine the effect
of FUT1 on cell apoptosis and the cell cycle. Transfection
with si-FUT1 significantly raised the apoptotic rate of HCT-
116 cells compared with that of NC cells (Figures 7A,B), and
significantly reduced the number of cells in the G2 phase
(Figures 7C,D). Next, cell migration was detected using the
streak method. Transfection with si-FUT1 significantly inhibited

the cell migration rate of HCT-116 cells compared to that of NC
cells (Figures 7E,F).

DISCUSSION

Metabolic reprogramming is considered as a new critical
feature of malignancy (1). Some potential molecules regulating
abnormal metabolism have been tested in preclinical or
clinical investigations (24). The interactions between bile acids,
cholesterol metabolites, and colonic epithelial cells may be
relevant in colon carcinogenesis (25). Meanwhile, big data
analysis is an important tool for Prediction task (26–30), and
disease forecasting is a vital part of the medical research (31, 32).
However, the role and mechanisms of metabolic-related genes in
COAD remain unclear. The present study was thus conducted to
further explore the association of metabolic genes with prognosis
in patients with COAD.

Big data and machine learning algorithms have been widely
used in basic and clinical medicine research, such as antlion re-
sampling based deep neural network model for classification of
imbalancedmultimodal stroke dataset, and deep neural networks
to predict diabetic retinopathy (32, 33). High-throughput
multimodal massive medical data is just right for research with
big data and machine learning algorithms. The blockchain-
enabled internet of medical things (IoMT) can provide strong
trust establishment and ensure the traceability of data sharing in
the IoMT networks (34). Due to the emergence of heterogeneous
IoMT, large volumes of patient data are dispatched to central
cloud servers for disease analysis and diagnosis (29). Many
publicly available data resources and analytical tools are available
for research. Analysis methods including survival analysis,
nomogram and data visualization have also been developed with
corresponding R packages for researchers to use. Our work used
LASSO machine learning algorithms as survival analysis and

Frontiers in Public Health | www.frontiersin.org 9 April 2022 | Volume 10 | Article 860381

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Zheng et al. Metabolic Signature of COAD Prognosis

FIGURE 6 | Expression and genetic alterations of the four predictive genes. (A) Genetic alterations of the four genes. The data were obtained from the cBioportal in

COAD. (B) Expression profiles of the four genes in the Oncomine database. (C) FUT1 expression in COAD and normal tissue in GEPIA. (D) Prognostic value of FUT1

expression in DFS in GEPIA. (E) Prognostic value of FUT1 expression in OS in GEPIA. (F) Prognostic value of FUT1 expression in DFS in GSE17536 in PrognoScan.

(G) Prognostic value of FUT1 expression in OS in GSE17536 in PrognoScan. *P < 0.05.

prediction tool. Multiple data sources and analytical tools in a
way that leverages data from previous studies and yields valuable
results even when clinical trials are not yet readily available. As
more data resources and analysis tools are developed, we believe
that big data and machine learning algorithms will be more
widely used in medical research.

In our research, we comprehensively probed the expression of
62 metabolic genes in COAD tumor tissues and the relationships
between recurrent patients and DFS and OS. A new prognostic
model including four metabolic genes associated with DFS was
first established based on the TCGA dataset and validated using
the GSE39582 dataset. The validity of the novel signature was
shown in the training, validating, and stage subgroups. The
signature exhibited a robust prognostic capacity, especially for
the short-term survival of patients with COAD. Besides, the
OS of patients with high-risk was shorter than that of patients
with low-risk in the TNM stage. Multivariate Cox regression
analysis indicated that our prognostic model was an independent
prognostic parameter for DFS and OS (HR > 1, P < 0.001).
ROC curve analysis verified the predictive power of the features.
Additionally, the forest plot suggested that the risk score was
an independent parameter in the multivariate Cox regression
analyses. Moreover, a nomogram was built to predict 1-, 3-,
and 5-year DFS rates. The efficacy of the nomogram was
verified in validation cohorts, and the calibration plots and DCA
showed that the precision of the nomogram was good. Therefore,
our nomogram may provide simple and accurate prognostic
predictions for COAD.

In the cBioportal for Cancer Genomics website, FUT1
possessed the most frequent genetic alterations (2.9%) among
the four genes of the prognostic model. FUT1 was also found to
be obviously overexpressed at the mRNA level in COAD tumors
compared to normal tissues in the GEPIA database (Figure 6C).

Patients with high FUT1 expression displayed remarkably
shorter DFS and OS in the GEPIA to low FUT1 expression
(Figures 6D,E). Moreover, the FUT1 results were consistent
with the DFS and OS results in GSE17536 in PrognoScan
(Figures 6F,G). Taken together, our findings indicated that FUT1
was an aberrantly expressed gene and therefore high FUT1
expression could be used as a predictor of adverse outcomes.

FUT1 encodes a Golgi stack membrane protein that
participates in the synthesis of a precursor of the H antigen. Gene
expression profiling analysis unexpectedly showed a significant
number of up- and down-regulatedmetabolism-associated FUT1
genes in nasopharyngeal carcinoma (35). Additionally, FUT1
plays an important role in a regulatory mechanism involving
fucosylation through which glucose restriction promotes cancer
stemness to drive tumor recurrence and drug resistance. FUT1
overexpression is a poor prognostic indicator of hepatocellular
carcinoma (36). We also examined the function of FUT1 in cell
apoptosis and cell cycle and performed a flow cytometry assay.
Transfection with si-FUT1 significantly raised the apoptotic rate
of HCT-116 cells and obviously reduced the number of cells in
the G2 phase while also significantly inhibiting the cell migration
rate of HCT-116 cells compared to that of NC cells. Therefore,
si-FUT1 inhibited cell migration and induced apoptosis in colon
cancer cells. FUT1 overexpression may thus be a new prognostic
marker and therapeutic target of COAD tumors.

Functional analyses also revealed enriched metabolism-
related pathways. The top categories were critically important
in COAD patients and strongly associated with metabolism,
particularly the G1/S transition of the mitotic cell cycle.
Correlation analysis between the genes in the risk score DFS
model expression and six types of infiltrating immunocytes
suggested that CD8+ T-cells and B-cells may be significantly
related with COAD in both DFS and OS.
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FIGURE 7 | Apoptosis and cycle assay and cell transfection experiment. (A) Flow cytometry assay in NC cells. (B) Flow cytometry assay in HCT-116 cells. (C) Cell

cycle in NC cells. (D) Cell cycle in HCT-116 cells. (E) Cell migration in NC cells. (F) Cell migration in HCT-116 cells.

Immunocytes are essential ingredients of the tumor
microenvironment. These immunocytes differentiate into
subsets with distinct effects, and metabolic reprogramming
participates in this process (37). These immunocytes in the
tumor microenvironment have metabolic characteristics that
differ from those in non-tumor tissues (38). OS was dramatically
worse in patients with low levels of CD8+ T-cell infiltrating
than those with high levels of CD8+ T-cell infiltrating. The
survival rate in patients with high CD8+ T cell infiltrating
was 100%. Peritumoral CD8+ T-cell infiltration has an anti-
tumor effect in patients with colorectal cancer (39). CD8+
T cell expansion and function rely on glycolysis; however,
the mechanisms underlying CD8+ T cell metabolism remain

unclear (40). We previously demonstrated that increasing B-cell
a infiltrating, clonal expansion, and mutational frequency from
the cecum to the sigmoid colon were linked to an increasing
number of reactive bacterial species (41). Numerous B-cell
clones distribute into two broad networks: one includes the
blood, bone marrow, spleen, and lung, whereas the other is
distributed to digestive tract, including colorectal tissues (42).
B-cell clonal lineages is a basis for investigations on tissue-based
immunity, including infection, vaccine response, autoimmunity,
and tumor (42). Metabolic reprogramming of tumor cells
and the tumor microenvironment are up-and-coming as
essential characteristics affecting tumor development, metastasis,
and response to treatments (43). A better understanding of
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metabolic communications among tumor cells, intestinal
flora, and immunocyte populations will open new ways for
identifying strategies to boost anti-tumoral immune responses in
COAD patients.

Although our work has yielded many meaningful results
through bioinformatics methods, these results still need to be
further validated by preclinical studies and clinical trials. The
use of numerous data sources and analytical tools also makes
it more difficult to understand the research process and results.
The interpretation of the results of big data studies is also an area
prone to controversy. Therefore, there is still work to be done in
predicting the prognosis of patients with COAD. For example,
more patients and clinical characteristics of patients should be
included in further studies.

CONCLUSIONS

In summary, we identified a novel signature comprised of four
metabolic genes that could precisely predict the prognosis of
patients with COAD. Metabolic-related signatures may have a
potential role in the anti-tumor process and serve as therapeutic
targets for COAD.
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the risk score model of DFS and the levels of immune cell infiltration in COAD

samples, as investigated by TIMER analysis. (A) CCND1. (B) EDAR. (C) FUT1. (D)

PPAT.

Supplementary Figure 3 | Correlation between the expression of the genes in

the risk score model of OS and immune infiltrating levels in COAD samples, as

assessed by TIMER analysis. (A) CCNB1. (B) CDC6. (C) FUT1. (D) GPD1L. (E)

MAD2L1. (F) MMP1. (G) SPP1. (H) TKT.

Supplementary Figure 4 | The risk score results acted as an independent

prognostic factor in OS of TCGA. (A) Optimal cut-off of the total 566 overall

survival patients and distribution of high-risk and low-risk groups based on the

optimal cut-off of 0.38. (B) Survival curves of the 554 overall survival patients

under the optimal cut-off of 0.38. (C–E) Survival curves of the patients at stage I +

II, stage III, and stage IV, respectively.

Supplementary Figure 5 | Survival curves of DFS in the validation data set of

GSE39582. (A) Survival curves of 532 DFS patients at different stages (stage I, II,

III, and IV). (B) Survival curves of DFS patients at stage I. (C) Survival curves of

DFS patients at stage I + II. (D) Survival curves of DFS patients at stage III.

Supplementary Figure 6 | OS curves from the GSE39582 validation data set.

(A) Survival curves of 569 overall surviving patients at different stages (stage I, II,

III, and IV). (B) Survival curves of disease-free surviving patients at stage III. (C)

Survival curves of disease-free surviving patients at stage IV.

Supplementary Figure 7 | Forest plots and nomograms for DFS and OS in the

GSE39582 validation data set. (A) Forest plot for DFS in GSE39582. (B)

Nomogram for DFS in GSE39582. (C) Forest plot for overall survival in GSE39582.

(D) Nomogram for overall survival in GSE39582.

Supplementary Figure 8 | Calibration curve for the GSE39582 validation data

set. (A–C) Calibration curve of 1-, 3-, and 5-year survival for disease-free surviving

patients in GSE39582. (D–F) Calibration curve of 1-, 3-, and 5-year survival for

overall surviving patients in GSE39582.

Supplementary Figure 9 | DCA for validation of data set GSE39582. (A–C) DCA

of 1-, 3- and 5-year survival for disease-free surviving patients in GSE39582. (D–F)

DCA of 1-, 3-, and 5-year survival for overall surviving patients in GSE39582.

Supplementary Figure 10 | Prognostic value of gene expression in GEPIA. (A)

CCND1 in DFS. (B) CCND1 in OS. (C) EDAR in DFS. (D) PPAT in OS. (E) PPAT in

DFS. (F) PPAT in OS.

Supplementary Table 1 | List of metabolic-related genes.
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