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Alcohol use disorder (AUD) continues to be challenging to treat despite the best available

interventions, with two-thirds of individuals going on to relapse by 1 year after treatment.

Recent advances in the brain-based conceptual framework of addiction have allowed

the field to pivot into a neuromodulation approach to intervention for these devastative

disorders. Small trials of repetitive transcranial magnetic stimulation (rTMS) have used

protocols developed for other psychiatric conditions and applied them to those with

addiction with modest efficacy. Recent evidence suggests that a TMS approach focused

on modulating the salience network (SN), a circuit at the crossroads of large-scale

networks associated with AUD, may be a fruitful therapeutic strategy. The anterior insula

or dorsal anterior cingulate cortex may be particularly effective stimulation sites given

emerging evidence of their roles in processes associated with relapse.

Keywords: alcohol use disorder, neuromodulation, transcranial magnetic stimulation, treatment, salience network,

neurocircuitry

INTRODUCTION

Alcohol use disorder (AUD) is the most prevalent substance use disorder (1), imposes the greatest
burden of illness (2), and alcohol-induced deaths in the United States are currently on the rise
(3). AUD is associated with poor medical, psychological, and social outcomes, such as adverse
overall physical health, neuropsychological deficits, psychiatric comorbidities, homelessness,
unemployment, and relationship dysfunction (4–6), which contribute to a subsequent poor quality
of life for individuals suffering from this devastative disorder. The estimated costs to the American
economy were $223.5 billion in 2006 for excessive alcohol drinking (7). Current evidence-based
interventions, be it psychotherapy or pharmacological, still result in approximately two-thirds of
individuals relapsing by 6-months post-treatment (8). Emerging research into the key brain-based
factors that contribute to relapse may reveal novel targets for prediction, intervention, and relapse
prevention. To this end, we aim to briefly review the neurocircuitry of addiction, the role of the
salience network (SN) in treatment outcomes, the latest trends in neuromodulation for psychiatric
disorders, and conclude with a potential avenue for advancing brain-based interventions for AUD.
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FUNDAMENTAL CONCEPTUALIZATION OF
ADDICTION: A BRAIN-BASED CONDITION

Neurocircuitry of Addiction
Converging lines of evidence from preclinical and human
research have resulted in the empirically driven, brain-based
conceptual framework of addiction. Animal and human models
of addiction have allowed for a sophisticated interrogation
of the neurocircuitry that underlies addictive behaviors. Koob
and colleagues describe the dynamic allostatic process of the
addiction cycle in three stages: (1) binge and intoxication,
(2) withdrawal and negative affect, and (3) preoccupation and
anticipation stage (9, 10). During the binge and intoxication
stages, the reward system is initially hyperactive, specifically the
ventral tegmentum and the nucleus accumbens, and following
chronic alcohol use, a homeostatic shift to hypoactivation
occurs. During withdrawal and negative affect, there is a
focus on reduced experiences of reward for conventional
stimuli and increases in negative affect. These psychological
experiences are coupled with changes in the striatum, extended
amygdala, and insula functioning. Finally, the third stage
is influenced by stress, increased disinhibition, and leads to
preoccupation and anticipation of reward, including craving,
which increases relapse risk (11, 12). A core part of this model
is the shift from impulsivity fueling early stages of addiction
to compulsivity fueling later stages of addiction (including
relapse). This co-occurs with a shift from positive reinforcement
mechanisms to negative reinforcement mechanisms, which can
drive motivated behaviors. At the crossroads of this transition is
the SN (13).

The Salience Network
The SN is a multifunctional, intrinsically connected, large-scale
neural circuit implicated in several psychiatric conditions, such
as addiction. Specifically, the SN is associated with the detection
of salient changes in the environment, both interoceptive and
external, and signals the need for cognitive control (14). Critical
cortical nodes of the SN include the anterior insula (AIns) and the
dorsal anterior cingulate cortex (dACC) (14–16). Additionally,
these core nodes functionally connect with subregions of the
prefrontal cortex (PFC) inferior parietal lobule (IPL) (14, 16–18)
and downstream, subcortical regions of the extended amygdala,
ventral striatum, and substantia nigra/ventral tegmental area
(19, 20). Although intrinsic connectivity of the SN is most often
reported during states of rest in humans, SN function is also
interrogated during active tasks involving cognition, action, and
emotion (19).

Recent work confirms these SN nodes are paralleled in
preclinical models (21). In humans, the AIns, dACC, and
dorsolateral PFC (dlPFC) co-activate in response to tasks
of cognitive demand, cognitive control, decision-making, and
environmental uncertainty. This co-activation has previously
been implicated in negative mood states (17, 22–24), and
synchronous activation has been shown to increase with task
difficulty and stimulus ambiguity. This finding, of task difficulty-
dependent, increased activation, suggests that the dACC and
AIns both play an integral role in cognition by filtering and

integrating internal and external stimuli during a variety of
cognitive tasks (25).

The insular cortex is involved in various cognitive and
affective processes, such as responding to internal and external
emotionally salient stimuli, decision-making, threat recognition,
and conscious urges (26). The insula is also heavily implicated
in interoception, which involves integrating a wide array of
somatic physiological conditions to maintain homeostasis (27,
28). The role of the AIns in the SN includes bottom-up
detection of salient stimuli via integration across perceptual
modalities (29–33). Specifically, the AIns plays a key role in
externally orienting attention and internally orienting self-related
cognitions through engagement with default mode and executive
networks (14, 34–37).

Conversely, the dACC plays a crucial role in initiation,
motivation, and goal-directed behaviors (38–41), with key
projections that influence motor responses (42–44) and
interactions with other large-scale networks that have a major
role in motor/behavioral selection (25). In addition to co-
activation with separate functional networks, the dACC also
possesses extensive cortico-cortical connections within the
PFC, including the dorsolateral prefrontal cortex (dlPFC) and
premotor regions, making it critical for learning and behavior
(45). Taken together, the fundamental nodes of the SN—the AIns
and dACC—are implicated in the processing and synthesis of
several complex human experiences, such as cognition, action,
and emotion (19). These critical functions are central to the
development and maintenance of addiction (10).

SN in AUD: Intersection With
Neurocircuitry of Addiction
Regardless of clinical phenotype, the AIns and dACC are
consistently implicated in the development and persistence
of multiple psychiatric disorders, such as addictive disorders,
suggesting they are critical for psychological well-being and
adaptive functioning (46–48). For addiction specifically, the SN
may interact and influence incentive salience (49, 50), negative
affect (51–55), and executive function (56–60) networks, which
are core neurocircuitry underlying AUD (61, 62). The Competing
Neurobehavioral Decision System theory, alongside the Impaired
Response Inhibition and Salience Attribution models, among
others, are established conceptual frameworks of addiction that
unite both behavioral and neurobiological systems involved in
AUD (63). These models specify that the cortico-striatal circuits
involved in processing salient internal or external stimuli, as
well as cognitive decision-making, are compromised in AUD.
Preclinical literature has identified regions, such as the dACC,
insula, and striatum, as targets that are causally linked to
alcohol-seeking behaviors (64). In humans, SN abnormalities
contribute to difficulties with impulsivity, compulsivity, and
executive dysfunction (65, 66), and an increased relapse risk in
AUD (4).

The first study to suggest the AIns may have a critical role
in the addiction cycle was by Naqvi et al. (67), showing that
structural damage to the insula disrupted cigarette consumption.
Following a right or left insula lesion, individuals demonstrated
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rapid and extended smoking cessation, had fewer conscious
smoking urges during abstinence (67), and were five times more
likely to quit smoking compared with people with no insula
lesion (68). Structural damage to the insula has also been shown
to decrease the occurrence and severity of nicotine withdrawal
symptoms (69), and smoking cessation difficulty (68). Taken
together, these fundamental lesion studies highlight the role of
the insula in withdrawal and relapse.

Dysfunction of the dACC has also been intensively described
as having a role in psychiatric conditions, such as the
development and maintenance of AUD. For example, prior
studies have demonstrated that reduced dACC activation and
compromised connectivity of the SN nodes are associated with
greater decision-making latency in AUD (70, 71). Similarly,
in individuals who reported binge drinking, acute alcohol
consumption caused blunted functional connectivity between
the bilateral AIns and the ACC (72). Several groups have
demonstrated that such neurobiological abnormalities of the
SN are related to the inability to restrain subjective urges (71)
and evaluate emotionally salient stimuli (72) in AUD, further
supporting that dysregulation of the SN in AUD (63), across
resting state, social and emotional processing, and inhibitory
control tasks, such as specific reductions in blood flow (73). Acute
alcohol consumption significantly attenuates bilateral anterior
insula activation to emotional face cues relative to neutral faces
and is exacerbated by the level of response to alcohol, which
increases the risk for AUD development (74, 75). SN dysfunction,
such as structural and metabolic abnormalities (4, 5, 76) and
reduced functional connectivity among nodes of the SN, is also
predictive of future relapse in AUD (77, 78).

Similar evidence also points to the insula and the dACC
playing major roles in reactivity to alcohol cues. A systematic
review of over 100 task-related imaging studies by Zilverstand
et al. revealed hyper-activation and hyper-connectivity during
substance cue exposure, but blunted activation and reduced
connectivity during all other tasks, such as cognitive control,
non-substance reward, and social/emotional tasks (63). Other
cue reactivity studies have found that neural activation in the
insular cortex and the ventral striatum can be used to differentiate
between heavy and light alcohol drinkers, with heavy drinkers
having a higher activation in those regions in response to alcohol
cues (79). This differentiation of neural activation between levels
of alcohol use may also provide insights into who is at the highest
risk of relapse (26). For example, Kohno and colleagues reported
that individuals who did not complete AUD treatment showed
increased resting-state connectivity between the striatum and the
insula, demonstrating that SN dysfunction could be predictive of
future drinking (77).

In summary, evidence suggests that insula and dACC
activation and connectivity to other key nodes of the SN
and how they relate to the neurocircuitry of addiction are
highly relevant to the development and maintenance of AUD.
One approach to improving treatment outcomes for these
individuals may be to directly target SN function through novel
therapeutic techniques that have demonstrated efficacy in other
psychiatric conditions.

RESEARCH GAPS: ADVANCING
TREATMENT FOR AUD

Among the different treatment options available for AUD,
inpatient detoxification for alcohol appears to be the most
frequently utilized (80). Residential treatment programs typically
apply pharmacotherapies and/or behavioral interventions, such
as cognitive-behavioral therapy, group-based peer support, and
relapse prevention strategies. However, even with extensive,
residential treatment, relapse rates remain high. One potential
limitation of existing interventions is that they modify behaviors
globally with indirect effects on the brain. Non-invasive
neuromodulation techniques demonstrate promise by modifying
specific and selective neural targets shown to be associated
with symptoms. The current modest efficacy of evidence-based
interventions, combined with increasing rates of alcohol-related
deaths, makes the development of new brain-based therapeutics
a high priority.

Transcranial magnetic stimulation (TMS) is a brain
modulation technique that involves the use of different
frequencies and patterns of stimulation to generate an
electromagnetic field to depolarize neurons and influence
cortical excitability. Apart from having FDA clearance for
treatment, several resources describe guidelines for treatment
and safety protocols (81–86). Extensive research supports
the clinical efficacy of TMS for psychiatric disorders, most
commonly for major depressive disorder (MDD), after FDA
approval in 2008 (81). Since 2008, TMS has received FDA
clearance for the obsessive-compulsive disorder (OCD) and
smoking cessation (87, 88). Researchers have aimed to expand
TMS indications for comorbidities associated with MDD, such
as OCD, bipolar disorder, PTSD, and substance use disorder
(83, 84). Additionally, researchers have tested altering the
standard treatment protocol (89) or using high-efficiency forms
of TMS, such as intermittent Theta Burst Stimulation (iTBS)
(90) in hopes of increasing efficacy and/or decreasing overall
treatment time.

To date, treatment approaches for TMS in AUD have
predominately targeted two brain regions: the dlPFC, and the
medial prefrontal cortex (mPFC). While meta-analytic studies
are difficult to utilize given the inconsistency in the treatment
parameters used (e.g., as shown in Ref. (91), a few brief trends
have emerged: (1) 10Hz left or right-sided, dlPFC protocol for
the treatment of AUDs is generally helpful in reducing craving
(92, 93); (2) the right-sided dlPFC has variable results which
may or may not be related to the frequency at which treatment
is delivered (92, 94); (3) mPFC stimulation consistently reduce
brain reactivity to alcohol cues (95–97), and may reduce alcohol
use post-treatment (98, 99); and (4) regardless of stimulation
site and chosen TMS parameters, applying 10+ sessions of TMS
appears to consistently decrease alcohol craving (94, 98, 100,
101). While results are promising, it is notable that many of
these studies focus on craving and have not directly reduced
alcohol consumption or relapse risk (92, 94–97, 100–106). While
the mixed results within the field may be due to differences in
parameter application (frequency, strength of stimulation, and
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TABLE 1 | Summary of all transcranial magnetic stimulation (TMS) studies in alcohol use disorder (AUD) to date.

Ref N (Active,

Sham)

rTMS parameters Outcome measure Findings Blind Active

sham

controlSite Hz %MT Sessions;

Duration

Pulses/

Session

Drinking

Behavior

Craving Brain/

Biology

Other

Bx

Mishra et al. (93) 45

(30,15)

R.dlPFC 10 110 10

1 month

1,000 1-mo

relapse

ACQ-NOWN/A N/A ↓ in craving; relapse

14% active, 33% sham

S Y

De Ridder et al.

(115)

1 dACC 1 50 1

1 day

600 N/A VAS BOLD N/A ↓ in craving

↓ BOLD in dACC and PCC

N/A N/A

Höppner et al.

(102)

19

(10,9)

L.dlPFC 20 90 10

10 days

10,000 N/A OCDS N/A AB No diff in craving/dep sx

↑ in AB effect to alc-stim

S N

Herremans et al.

(103)

31

(15,16)

R.dlPFC 20 110 1

1 day

1,560 N/A OCDS N/A N/A No diff in craving S N

Herremans et al.

(104)

29

(29,29)

R.dlPFC 20 110 1

2 days

1,560 N/A OCDS N/A Go-

NoGo

No difference in craving

↓ IIRTV of Go-NoGo

S N

Ceccanti et al.

(99)

18

(9,9)

dmPFC 20 120 10

10 days

1,000 TLFB VAS cortisolemia,

prolactinemia

N/A ↓ craving

↓ # drinks per day/max ↓

cortisol and prolactin

D Y

Girardi et al.

(100)

10 L.dlPFC 20 120 20

1 month

2,200 N/A OCDS N/A N/A ↓ craving/depressive sx N/A N/A

Herremans et al.

(94)

26

(13,13)

R.dlPFC 20 110 15

4 days

1,560 N/A AUQ,

OCDS

BOLD N/A ↓ craving, not cue-induced

↑ reward ↓ DMN BOLD

N/A N/A

Jansen et al.

(105)

38

(20,18)

R.dlPFC 10 110 1

1 day

3,000 N/A VAS FC N/A ↑ fcMRI of frontal pole S N

Mishra et al. (92) 20 (10 L,

10 R)

L.dlPFC

R.dlPFC

10 110 10

10 days

1,000 N/A ACQ N/A N/A ↓ in craving both left and right

stimulation

D N/A

Rapinesi et al.

(101)

11 L.dlPFC 18 120 20

4 weeks

1,980 N/A OCDS N/A N/A ↓ in craving/dep sx

sustained at 6-months

N/A N/A

Herremans et al.

(116)

19 R.dlPFC 20 110 14

3 days

1,560 1-mo

relapse

N/A BOLD N/A 68% relapse at 1mo

↓ dACC BOLD abstainers

↑ dACC BOLD relapsers

S N

Qiao et al. (106) 38

(18,20)

R.dlPFC 10 80 4

5 days

800 N/A N/A MRS HVLT,

BVMT

↑ memory

↑ NAA/Cr and Cho/Cr

D N

Del Felice et al.

(117)

17

(8,9)

L.dlPFC 10 100 4

2 weeks

1,000 N/A VAS EEG Stroop,

Go-

NoGo

No change in craving

↑ Stroop/Go-NoGo

↓ EEG/dep sx

S N

Addolorato et al.

(118)

11

(5,6)

L.dlPFC

R.dlPFC

10 100 12

4 weeks

1,000 TLFB OCDS SPECTDAT N/A No diff in craving/dep sx

↓ in STAI-Y, DAT

↑ # of abstinent days,

D Y

Hanlon et al. (95) 50

(25 coc,

25 alc)

vmPFC 5 110 6

1 day

3,600 N/A N/A BOLD N/A Alcohol: ↓ BOLD mPFC, AIns,

MTG, and parahippocampal

gyrus

S Y

Hanlon et al. (96) 49

(25 coc,

24 alc)

vmPFC 5 110 6

1 day

3,600 N/A VAS BOLD N/A Alcohol: ↓ BOLD OFC, insula,

and lateral sensorimotor cortex

S Y

Kearney-Ramos

et al. (97)

49

(25 coc,

24 alc)

vmPFC 5 110 6

1 day

3,600 N/A VAS FC N/A Alcohol: No diff in craving

↓ cue-related fcMRI of

reward regions

S Y

McNeill et al.

(119)

20 (w/in-

design)

R.dlPFC 50 80 1

1 day

600 drinking N/A N/A Stop-

signal

↓ inhibitory control

↑ alcohol consumption

N/A N

Wu et al. (120) 51

(22, 29)

R.dlPFC 20 110 153 days 1,560 1-mo

relapse

N/A GMV N/A ↓ GMV in relapsers, No

change in TMS GMV but

baseline predicted relapse

N/A N/A

Perini et al. (121) 56

(29,27)

Bi-Insula 10 120 15

3 weeks

1,500 No TLFB AUQ,

PACS

BOLD N/A No diff in craving, drinking

measures, fMRI

D Y

Harel et al. (98) 51 mPFC

ACC

10 100 15

3 weeks 5:

3mo fu

3,000 TLFB PACS FC AUDIT

ADS

↓ craving,

↓ % heavy drinking

↓rsFC dACC to

caudate nucleus

↓FC mPFC to subgenual ACC.

D Y

Search terms included: alcohol use disorder and transcranial magnetic stimulation between 2010 and 2021. A review of the resulting articles was conducted by CBP and excluded

position papers and reviews.
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number of sessions), another limitation may be that protocols
were only able to stimulate the outermost cortex, rather than
deeper nodes within the SN.

Recent technological advances in TMS coil design have made
it possible for TMS-induced electric fields to penetrate deeper
into the brain, modulating areas, such as the dACC and AIns
in addition to superficial cortical areas (107). Recent studies
indicate that these newly developed H-coils tend to provide
both a broader area of stimulation and increased depth as
compared with the Figure-of-8 coil [see Tendler et al. (107)
for a review of the various H-coil designs and exact cortical
targets]. Furthermore, the design of the H-coils can provide
simultaneous activation of both the left and right lateral and
medial prefrontal cortices depending on the specific coil and the
treatment parameters used (107). Although this design stimulates
both hemispheres, there is evidence to suggest that it stimulates
the left hemisphere more than the right (108, 109). Given that the
electromagnetic fields delivered by TMS decay exponentially with
distance (110, 111), specific confirmation is needed to determine
if these deep TMS devices can stimulate subcortical regions, such
as the AIns and the dACC. This is of particular relevance in AUD,
wherein alcohol is known to induce widespread cortical atrophy
(112). That said, a recent study investigating the distance from
the scalp to the cortex at the dlPFC and mPFC among a sample
of individuals with AUD and healthy controls did not find a
significant difference between the groups (113).

Similar to the mood disorders literature, targeting may be
critical in addition to overall dosage (i.e., the total number
of pulses administered during a treatment course) when
considering how best to achieve downstream network effects
(114). Table 1 summarizes all TMS studies to date in AUD,
which clearly emphasizes that the field of targeting subcortical
nodes within the SN is in its infancy. Among the sparse,

existing literature, evidence suggests that cue-induced craving
may be better modulated by targeting inferior structures, such
as the ACC, the insula, or the mPFC (99, 122). However, the
literature on how to best modulate insular and cingulate activity
also provides disparate information. Results from Perini et al.
suggest that insular stimulation made no difference in resting-
state connectivity or craving in treatment vs. sham groups (121)
for AUD. These results are particularly important to consider
given the involvement of the insula in AUD circuitry (26). Harel
and colleagues recently reported that an H7 stimulation protocol
targeting the dACC resulted in changes in functional connectivity
and fewer heavy drinking days in the active condition compared
with the sham condition (98). While these early works have
produced mixed results, the converging preclinical and clinical
evidence regarding the centrality of SN nodes in the development
and maintenance of AUD warrants further investigation.

Other Considerations Moving Forward
As described above, the SN nodes are likely promising brain-
based targets for therapeutic intervention, particularly by
utilizing unique forms of TMS as tools to modulate deeper
brain structures. However, one of the constraints of TMS is
that current technology cannot reach the insula or dACC
without also delivering a strong electric field to the superficial
cortical areas between the TMS coil and the deeper brain
target (as shown in Figure 1). To move the field forward,
it is important to think creatively about non-invasive brain
stimulation options that may allow us to selectively activate
core SN nodes without simultaneously activating off-target
cortical regions.

There are several complementary non-invasive approaches
that may be useful for the field to consider as it evaluates
the SN as a fruitful target for AUD treatment. One possibility

FIGURE 1 | Proposed theoretical electrical field models (113). (A) Targeting dACC stimulation and (B) targeting AIns stimulation. Both models demonstrate additional

delivery of a strong electrical field to the superficial cortical areas between the TMS coil and the deeper brain target.
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is to use temporally interfering electric fields non-invasively
applied at multiple cortical locations simultaneously. Grossman
and colleagues recently demonstrated that by exploiting the
inherent sensitivity of neural populations to varying frequencies,
it is possible to selectively stimulate the mouse hippocampus. It
remains unclear if this would yield similar results in humans.

Finally, while our focus has been on deep TMS (dTMS)
potential, it is also possible to modulate these brain regions
through a targeted cortical area with strong afferent projections
to the cingulate or insula. This “cortical window” approach relies
on the known ability of TMS tomodulate areas monosynaptically
connected to the area targeted by the electric field. This simple
principle is evident by the basic generation of a motor evoked
potential in the hand following stimulation of the primary motor
cortex (a 2-synapse network). For example, active TMS applied
to the frontal pole can change functional connectivity with the
insula and cingulate cortex, when compared with sham TMS
(96, 97). These are just a few considerations that the fieldmay find
fruitful when searching for a strategy to non-invasively modulate
the SN nodes.

CONCLUSION/DISCUSSION: POTENTIAL
DEVELOPMENTS FOR THE FIELD

Alcohol use disorder is highly prevalent, devastating, and
notoriously difficult to effectively treat, as evidenced by the
nearly two-thirds relapse rate within 6 months of treatment
(123–125). One potential limitation of existing psychosocial
and pharmaceutical interventions is that they modify behaviors
more globally with indirect effects on the brain. Non-invasive
neuromodulation techniques are showing promise toward the
aim of modifying specific and selective neural targets related
to AUD. However, device-based interventions to date for AUD
have focused on superficial cortical stimulation, with most
outcomes being related to craving. In contrast, preclinical and

clinical studies suggest that deeper nodes within the SN could
be promising targets, particularly the AIns and the dACC.
Deep rTMS (dTMS) is one type of neuromodulation technique,
utilizing an H-coil design (currently FDA-cleared for OCD and
smoking cessation) that can potentially reach the AIns and dACC
(126). However, it remains unclear if these targets are modifiable
in AUD and which SN node (AIns or dACC or both) would
have a greater impact on SN function, and importantly on
reducing relapse risk post-treatment. Several lines of evidence
support the SN as a promising future target for neuromodulation
to impact treatment outcomes for AUD, and this warrants
further investigation.
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